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Abstract: HF radars are becoming important components of coastal operational monitoring systems
particularly for currents and mostly using monostatic radar systems where the transmit and receive
antennas are colocated. A bistatic configuration, where the transmit antenna is separated from the
receive antennas, offers some advantages and has been used for current measurement. Currents
are measured using the Doppler shift from ocean waves which are Bragg-matched to the radio
signal. Obtaining a wave measurement is more complicated. In this paper, the theoretical basis for
bistatic wave measurement with a phased-array HF radar is reviewed and clarified. Simulations
of monostatic and bistatic radar data have been made using wave models and wave spectral data.
The Seaview monostatic inversion method for waves, currents and winds has been modified to
allow for a bistatic configuration and has been applied to the simulated data for two receive sites.
Comparisons of current and wave parameters and of wave spectra are presented. The results are
encouraging, although the monostatic results are more accurate. Large bistatic angles seem to reduce
the accuracy of the derived oceanographic measurements, although directional spectra match well
over most of the frequency range.

Keywords: HF radar; remote sensing; inversion; radar cross section; bistatic radar; directional
wave spectrum

1. Introduction

Coastal high frequency or HF radar (3–30 MHz) is a tool that has enabled users to remotely
measure ocean currents, winds and waves, in real-time, since the initial observation of Crombie [1]
in 1955, who realised the relationship between ocean wave and HF radar Doppler spectra (such as
that shown in Figure 1). The measurements are important in a number of coastal engineering topics,
including testing of and assimilation in operational wave models, sea vessel navigation, land/beach
erosion, designing offshore structures, and in supporting marine activities. Additionally, collecting
ocean data over a long period of time can be useful in climate changes studies; the same data can also
be used to assess the potential of a coastal region to become a wave/wind farm as shown by Wyatt [2].
With such important applications, the accuracy of the measurements is imperative.

The majority of the existing theory is for monostatic radar, where the transmitter and receiver
are co-located. Ocean surface current measurements from such a radar are robust, and hundreds
of radars provide real-time current measurements all over the world; see the work of Paduan and
Washburn [3] for an introduction to the subject. Methods for measuring wind direction and variability
are also reliable, such as the method of Wyatt et al. [4], where the maximum likelihood method
is used fit the wind distribution to the available radar data. Ocean wave measurements are also

Remote Sens. 2020, 12, 313; doi:10.3390/rs12020313 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-9366-6052
https://orcid.org/0000-0002-9483-0018
http://dx.doi.org/10.3390/rs12020313
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/2/313?type=check_update&version=4


Remote Sens. 2020, 12, 313 2 of 28

possible, however, they can be less robust as they are more vulnerable to noise (for limitations see
Wyatt et al. [5]). Notable methods of Lipa [6,7], Howell and Walsh [8], and Hisaki [9] are all significant
in the history of measuring the wave spectrum. Another key method is the Seaview method, presented
by Wyatt [10], and Green and Wyatt [11], which will be explained in Section 3.

Figure 1. Example of a radar Doppler spectrum measured by a bistatic HF radar on the south coast of
France on 09/07/2014 00:01. Radar data provided by Celine Quentin, University of Toulon.

To obtain the ocean measurements using radar data, many researchers use the radar cross section
of the ocean surface, which models what the radar output will be for a given ocean state and radar
frequency. For monostatic radars, the most commonly used radar cross section is that of Barrick [12,13],
derived in 1972, based on the perturbation method of Rice [14]. The expression is split into its first and
second order components; the first order radar cross section, σ(1)(ω), is due to resonance between the
emitted radio waves and ocean waves of a particular length and direction, and the second order radar
cross section, σ(2)(ω), is due to double scattering of the emitted radio waves from two ocean waves
and the non linear combination of the same two ocean waves. In full, for radar wavenumber k0 and
ocean spectrum S(~k),

σ(1)(ω) = 26πk4
0 ∑

m=±1
S(m~kB)δ(ω−mωB), (1)

where kB = 2k0, is known as the Bragg wavenumber and

ωB =
√

2gk0 tanh(2k0d) (2)

is known as the Bragg frequency, for ocean depth d and gravity g. The second order term is given by

σ(2)(ω) = 26πk4
0 ∑

m,m′=±1

∫∫ ∞

−∞
|ΓT |2S( ~mk1)S(m′~k2)δ(ω−mω1 −m′ω2) dp dq, (3)

where ~k1 and ~k2, with respective angular frequencies ω1 and ω2, are the two contributing wave vectors,
defined by the relationship ~k1 + ~k2 = ~kB. The |ΓT |2 term is known as the coupling coefficient and contains
the mathematics of the nonlinear combinations of the waves and, as such, is a function of ~k1 and ~k2 .
More detail on the monostatic coupling coefficient is given by Lipa and Barrick [15].

Numerical methods like that of Holden and Wyatt [16] can be used to simulate monostatic Doppler
spectra for given ocean conditions and radar settings, using Equations (24) and (28); a comparison
of a radar measured Doppler spectrum and a simulated Doppler spectrum, using co-spatial and
co-temporal wave buoy data as input to the simulation, is shown in Figure 2 where good agreement
is shown.
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Figure 2. Comparison of measured and simulated monostatic Doppler spectra. The simulated Doppler
spectrum has been generated using wave buoy data, measured at the same time and place as the radar
Doppler spectrum. Radar and buoy data provided by Daniel Conley, Univeresity of Plymouth

Recently, bistatic radar—where the transmitter and receiver are separated by a notable distance—is
on the ascendancy. Therefore, conversely to monostatic radar which receives backscatter, the detected
radio waves in a bistatic radar have been scattered at a non-zero angle. A traditional coastal HF radar
site consists of two monostatic radars, each providing data from ocean backscatter. However, a third
dataset can be obtained at no additional cost if one of the receivers also receives bistatic scatter from
the other transmitter. In this case, the radar site is called multistatic. Each different radar setup is
shown in Figure 3. The advantages of employing a bistatic/multistatic radar setup are that (1) it can
reduce the cost of setting up/maintaining a HF radar and (2) it can increase spatial coverage and data
quality as shown by Whelan & Hubbard [17].

(a) Monostatic (b) Bistatic (c) Multistatic

Figure 3. Comparison of (a) monostatic (receiver and transmitter colocated), (b) bistatic (receiver and
transmitter separated) and (c) multistatic (b with extra receiver) radar geometries. In each case, the
transmitter is shown by the blue cross and the receiver is shown by the blue circle (in the monostatic
case, is also at the same location as the transmitter). An example scatter point is shown by the red
star and the path the signal takes is shown by the solid black line. The line of constant range for
each particular range is shown by the dashed black line and the angle marker shown represents the
bistatic angle.

In this paper, the aim is to obtain directional wave measurements from bistatic radar data.
Previously, for bistatic radar, Zhang and Gill [18] developed an inversion algorithm to obtain the
nondirectional wave spectrum from bistatic radar data and, when tested on simulated data, they
obtained good results. Silva [19] has also presented results of simulated bistatic HF radar data
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inversion where the directional wave spectrum was estimated using Tikhonov regularization. They
achieved good results for simulated data, however, the method is limited as a model is assumed for
the direction of the spectrum, and this assumption may not always be appropriate.

In the existing numerical methods for extracting wave measurements from monostatic radar data,
the aim is to invert Equation (3), to obtain the ocean spectrum S(~k) in terms of the measured σ(ω).
Anderson [20] stated that the existing algorithms should work for a bistatic system if the inverted
radar cross section is changed to the bistatic expression. In this work, we test this hypothesis and
modify the Seaview method to measure the directional wave spectrum from bistatic HF radar data.
Therefore, to do this, the bistatic radar cross section must be known.

In 1975, Johnstone [21] presented a bistatic radar cross section of the ocean surface and then,
in 2001, Gill and Walsh [22] presented an alternative expression. However, under monostatic conditions,
neither of the expressions reduce exactly to the monostatic term of Barrick [12,13] (which the Seaview
method depends on). The derivation of Johnstone appears to have an error which causes the difference
in the resulting expressions; Gill and Walsh followed a more complicated method, however, it has been
shown that the monostatic form of their radar cross section is similar to Barrick’s and it is, therefore,
unnecessary to change the existing operational inversion programs to use theirs instead. Another
recent derivation is given in Chen et al. [23].

A bistatic radar cross section that reduces exactly to the monostatic term of Barrick [12,13] would
be beneficial to systems based on Barrick’s expression (such as the Seaview inversion) as, in the
radar coverage area, the bistatic angle can vary between 0° and 90°, so the discontinuity between the
monostatic and bistatic radar cross section expressions would cause a discontinuity in the inversion
program used and perhaps, then, the results. Therefore, in this work, we follow the method of Barrick,
whilst retaining the bistatic angle, to derive the bistatic radar cross section of the ocean surface. A
reviewer of this paper has drawn our attention to similar work by Hisaki and Tokuda [24] who allowed
for a finite scattering area and showed that their equations reduced to those of Barrick for an infinite
scattering area and a monostatic geometry.

We begin with an overview of the derivation of the bistatic radar cross section in Section 2.1,
before presenting the numerical solution of the resulting expression in Section 2.2. Details of the
Seaview inversion method (for which details of the cross-section equations and numerical simulations
are a pre-requisite) are then given in Section 3. The results of the modified Seaview inversion, when
tested on simulated bistatic data, are given in Section 4 and these are discussed in Section 5 which also
includes some concluding remarks.

2. Materials and Methods

2.1. Bistatic Radar Cross Section of the Ocean Surface

To derive the bistatic radar cross section of the ocean surface, we follow the method of Barrick [12],
where the equivalent monostatic radar cross section was derived. In his work, Barrick used the
perturbation analysis of Rice [14] where, by assuming small waveheights and slopes, the electric field
scattered from the ocean surface, ~Es, was calculated. They key points of the derivation follow, however,
more details can be found in the work of Hardman [25].

The value of ~Es depends on both the incident radio waves and the properties of the scattering
surface. Firstly, the incident waves will propagate as vertically polarised ground waves. Secondly,
as the ocean varies in both time and space, by assuming that these variations are periodic and that the
surface is of infinite extent, we can define the surface, f (x, y, t), as a Fourier series expansion, such that

z = f (x, y, t) =
∞

∑
mnl=−∞

P(m, n, l)eia(mx+ny)−iwlt, (4)

for wavenumber a = 2π/L, angular frequency w = 2π/T and Fourier coefficients P(m, n, l) which are
dependent on the integers m, n and l.
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The electric field scattered from this surface, will also be periodic with the same fundamental
spatial and temporal periods and hence Rice defined ~Es as a Fourier series. For a perfectly conducting
flat surface, the exact solution can be found. Therefore, we perturb the solution around the flat surface,
with ordering parameter k0 f (for radar wavenumber k0), using Maxwell’s equations and the tangential
boundary condition to obtain the first and second order Fourier coefficients. Details of the calculations
for vertically polarised waves can be found in the work of Hardman [25]; for horizontally polarised
waves, the details are provided by Rice [14]. The resulting scattered electric field has components

Ex =2 ∑
mnl

E(m, n, z, l)e−iω0t

[
i(k0 − am)P(m− ν, n, l)

+ ∑
qrs

{
a2(m− q)(ν− q)k0 + (k0 − am)b2(q, r)

}
Q(m, n, l, q, r, s)

]
,

(5)

Ey =2a ∑
mnl

E(m, n, z, l)e−iω0t

[
−inP(m− ν, n, l)

+∑
qrs

{
a(n− r)(ν− q)k0 − nb2(q, r)

}
Q(m, n, l, q, r, s)

] (6)

Ez =2eik0xe−iω0t + 2 ∑
mnl

E(m, n, z, l)
b(m, n)

e−iω0t

[ (
− i(a(m− ν)k0 + b2(m, n)

)
P(m− ν, n, l)

+∑
qrs

{
(a3(q− ν)(m2 + n2 − qm− rn)k0)

+ a(a(m2 + n2)−mk0)b2(q, r)
}

Q(m, n, l, q, r, s)

]
,

(7)

where ω0 is the angular frequency of the emitted radio waves,

E(m, n, z, l) = ei(a(mx+ny)+b(m,n)z)e−iwlt,

in which

b(m, n) =

{
(k2

0 − a2m2 − a2n2)1/2 if m2 + n2 < k2
0/a2

i(a2m2 + a2n2 − k2
0)

1/2 if m2 + n2 > k2
0/a2 ,

and

Q(m, n, l, q, r, s) =
P(q− ν, r, s)P(m− q, n− r, l − s)

b(q, r)
.

By definition, the electric field in Equations (5)–(7) corresponds to the scattering of infinite plane
waves from a surface of infinite extent. To transform the fields to finitely scattered fields, which
is necessary as only a portion of the whole ocean will be illuminated by the radar, we can use the
equation presented by Johnstone [21] who followed the work of Stratton [26]. He showed that if the
electric field is known on a finite section of an infinitely large volume such as the surface S1 on the
hemisphere shown in Figure 4, then the scattered electric field at a point (x′, y′, z′) inside of the volume
can be calculated.
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The equation is given by

~E(x′, y′, z′) =
eik0R

4πR

∫
S1

{[(
∂Ex

∂z
− ∂Ez

∂x

)
~̂ax +

(
∂Ey

∂z
− ∂Ez

∂y

)
~̂ay

]
z=0

+ ik0

[
Ex cos θ~̂ax + Ey cos θ~̂ay − (Ex sin θ cos ϕ + Ey sin θ sin ϕ)~̂az

]
z=0

+

[(
∂Ez

∂x
− ∂Ex

∂z

)
sin θ cos ϕ +

(
∂Ez

∂y
−

∂Ey

∂z

)
sin θ sin ϕ

]
z=0

·
[

sin θ cos ϕ~̂ax + sin θ sin ϕ~̂ay + cos θ~̂az

]}
e−i~k0·ρdS1,

(8)

where ρ is the vector (x, y, z) on S1, (R, θ, ϕ) are the radius, polar angle and azimuthal angle measured
from the origin to (x′, y′, z′) and ~k0 is the radar wavevector given by

~k0 = k0(sin θ cos ϕ, sin θ sin ϕ, cos θ).

Figure 4. The finite scattering surface, S1, with boundary C, as part of a hemispherical surface. The
vector ρ denotes the position (x, y, z) on S1; the vector~rr is the vector from (x, y, z) to some distant
point (x′, y′, z′) where the scattered electric field is desired. The vector ~k0 is the radar wavevector in
the direction of the scattered radio wave, ~R.

Note that the integral can be evaluated on any plane and z = 0 is used for convenience. However,
as pointed out by Hisaki and Tokuda [24], this choice is in fact the infinite scattering surface limit.
Evaluating the integral on z = f as they did changes the resulting power spectrum of the scatter but
differences are very small at the Doppler frequencies used for inversion so z = 0 is sufficient for this
work. To find the scattered field at a point (x′, y′, z′), the values for Ex, Ey and Ez from Equations (5)–(7)
are substituted into Equation (8) and the integral is calculated. The vertically polarised component,
Eθ(t), is then identified in the resulting expression (as these are the radio waves that the receiver will
detect) such that

Eθ(t) =
ieik0R

2πR
L2 ∑

mnl

{
B(t)[−ix1P(m− ν, n, l) + ∑

qrs
x2Q] + C(t)[−iy1P(m− ν, n, l) + ∑

qrs
y2Q]

+ D(t)[−iz1P(m− ν, n, l) + ∑
qrs

z2Q]

}
,

(9)

where,

x1 = am− k0; x2 = a2(m− q)(ν− q)k0 + (k0 − am)b2(q, r)

y1 = an; y2 = a2(n− r)(ν− q)k0 − anb2(q, r)

z1 = a(m− ν)k0 + b2(m, n); z2 =
[

a3(q− ν)(m2 + n2 − qm− rn)k0 + a
(

a(m2 + n2)−mk0

)
b2(q, r)

]
.



Remote Sens. 2020, 12, 313 7 of 28

and,

B(t) = ∑
mnl

cos ϕ(k0 + b(m, n) cos θ) sinc(XR) sinc(YR)e−i(wl+ω0)t
(10)

C(t) = ∑
mnl

sin ϕ(k0 + b(m, n) cos θ) sinc(XR) sinc(YR)e−i(wl+ω0)t
(11)

D(t) = ∑
mnl
− cos θ(am cos ϕ + an sin ϕ)

sinc(XR) sinc(YR)
b(m, n)

e−i(wl+ω0)t, (12)

for XR =
L
2
(am− k0 sin θ cos ϕ) and YR =

L
2
(an− k0 sin θ sin ϕ).

In the scattered electric field in Equation (9), the first order components (namely, the terms
including a single P term) represent the single scattering of one electromagnetic wave, to the receiver,
from one ocean wave. The second order components (which include a factor of Q) represent doubly
scattered electromagnetic waves, to the receiver, from two single ocean waves. The order of the ocean
wave, currently denoted by P(m− ν, n, l), has not yet been considered and is assumed to be first order.
However, in making such an assumption, a second order contribution from first order scattering from
second order oceans waves is missed, where a second order ocean wave is the result of the nonlinear
interaction between two first order ocean waves.

To allow for the second order hydrodynamic effects in shallow water, Barrick and Lipa [27]
used a perturbation method to relate the second order coefficients P(2)(~k, ω), of a surface defined by
z = ∑~k,ω P(~k, ω)ei~k·~r−iωt, to the first order coefficients P(1)(~k, ω). Their method involved expanding
the surface height Fourier coefficients around the flat surface, i.e.,

P(~k, ω) = P(1)(~k, ω) + P(2)(~k, ω) + . . . ,

alongside boundary conditions from the equations of motion, also expanded to second order. They
showed that for ocean waves with wavevectors ~k1 and ~k2, with corresponding angular frequencies ω1

and ω2 (related by the dispersion relation of ocean waves given by ω =
√

gk tanh(kd)),

P(2)(~k′′, ω′′) = ∑
~k1~k2

∑
ω1ω2

ΓH(~k1, ω1, ~k2, ω2)P(1)(~k1, ω1)P(1)(~k2, ω2), (13)

where ~k′′ = ~k1 + ~k2, ω′′ = ω1 + ω2, and

ΓH =
1
2

{
k1 tanh(k1d) + k2 tanh(k2d) +

ω′′

g
(ω3

1 csch2(k1d) + ω3
2 csch2(k2d))

(ω′′2 − gk′′ tanh(k′′d))

+
(k1k2 tanh(k1d) tanh(k2d)− ~k1 · ~k2)√

k1k2 tanh(k1d) tanh(k2d)

(
gk′′ tanh(k′′d) + ω′′2

gk′′ tanh(k′′d)−ω′′2

) }
,

(14)

is called the hydrodynamic coupling coefficient.
To include the second order hydrodynamic effects in the scattered electric field, we expand

P(m− ν, n, l) into P(1)(m− ν, n, l)+ P(2)(m− ν, n, l) and then substitute in the value of P(2)(m− ν, n, l)
using Equation (13) (by letting ~k′′ = (m− ν, n) and ω = l), and so Equation (9) becomes

Eθ(t) =
ieik0R

2πR
L2 ∑

mnl

{
− iζ(t)P(1)(m− ν, n, l) + ∑

qrs
[−iζ(t)ΓHb(p, q) + ξ(t)] Q(m, n, l, q, r, s)

}
, (15)

where for brevity
ζ(t) = B(t)x1 + C(t)y1 + D(t)z1
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and
ξ(t) = B(t)x2 + C(t)y2 + D(t)z2.

Following Johnstone [21], we finally calculate the radar cross section by substituting Equation (15)
into

σ(ω) = lim
R→∞

4πR2F
[
〈Eθ(t1)E∗θ (t2)〉

]
L2 , (16)

where R is the distance from the scatter patch to the receiver and F denotes a Fourier transform,
with definition

F [ f (t)] =
1

2π

∫ ∞

∞
f (t)e−iωt dt. (17)

To calculate Equation (16), the following properties of the surface height Fourier coefficients
are used:

• The Fourier coefficients are normally distributed about zero; hence

〈P(m, n, l)〉 = 0. (18)

• As the surface is real, f (x, y, t) is equal to f ∗(x, y, t), which is true when

P(−m,−n,−l) = P∗(m, n, l). (19)

• From Thomas [28],

〈P1P2P3〉 = 0 (20)

and

〈P1P2P3P4〉 = 〈P1P2〉〈P3P4〉+ 〈P1P3〉〈P2P4〉+ 〈P1P4〉〈P2P3〉. (21)

• The surface roughness spectrum S(p, q, wl), found by utilising the Wiener–Khinchin theorem,
is related to the surface height Fourier coefficients by

〈P(m, n, l)P(q, r, s)〉 =


(2π)3S(p, q, wl)

L2T
if q, r, s = −m,−n,−l

0 if else,
(22)

where p = am and q = an.

Then, substituting Eθ(t) from Equation (15) into Equation (16) and using Equation (20) leads to

σ(ω) =
1
π
F

L2 ∑
mnl

m′n′ l′

{
ζ(t1)ζ

′∗(t2)
〈

P(1)(m− ν, n, l)P(1)′∗(m′ − ν, n′, l′)
〉

+ ∑
qrs

q′r′s′

{
[−iζ(t1)b(q, r)ΓH + ξ(t1)]

[
iζ ′∗(t2)b∗(q′, r′)Γ′H + ξ ′∗(t2)

] 〈
QQ′∗

〉 } }  ,

(23)

where the arguments of Q are implied. The calculation of Equation (23) can be separated into its first
and second order terms, such that

σ(ω) = σ(1)(ω) + σ(2)(ω),
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where the first order radar cross section, σ(1)(ω), is defined by the term including the average〈
P(1)(m− ν, n, l)P(1)′∗(m′ − ν, n′, l′)

〉
, and the second order, σ(2)(ω), including 〈QQ′∗〉. To calculate

each of σ(1)(ω) and σ(2)(ω), the properties in Equations (18)–(22) are used to enforce restrictions on
the Fourier coefficients and to introduce the roughness spectrum S(~k). The mathematical details are
spared here, but can be found in the work of Hardman [25].

2.1.1. First Order

The first order radar cross section is given by

σ(1)(ω) = 25πk4
0 cos4 ϕbi ∑

m=±1
S(m~kB)δ(ω−mωB), (24)

defined at the Bragg frequencies, ±ωB, where

ωB =
√

2gk0 cos ϕbi tanh(2k0d cos ϕbi), (25)

for the bistatic angle, ϕbi, which is shown in Figures 3 and 5, and is related to the azimuthal scatter
angle ϕ by

ϕbi =
1
2
(π − ϕ) . (26)

The value of σ(1)(ω) depends on the ocean spectrum contribution for the Bragg wavevector, ~kB,
which travels in the elliptical normal direction from the scatter point (as shown in Figures 3 and 5),
and is defined by

~kB = −2k0 cos ϕbi(cos ϕbi,− sin ϕbi). (27)

Figure 5. Scattering geometry for a bistatic radar where Tx, Sp and Rx denote the transmitter, scatter
patch and receiver respectively, ϕbi is the bistatic angle, ~k0 is the radar wavevector and, p and q are
spatial wavenumbers, with p in the direction of the emitted radio wave.

2.1.2. Second Order

The second order bistatic radar cross section is

σ(2)(ω) =25πk4
0 cos4 ϕbi ∑

m,m′=±1

∫∫
|ΓE − iΓH |2 S( ~mk1)S( ~m′k2)δ(ω−mω1 −m′ω2) dp dq, (28)
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for wavevector pairs ~k1 and ~k2 (with respective angular frequencies ω1 and ω2) such that

~k1 + ~k2 = ~kB.

Explicitly,

~k1 = (p− k0, q) and ~k2 = (−k0 cos(2ϕbi)− p, k0 sin(2ϕbi)− q), (29)

and ΓE is the electromagnetic coupling coefficient given by

ΓE =
1

22 cos2 ϕbi

(
a1

b1 − k04
+

a2

b2 − k04

)
, (30)

where

4 = 0.011− 0.012i, (31)

is the normalized surface impedance derived by Barrick [29] and

a1 = −k1x(~k2 ·~̂a)− 2 cos2 ϕbi

(
−k2

2 + 2k0(~k2 ·~̂a)
)

, (32)

a2 = −k2x(~k1 ·~̂a)− 2 cos2 ϕbi

(
−k2

1 + 2k0(~k1 ·~̂a)
)

, (33)

b1 =
√
−k2

2 + 2k0(~k2 ·~̂a) (34)

and

b2 =
√
−k2

1 + 2k0(~k1 ·~̂a) (35)

(noting that both b1 and b2 can be real or imaginary depending on the argument), where ~̂a is a unit
vector in the direction of the receiver from the scattering patch (see Figure 5), namely,

~̂a = (− cos(2ϕbi), sin(2ϕbi)).

2.1.3. Monostatic Conditions

When ϕbi = 0, i.e., under monostatic conditions, the first and second order radar cross section
expressions given in Equations (24) and (28), respectively, are equivalent to the commonly used first
order monostatic radar cross section of Lipa and Barrick [15], except for a factor of 2. The difference
is due to differing Fourier transform definitions, however, the factor is ultimately not important as
when the inverse Fourier transform (which will also be different by a factor of 2) is taken to find the
power in the spectrum, the two terms will be equal. Furthermore, when inverting the expression, the
whole spectrum is normalised to removed the effects of propagation over the ocean and so the factor is
again inconsequential.

2.2. Numerical Solution

The method for finding the numerical solution of the bistatic radar cross section given in
Equations (24) and (28), is analogous to the method of Holden and Wyatt [16].
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2.2.1. First Order

Due to the delta function in Equation (24), the first order contribution to the Doppler spectrum
will appear as two peaks at ±ωB, defined in Equation (25). The contribution comes from two wave
vectors, ±~kB, travelling in the direction of the Bragg bearing, both toward and away from the radar
set up. As Crombie [1] hypothesised (for monostatic radar), these particular signals are amplified by
resonance. As kB includes a factor of cos ϕbi, for one radar using a single carrier frequency, there will
be a number of different Bragg waves, dependent on the radar beam range and angle. Scattering from
locations where ϕbi → 90° are referred to as forward scatter and when this occurs, both ωB and kB tend
to 0. Consequently, the wavelengths of the Bragg waves in this region become infinitely long and in
addition, the cos4 ϕbi factors in Equations (24) and (28) will tend to zero, leading to a low SNR.

2.2.2. Second Order

The second order radar cross section contribution, given in Equation (28), is due to double
electromagnetic scattering from two first order ocean waves, with wavevectors ~k1 and ~k2, and the
nonlinear interaction between the same two ocean waves. The wave vector pair sum to give the
Bragg wavevector ~kB and, theoretically, large numbers of pairs exist in the p, q wavenumber plane;
an example pair can be seen in Figure 6. To find the values of ~k1 and ~k2, the solution to the delta
function in Equation (28), such that

ω−m
√

gk1 tanh(k1d)−m′
√

gk2 tanh(k2d) = 0 (36)

is sought. For each value of ω, the set of solutions of ~k1 and ~k2 defines a frequency contour in the p, q
plane. As m and m′ can both take the values of 1 or −1, Equation (36) has four different forms.

β

Figure 6. Geometry of the second order scattering wave vectors, ~k1 and ~k2, at angles θ1 and
θ2, respectively.

Case m = m′:

Squaring Equation (36) gives

ω2 = g
(

k1 tanh(k1d) + k2 tanh(k2d) + 2
√

k1 tanh(k1d)k2 tanh(k2d)
)

and it can be shown that
ω2 ≥ (k1 + k2) tanh((k1 + k2)d).

Now, as the sum of two sides of a triangle is greater than the third, k1 + k2 > 2k0 cos ϕbi,
and therefore

ω2 > 2gk0 cos ϕbi tanh(2gk0 cos ϕbid).
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Taking the square root gives

|ω| >
√

2gk0 cos ϕbi tanh(2gk0 cos ϕbid),

which is equal to the bragg frequency ωB given in Equation (25). This leads to two conditions;{
ω > ωB m = m′ = 1

ω ≤ −ωB m = m′ = −1.

Figure 7 shows the frequency contours, defined by Equation (36). At frequencies close to the
Bragg frequencies the contours are circular in shape, centred around the Bragg frequency. As ω

increases, the contours become less circular, until |ω| = 2
√

gk0 cos ϕbi tanh(k0d cos ϕbi), shown in
white in Figure 7, where they separate.

(a) ϕbi = 0° (b) ϕbi = 25°

Figure 7. The frequency contours of Equation (36) for two values of ϕbi, (a) monostatic ϕbi = 0 and
(b) bistatic angle ϕbi = 25° when m = m′ = 1. The normalised frequency, η = ω/ωB, is shown by the
colour, in the p, q plane.

When ϕbi = 0, the contours are symmetrical about the p and q axes, however, when ϕbi > 0,
the contours rotate clockwise in the p, q plane, becoming symmetrical about some other axes, say p′

and q′, shown by the additional black lines in Figure 7b.

Case m 6= m′:

When m 6= m′, the square of Equation (36) is

ω2 = g
(

k1 tanh(k1d) + k2 tanh(k2d)− 2
√

k1 tanh(k1d)k2 tanh(k2d)
)

,

and it can be shown that
ω2 ≤ g ((k2 − k1) tanh((k2 − k1)d)) .

In the right hand plane, when ~k1 and ~k2 lie in opposite directions along the p′ axis, meeting at a
point past the bragg frequency, k2 − k1 reaches its maximum value of 2k0 cos ϕbi. Therefore,

ω2 ≤ g(2k0 cos ϕbi tanh(2k0 cos ϕbid))
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and this leads to the conditions {
0 < ω ≤ ωB m = −1, m′ = 1

−ωB < ω ≤ 0 m = 1, m′ = −1.

In the left hand plane, where k2 < k1, the result is reversed giving{
0 < ω ≤ ωB m = 1, m′ = −1

−ωB < ω ≤ 0 m = −1, m′ = 1.

Figure 8 shows the normalised frequency contours when m 6= m′ for different values of ϕbi. Like
when m = m′, the contours are symmetric about the p′ and q′ axes, however, in this case, they do not
cross the q′ axis for any frequency. The contours depict small circles around the Bragg frequencies,
growing in size and becoming less circular as the frequency approaches zero.

(a) ϕbi = 0° (b) ϕbi = 25°

Figure 8. The frequency contours of Equation (36) shown for m 6= m′ (where m = 1) with two different
values for ϕbi: (a) monostatic ϕbi = 0 and (b) bistatic angle ϕbi = 25°. The colour shows the value of
the normalised frequency, η = ω/ωB, in the p, q plane.

As the frequency contours for all four possible combinations of m and m′ are symmetrical about
the q′ axis, the integration in Equation (28) can be taken over one half of the symmetric plane and
doubled. Therefore, we integrate Equation (28) over the right hand p′ plane, and double the result
and hence

σ2(ω) = 26πk4
0 cos4 ϕbi ∑

m,m′=±1

∫ ∞

−∞

∫ ∞

q′
|ΓE − iΓH |2S(m~k1)S(m′~k2)δ(ω−mω1 −m′ω2) dp dq. (37)

In the right hand p′ plane, where k1 ≤ k2, we can calculate the integral in polar coordinates k1

and θ1, where θ1 is the angle between ~k1 and the p axis, as shown Figure 6. Explicitly,

σ2(ω) = 26πk4
0 cos4 ϕbi ∑

m,m′=±1

∫ θ+L

−θ−L

∫ ∞

0
|ΓE − iΓH |2S(m~k1)S(m′~k2)δ(ω−mω1 −m′ω2)k1 dk1 dθ1, (38)

where θ−L and θ+L are the integration limits of θ1 and vary with frequency as well as ϕbi. In general,
we find that the integration limits are

θ−L = −(π + ϕbi) and θ+L = π − ϕbi, (39)
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however a particular set of ω values require different limits. This happens when m = m′ and
|ω| > 2

√
k0g cos ϕbi tanh(k0d cos ϕbi), as the frequency contours cross the q′ axis and no longer

complete full rotations in the right hand p′ plane. By symmetry, when the contours cross the q′ axis, k1

and k2 are the same length. Therefore, when k2 = k1 and m = m′, the delta constraint of Equation (36)
becomes

ω = ±2
√

gk1 tanh(k1d) (40)

and then squaring Equation (40) gives

ω2

4g
= k1 tanh(k1d), (41)

which can be solved numerically for k1.
Introducing a term, β, as the angle between ~k1 and ~kB (see Figure 6), the integration limits are

given by

θ+L = π − ϕbi − β and θ−L = −
(
2π − θ+L − 2β

)
. (42)

Therefore, as β = cos−1
(

kB
2k1

)
, where the solution for k1 from Equation (41) is used,

θ+L = π − ϕbi − cos−1
(

kB
2k1

)
and θ−L = −

(
π + ϕbi − cos−1

(
kB
2k1

))
. (43)

In terms of k1 and θ1,

k2 =
√

k2
1 + k2

B + 2kBk1 cos(θ1 + ϕbi) and θ2 = π + θ1 − cos−1
(

k1 + kB cos(θ1 + ϕbi)

k2

)
.

To calculate σ(2)(ω), we now reduce the double integral in Equation (38) to a single integral using
the delta function. By defining

ys =
√

k1

h(ys, θ1) = mys

√
g tanh(y2

s d) + m′
√

gk2 tanh(k2d)

I(ys, θ1) = 27π|ΓT |2k4
0 cos4 ϕbiS(m~k1)S(m′~k2)y3

s ,

Equation (38) can be written as

σ2(ω) =
∫ θ+L

−θ−L

∫ ∞

0
I(ys, θ1)δ (ω− h(ys, θ1)) dys dθ1. (44)

Now, in order to integrate over the delta function, Equation (44) should have an integration
variable of h. Therefore, we calculate

σ2(ω) =
∫ θ+L

−θ−L

∫ ∞

0
I(ys, θ1)δ (η − h(ys, θ1))

∣∣∣∣∂ys

∂h

∣∣∣∣
θ

dh dθ1, (45)
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where ∣∣∣∣ ∂h
∂ys

∣∣∣∣
θ1

=
√

g

{
m

(√
tanh(y2

s d) +
y2

s d(sech2(y2
s d))√

tanh(y2
s d)

)

+
m′(y3

s + yskB cos(θ1 + ϕbi))

k3/2
2

{√
tanh(k2d) + k2d

sech2(k2d)√
tanh(k2d)

}}
,

whose reciprocal is
∣∣∣∣∂ys

∂h

∣∣∣∣
θ1

. To integrate over the delta function, the solution, y∗, to

ω− h(y∗, θ1) = 0 (46)

is required, which can be found using a numerical method. For timely convergence in the numerical
method, a good initial guess for y∗ is important. As the solution for shallow water should not be too
different to that for deep water, we find an initial solution for the deep water case and use that, as a
starting point, for the shallow water case. The deep water equation can be solved exactly in two cases:

• When mm′ = 1 and θ1 = −ϕbi, the solution of f (y) is

y∗0 =
ω2 − gkB
2m
√

gω
. (47)

• When mm′ = −1 and θ1 = π − ϕbi, the solution is

y∗0 =
mω +

√
2gkB −ω2

2
√

g
. (48)

Upon finding y∗, the second order cross section calculation in Equation (45) reduces to

σ2(ω) =
∫ θ+L

−θ−L
I(ys, θ1)

∣∣∣∣∂ys

∂h

∣∣∣∣
θ1

∣∣∣∣
ys=y∗

dθ1, (49)

which can be calculated using a numerical integration method. For speed and convergence we update
the value of y∗0 to the previously found solution for y∗, as θ1 incrementally increases.

2.2.3. Electromagnetic Singularities

The electromagnetic coupling coefficient given in Equation (30), contains two singularities; either
when b1 or b2 is equal to zero. The singularities lie on two circles in the p, q plane, shown in
Figure 9; explicitly,

p2 + q2 = k2
0 (50)

and

(k0 cos ϕ− p + k0)
2 + (k0 sin ϕ− q)2 = k2

0. (51)

Each singularity will be most prominent when a frequency contour is tangential to the singular
circle. In order to find the frequencies that this is true for, the solutions for p and q such that the
gradient of the frequency contour expression of Equation (36) is equal to the gradient of the circle
functions of Equations (50) and (51) are sought. Knowledge of the geometry of the contours and the
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radii of the circles is exploited to find the solutions for p and q and then the solutions are substituted
into Equation (36) to give the tangential frequencies. The four solutions for p and q are

p = k0 sin ϕbi and q = k0 cos ϕbi, (52)

p = −k0 sin ϕbi and q = −k0 cos ϕbi, (53)

p = k0 sin ϕbi + 2k0 sin2 ϕbi and q = k0 cos ϕbi + 2k0 sin ϕbi cos ϕbi (54)

and

p = −k0 sin ϕbi + 2k0 sin2 ϕbi and q = −k0 cos ϕbi + 2k0 sin ϕbi cos ϕbi. (55)

Substituting the solutions for p and q, from Equations (52)–(55) into Equation (36) gives two
distinct tangential frequencies:

ω = 23/4ωB

√√
1± sin ϕbi

cos ϕbi

√
tanh(d

√
2k2

0(1± sin ϕbi))√
tanh(2k0 cos ϕbid)

, (56)

where the solution with the + signs is for the p and q in Equations (52) and (53), and the − signs for
the solutions of p and q in Equations (54) and (55).

(a) Bistatic (ϕbi = 45°) (b) Monostatic (ϕbi = 0°)

Figure 9. Contours in the p, q plane defined by Equation (36) when m = m′ = 1. (a) Bistatic case
with bistatic angle ϕbi = 45°, (b) monostatic case. The electromagnetic singularities are shown for
both monostatic and bistatic radars. The yellow dashed circle shows the singularities defined by
Equation (50) and the magenta dotted circle shows those defined by Equation (51). In the monostatic
case, Equations (50) and (51) are equal and hence both circles are in the same location. The white
contours highlight the frequencies tangential to the circles.

These values for ω are highlighted in Figure 7 by the white contours and are shown to be tangential
to the circles expressed in Equations (50) and (51). Both singularities are highlighted in a simulated
Doppler spectrum in Figure 10 by dashed vertical lines. A low amplitude Gaussian noise spectrum has
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been added as can be seen at the extremities of the plot. For deep water, or when d→ ∞, the values
for ω become

ω = 23/4ωB

√√
1± sin ϕbi

cos ϕbi
, (57)

which agree with the results of Gill & Walsh [22].

Figure 10. A simulated bistatic Doppler spectrum showing the electromagnetic singularities.

2.2.4. Currents

An ocean current affects how an ocean wave propagates, both in direction and speed. The change
in speed means that, because of the Doppler effect, the entire spectrum is subject to an additional shift,
4ω. The additional shift is

4ω = 2k0νE(ϕ) cos ϕbi, (58)

where νE(ϕ) is the component of the current velocity in the elliptical normal direction for beam angle ϕ.

3. Inversion of σ(ω) to Measure the Directional Wave Spectrum

The aim of inversion is to obtain the ocean wave directional spectrum, S(~k), from the power
spectrum of the measured radar cross section, σ(ω) using Equations (24) and (28). The power spectrum
of the backscattered radar signal is proportional to σ(ω) and therefore in principle needs to be
calibrated to account for antenna gains, propagation losses and other factors. To avoid this the
problem is usually framed in terms of the ratio of the second and first order backscatter power spectra.
A number of inversion methods have been published e.g., [6,8,9,15,16,30]. Here we use the method of
Wyatt [10,11] which is referred to in this paper as the Seaview inversion method since Seaview Sensing
Ltd has an exclusive license from the University of Sheffield to commercialise the software package
and continue its development.

The Seaview Inversion Method

The method used makes the assumption that the first order Bragg wave, ~kB, is generated by the
local wind and that, by limiting the Doppler frequency range used in the inversion, the waves
contributing to the second order scatter can be separated into long waves ~k1 and short waves
~k2 the latter also being locally wind-driven. These short wind waves are then modelled with a
Pierson–Moskowitz spectrum [31], using an initial waveheight estimate obtained using an empirical
method [32], and a sech2 directional distribution [33] the parameters of which are determined using a
wind direction estimation model [4].

The method is iterative and is initialised assuming the wind–wave model applies at all
wavenumbers. The ratio of the Equations (1) and (3), σ2(ω)

σ1(ω)
, is then integrated to provide a simulated

Doppler spectrum ratio which is compared with the measured Doppler spectrum ratio to obtain the
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difference between them at each Doppler frequency. The wave spectrum is then updated taking into
account the calculated Doppler spectrum ratio difference and the value of the coupling coefficient at
the long wave vector wavenumber, ~k1 relative to the maximum along the Doppler frequency contour.
The iteration continues until convergence is achieved or a specified number of iterations, usually 100,
has been reached. The quality of the convergence is measured by a quantity that reflects the difference
between the measured and simulated ratio. The solution can be very different from the initialising
spectrum and often shows bimodality in frequency or direction or both due to the presence of swell
or changing wind conditions. More details of the method can be found in Wyatt [10], and Green and
Wyatt [11]. The maximum frequency (or equivalently wavenumber) of the long waves that can be
measured is dependant on the radio frequency [5,34]. The minimum frequency depends on the quality
of the radar data which impacts on the ability to clearly separate first and second order parts of the
measured Doppler spectrum. An independent validation of the method applied to monostatic data is
presented in [35].

The inversion software, providing surface current, wind direction and wave information,
was written for monostatic radar configurations only. This has been extended to bistatic configurations
using the analysis in Sections 2.1 and 2.2 above with some modifications to account for a difference
in the coordinate system used in the Seaview software. The bistatic extension is not yet part of the
commercial package. It has been tested using simulated data, using the methods given in Section 2.2,
of two types: (a) two monostatic radars (in order to check that the bistatic extension to the Seaview
package provides the same results for zero bistatic angle as the original monostatic package); (b) one
monostatic and one bistatic radar sharing a transmitter at the monostatic site. Tests using two bistatic
radars with a transmitter between the two sites are in progress but the results are not ready to be
reported on at this time. The two receiver sites are those of the University of Plymouth wavehub
WERA radar [36,37] and a limited number of cells from the coverage grid for that radar have been
used to provide different bistatic angles for the simulations. Using an existing configuration made
it easier to provide data for the inversions in standard Seaview formats. The wave parameters used
in each simulation are the same at all cells and propagations losses and any antenna effects are not
included so the only differences at each cell are the bistatic angle and the Bragg wave bearing relative
to wave,wind and current directions.

The wave parameters for the different simulations are described in Table 1. They include modelled
and buoy-measured wave spectra.

Table 1. Wave, wind and current parameters used for the Doppler spectra simulations. The buoy data
are not separated into wind–waves and swell but their peak period and direction are included in the
swell columns.

Case Type Wind–Wave
θw Spread Wind Current

θc
Swell

θs Tp s SpreadHs m Speed m/s Speed cm/s Hs m

1 Model 3.07 0.0 3.0 12.0 1.4 70.0
2 Model 3.07 30.0 2.0 12.0 1.8 90.0 3.0 140.0 13.2 10.0
3 Buoy 1.72 1.8 90.0 68.24 12.8
4 Buoy 1.72 1.8 90.0 148.16 6.74
5 Buoy 2.70 1.8 90.0 109.01 14.22
6 Buoy 5.87 1.0 245.0 162.36 9.85

4. Results

Figures 11 and 12 show inverted surface current speed and direction, wind direction and
significant waveheight and spectral peak direction maps for the model cases in Table 1 for the
monostatic and bistatic configurations. For the bimodal case 2, Figure 13 shows the long (swell, here
defined as waves in 0.05-0.1Hz band) and short (wind–wave, 0.1–0.2Hz) contributions separately to
confirm that the latter are aligned with the wind. Figures 14–17 show current, wind and wave maps
for the buoy cases. Figures 18–21 show sample directional spectra compared with those measured
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by the buoy and used in the simulations to provide a qualitative validation of the radar measured
spectra. They are from 4 selected locations to cover the key parameter ranges expected to be important
in the accuracy of the inversion. The key parameters are the bistatic angles and the difference in angle
between the two Bragg directions (a minimum of 30◦ is required for monostatic processing [38]) and
are presented in Table 2. Note that for some of the locations the Bragg angle difference is below the
suggested monostatic threshold. Cell 1664 is the one on the left of the top row in the maps, cells 3116,
3128 and 3140 are the lower three going south along the column to the east of −5◦36′.

There is generally good agreement both for both the standard monostatic and the bistatic case.
Differences will be discussed further in the next section.

Table 2. Configuration parameters at selected cells.

Cell Number Configuration Bistatic Angle Angle between Braggs

1664 monostatic 0 40.6
1 mono, 1 bistatic 20.4 20.3

3116 monostatic 0 60.0
1 mono, 1 bistatic 30.1 29.9

3128 monostatic 0 77.8
1 mono, 1 bistatic 39.1 38.8

3140 monostatic 0 99.6
1 mono, 1 bistatic 50.1 49.5
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Figure 11. Inverted data for case 1. (a) monostatic (b) 1 bistatic. Current speed and direction on
left, shortwave directional spreading and wind direction, centre, significant waveheight and peak
direction, right.
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Figure 12. Inverted data for case 2. (a) monostatic (b) 1 bistatic.
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Figure 13. Inverted swell and wind wave components for case 2 (a) monostatic (b) 1 bistatic.
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Figure 14. Inverted data for case 3. (a) monostatic (b) 1 bistatic.
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Figure 15. Inverted data for case 4. (a) monostatic (b) 1 bistatic.
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Figure 16. Inverted data for case 5. (a) monostatic (b) 1 bistatic.
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Figure 17. Inverted data for case 6. (a) monostatic (b) 1 bistatic.
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Figure 18. Inverted spectra for case 3. (a) monostatic (b) 1 bistatic.
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Figure 19. Inverted spectra for case 4. (a) monostatic (b) 1 bistatic.
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Figure 20. Inverted spectra for case 5. (a) monostatic (b) 1 bistatic.
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Figure 21. Inverted spectra for case 6. (a) monostatic (b) 1 bistatic.

Scatter plots and statistics of the comparisons for currents are presented in Figure 22 and for
waves in Figure 23. The data are colour-coded according to the bistatic angle with red being the largest
bistatic angle. There is some dependence of the accuracy of the wave measurements on this parameter
as can be seen in the right hand column of Figure 23. Most of the larger differences in peak period and
peak direction are associated with the bimodal model case where the swell and wind–waves peaks
were of similar magnitude and small differences in these magnitudes can lead to differences in peak
identification. This is also evident when comparing Figure 12 with Figure 13.

Figure 22. Scatter plots and statistics of the current measurements. These are colour-coded with the
bistatic angle.
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Figure 23. Scatter plots and statistics of the wave parameter measurements, colour-coded with the
bistatic angle.
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5. Discussion

Monostatic and bistatic radar data have been simulated using the backscatter cross-section
formulations developed in Section 2. The Seaview software package has been modified to include
bistatic configurations and inverted to provide current, wind direction and wave measurements.

Currents have been obtained with good accuracy and consistency over many different bistatic
and Bragg angles as evidenced in the scatter plots, Figure 22, and maps.

Wind directions are consistent with modelling except for the case shown in Figure 17. Note that
the colour-coding in the wind plots is the derived directional spreading of the short waves which we
haven’t attempted to validate at this point. In Figure 17 this goes beyond the expected maximum (80◦)
for this parameter. The reason is that the simulation used a wind direction that was roughly aligned
with the Bragg direction and the smaller Bragg peak was mostly lost in the simulated noise level.
The Seaview algorithm has difficulty estimating a wind direction accurately in these circumstances
which, in our experience, rarely occur in measured data. It is interesting to note that waves are still
measurable in these conditions confirming that the inversion result is independent of the initial guess
which uses the wind direction.

The wave inversions are not as uniform as those for currents and winds. The significant
waveheights are in reasonable agreement, Figure 23, although there is some evidence of overestimation
at the highest simulated waveheight. That figure also shows that waveheight is underestimated for the
largest bistatic angles of 64◦. More work is needed to determine a bistatic angle threshold for accurate
wave measurement. Case 5 shows particularly noisy peak wave directions, Figure 16, including at the
selected cells for which directional spectra are shown in Figure 20. While the frequency spectra (top
left in each case) show good agreement, the low frequency part of the mean directions as a function of
frequency (bottom left in each case) are not good at the low frequency peaks for three of these cases
particuarly for the bistatic case. The inversion seems to be oversensitive to noise at these frequencies,
which correspond with Doppler frequencies near the first order peak, and this needs further work
as has been noted in many other applications of this method ([34,39]). Although some locations,
including cell 1664, have Bragg angle differences in the bistatic case that are below the suggested
monostatic angle threshold, there is no evidence that the results are worse there. This aspect also needs
further work.

The directional spectra in Figures 18–21 use log scales for both the frequency spectra (top left)
and the directional spectra (right column) so that differences at both high and low amplitudes can be
identified. Apart from the low frequency issue referred to above, the shape of the spectra are in good
agreement in all cases. As mentioned above, the maximum frequency for the radar measurements
is variable and depends on geometrical factors such as Bragg direction relative to wind direction.
At the frequency (12.355 MHz) of the examples presented her, the monostatic cases have maximum
frequencies in the range of 0.22–0.283 Hz and the bistatic in the range of 0.187–0.277 Hz.

6. Conclusions

In this paper, the theory for the interpretation of bistatic radar Doppler spectra in terms of currents,
winds and waves has been reviewed and methods to simulate and then invert such data have been
developed. As far as the authors are aware this is the first time that ocean wave directional spectra, to a
maximum frequency that depends on the geometrical parameters and without any prior assumptions
about the shape of those spectra, have been obtained from bistatic, albeit only simulated, data. The
next step will be to apply the method to measured radar data.

Current, wind and wave measurements from bistatic radar data have been obtained with
reasonable accuracy. The statistics for the bistatic cases are not quite as good as the monostatic cases,
although they are biased by the large bistatic angle cases. The exact limits on bistatic angle and angle
between Braggs still need to be determined but are expected to be about 60◦ and <≈ 30◦ respectively.

The results in this paper compare a monostatic configuration with a combined monostatic and
bistatic configuration with one transmitter at one of the receive sites. Work on a configuration involving
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two bistatic radars with one transmitter located between the two sites is in progress. This will help to
determine suitable configurations for bistatic radar installations for oceanographic measurements.
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