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Abstract: Inshore ship detection plays an important role in many civilian and military applications.
The complex land environment and the diversity of target sizes and distributions make it still
challenging for us to obtain accurate detection results. In order to achieve precise localization and
suppress false alarms, in this paper, we propose a framework which integrates a multi-scale feature
fusion network, rotation region proposal network and contextual pooling together. Specifically,
in order to describe ships of various sizes, different convolutional layers are fused to obtain
multi-scale features based on the baseline feature extraction network. Then, for the purpose of
accurate target localization and arbitrary-oriented ship detection, a rotation region proposal network
and skew non-maximum suppression are employed. Finally, on account of the disadvantages that
the employment of a rotation bounding box usually causes more false alarms, we implement inclined
context feature pooling on rotation region proposals. A dataset including port images collected
from Google Earth and a public ship dataset HRSC2016 are employed in our experiments to test
the proposed method. Experimental results of model analysis validate the contribution of each
module mentioned above, and contrast results show that our proposed pipeline is able to achieve
state-of-the-art performance of arbitrary-oriented inshore ship detection.

Keywords: inshore ship detection; multi-scale feature fusion; rotation region; region proposal
network; context feature pooling

1. Introduction

With the development of remote sensing technology, remote sensing data and techniques have
been widely applied to marine monitoring and surveys with the purpose of national defense and
resource exploitation [1–5]. As major transportation modes and typical targets in seas, ships have been
paid more and more attention in applications based on remote sensing images. The detection of ships
plays an important role in both civilian and military applications, such as port management, maritime
rescue, battlefield surveillance and strategic deployment [6,7].

Many ship detection methods have been proposed based on images produced by different
sensors. Synthetic aperture radar (SAR) images were used earlier and technologies are relatively
mature. Compared to SAR images, high-resolution images contain more detailed structure and texture
information, which have attracted more and more research interests in recent years [8,9]. According to
the location and background of ships, ship detection methods using high-resolution images can be
divided into offshore ship detection and inshore ship detection. Offshore ships are located in the

Remote Sens. 2020, 12, 339; doi:10.3390/rs12020339 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-0148-4900
http://dx.doi.org/10.3390/rs12020339
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/2/339?type=check_update&version=2


Remote Sens. 2020, 12, 339 2 of 19

sea, whose background is almost the sea surface only. Since offshore ship targets usually differ
significantly from backgrounds on grey levels and textures, this kind of study has already made great
progress [10,11]. On the contrary, inshore ships lie in ports which have complex land environments and
a great number of disturbance objects similar to ships. Moreover, inshore ships in very high-resolution
images exhibit various sizes and shapes, and some of them are densely arranged near the coast. As a
result, the detection of inshore ships is still a challenging task [12].

In the traditional methods of inshore ship detection, two major steps are usually employed [13].
First, sea–land segmentation based on texture and shape features is implemented to eliminate land
interference and improve target searching efficiency, and then, ship targets are detected with feature
extraction and machine learning approaches. However, most of these methods are carried out based on
artificially designed features [14], which show limitations on performance in practical applications [15].

With the advancement of deep learning methods, Convolutional Neural Networks (CNNs) have
achieved great success in image processing, especially in object detection tasks, where a great number
of CNN-based methods have been proposed. Region proposals with CNN (R-CNN) [16] is the first
benchmark framework that successfully applies CNN to object detection. Based on the idea of Region
Proposal Network (RPN), Spatial Pyramid Pooling Network (SSP-Net) [17], Fast R-CNN [18] and
Faster R-CNN [19] are presented in succession to improve the performance and efficiency of R-CNN.
All of these methods first generate region proposals by RPN, then use Non-Maximum Suppression
(NMS) to select candidates with high confidence, and finally implement classification and location
regression on these region proposals to obtain accurate detection results. With the preference to speed,
some other one-step structures (without RPN step) are proposed as well, representatives of which
include YOLO (You Only Look Once) [20] and SSD (Single Shot Multibox Detector) [21]. They take the
object detection task as a problem of regression, and directly employ classification and regression on
the feature map without consideration of region proposals.

Since the networks mentioned above have been proven to be effective in object detection of
natural images, researchers in remote sensing have made efforts to utilize them in the application of
inshore ship detection. Zhang et al., realize ship detection based on a Faster R-CNN framework [22].
Wu et al., employ ship head searching, RPN, mutli-task network and NMS for inshore ship
detection [23]. The advantage of a deep neural network is its strong capability of feature
description, which is exactly essential for the challenging task of inshore ship detection. Therefore,
many model-transplanting methods easily outperform the traditional ones by means of deep
learning [24].

The above-mentioned methods all utilize horizontal bounding boxes to mark the location of ship
targets. Although a horizontal bounding box is applicable for most object detections in natural images,
it cannot locate inshore ships accurately because of their unique shapes. Since ships usually have a
large aspect ratio and obvious inclined angle, a horizontal bounding box is not able to estimate the
orientation of a ship. Moreover, after region proposals are generated, non-maximum suppression is
usually applied as a vital step to reduce the number of candidates and increase detection efficiency.
If inclined inshore ships lie densely near the port, the overlap of their horizontal bounding boxes
will be very large, which will result in targets being missed when NMS is applied to screen region
proposals. Figure 1 shows the differences between horizontal bounding boxes and rotated bounding
boxes when detecting densely arranged inshore ships based on region proposals. It is seen from the
figure that the horizontal bounding box ground truth (Figure 1b) covers more redundancy regions
than the rotated one (Figure 1d), and large overlaps of region proposals may cause side effects of NMS;
target regions are not separated appropriately or some are even missed out (Figure 1c).
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(a) Original image (b) Horizontal bboxes GT (c) Detected horizontal bboxes (d) Rotation bboxes GT

Figure 1. Differences between horizontal bounding boxes (bboxes) and rotation bounding boxes of
densely arranged inshore ships.

Rotation bounding boxes are first presented and studied in the research of text detection, which has
a similar requirement of detecting text of arbitrary orientations. Rotational Region CNN (R2CNN) [25]
introduces inclined angle information in classification and regression networks and employs skew
NMS to select region proposals. Rotation RPN (RRPN) [26] creates rotation anchors to improve the
quality of proposals at the stage of RPN, and improves the performance of R2CNN.

With the achievement these methods have made, rotated region proposals have been applied
to ship detection as well. Liu et al., introduce pooling of a Rotation Region of Interest (RRoI) and
rotation bounding box regression in the framework [27]. Yang et al., integrate a dense feature pyramid
network, RRPN and Fast R-CNN to inclined results [6]. Zhou et al., use a semantic segmentation
network to recognize part of ships for rotated region proposals [28,29]. Although methods adopting a
rotation bounding box have already been proposed during the past two years, the problem of accurate
rotated region proposal and the consequent information loss of employing rotated boxes are not yet
well solved. To generate appropriate rotated region proposals for inshore ships of various locations
and sizes with a concise end-to-end model is still challenging. Moreover, although a horizontal box
is inferior to a rotated one, redundancy regions that a horizontal box contains can provide beneficial
contextual information in some sense. The RRoI pooling of a rotated box aims to obtain an accurate
description of objects for detection, however, it excludes very useful contextual information, which will
result in more false alarms than traditional RPN methods. In consideration of all the above, in this
paper, we propose a concise end-to-end framework for arbitrary-oriented inshore ship detection.
Our method uses the baseline backbone feature extraction network in accordance with popular deep
learning work of object detection. Nevertheless, state-of-the-art feature pyramid processing based
on backbone network is employed to implement multi-scale feature fusion. Then, a rotation region
proposal network is adopted to generate rotated region proposals for ships of various sizes and
locations. Finally, a rotated contextual RRoI pooling is applied to correct the information loss of the
rotated box for an accurate description of target detection. The main contributions of this paper are
as follows:

1. We propose a novel and concise framework for arbitrary-oriented inshore ship detection which
can handle complex port scenes and targets of different sizes.

2. For better detection of various target sizes, we design a multi-scale feature extraction and fusion
network to build the multi-scale features, which contribute to the promotion of precision on
different ships.

3. In order to obtain accurate target locating and an arbitrary-oriented bounding box, we adopt
the rotation region proposal network and skew non-maximum suppression. Consequently,
densely moored ships are able to be distinguished, which results in an increase of recall rates.

4. We implement rotated contextual feature pooling of a rotation region of interest to better describe
ship targets and their surrounding backgrounds. As a result, the description weakness of rotation
bounding boxes is improved with a decrease of false alarms.
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Experimental results on remote sensing port images collected from Google Earth validate
the effectiveness of the proposed method. It is robust for ship targets of various sizes and types,
outperforming other methods on indicators of precision, recall and false alarm criteria. Results on the
public ship dataset HRCS2016 provide a parallel comparison of the proposed pipeline, which show
its state-of-the-art performance compared to other advanced approaches. The rest of this paper is
organized as follows: Section 2 introduces more detailed state-of-the-art studies concerning this
application. Section 3 describes the overall framework and details of each part of our method. Section 4
presents experiments of model analysis and contrast methods to validate the effectiveness of the
proposed method. Finally, Section 5 concludes the paper.

2. Related Work

From the perspective of different scenes that targets lie in, ship detection methods can be roughly
divided into offshore and inshore ship detection; by the types of methodology of detection framework,
they can be divided into traditional methods and deep learning ones. An offshore ship scene
usually contains small at-sea targets and the detection task mainly aims to resist disturbance of
sea surface background. Inshore ship targets are usually relatively larger, where complex similar
land confusions of ports are the major challenges. Traditional ship detection methods usually design
shape and texture features for classifying the target and background, which may be more applicable
to offshore ship detection since offshore scenes are relatively simple compared to coasts and ports.
Representative features adopted for offshore ship detection include shape and texture features [10],
S-HOG features [30], edge and contour features [11], and topology structure and LBP features [31,32].
Inshore ship detection with traditional methods usually focuses on special characteristics of ships to
design features and recognize targets. He et al., adopt weighted voting and rotation-scale-invariant
pose to detect ships [12], and Bi et al. [8] employ an omnidirectional intersected two-dimension
scanning strategy and decision mixture model to detect ships. Since artificially designed features
cannot cope with complex port background, as a result, more and more deep learning methods are
proposed in the inshore ship detection task during the most recent three years while non-deep-learning
ones are seldom presented.

Object detection frameworks using deep neural networks have been applied to remote sensing
applications [33,34] since they were proved to outperform traditional methods in natural images.
In the field of inshore ship detection, many researchers have delved into the development of target
detection with deep learning methods. A fully convolutional network is applied to detect ships in
the literature [35], but facing the problem that localization is not accurate enough. Methods based on
R-CNN and its improved variants (especially Fast R-CNN and Faster R-CNN) are highly favored for
their better detection effects [22]. Moreover, various improvements on the detection framework are
employed, including the addition of ship head detection [23] and contextual information [1].

In consideration of the characteristics of inshore ships that targets are always inclined or even
closely arranged, rotation bounding boxes are proposed to further improve the localization accuracy of
ships. Liu et al. [27] bring in a rotated region CNN and rotation ROI pooling to detect inclined ships,
but the skew proposals are generated by the method like a selective search presented by [11] (not
end-to-end model). Li et al. [36] employ a five-box method to produce rotation proposals, which is not
a region proposal network. In order to build an end-to-end model, Zhang et al., introduce a rotation
region proposal network instead of the above rotation proposal generation methods to generate
rotated bounding boxes [37]. However, this work is a direct application from text detection [26] to
the remote sensing field. Yang et al. [6] further supplement a dense feature pyramid network based
on RRPN and RoI align to improve performance. However, the authors declare that this framework
using rotation region proposals has a defect of higher false alarms. Zhou et al. [28,29] propose
approaches to use semantic segmentation networks to recognize parts of ships for rotated region
proposal, where additional semantic pixel labels of ship parts have to be provided. On the basis of
different RPN design to produce rotated bounding boxes, many approaches are being used to improve
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the performance of inshore ship detection. As far as we know, very few studies, except for [6,28],
have simultaneously employed a multi-scale feature, rotation region proposal network and contextual
pooling in one uniform end-to-end model.

3. Proposed Method

In this section, we will present our detection method based on multi-scale feature fusion,
rotation region proposal network and contextual pooling. The overall framework is shown in Figure 2,
which mainly consists of three modules: Multi-scale Feature Extraction module, Rotation Region
Proposal Network (RRPN) module, and Contextual Rotation Region-of-Interest (RRoI) Pooling module.
In this framework, the first module is used to fuse multi-scale features of different hierarchies, the RRPN
module is applied to generate rotation bounding boxes of arbitrary orientations, and the Contextual
RRoI pooling module pools the contextual information and implements the classification of rotation
bounding boxes and the position regression.

Feature maps
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R-anchors

Contextual  RRoI pooling ntextual  RRoI ponCo ooloollingingiinntexttextuatutualll RRoRRRRRoII ppI poonnCoCCoCCC
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Figure 2. Overall framework of our proposed network.

3.1. Multi-Scale Features

Different layers of a hierarchical convolutional neural network contribute differently to the
extraction of features. The lower levels of CNNs have smaller receptive fields and higher spatial
resolutions, which can provide more detailed local structure information, whereas the higher levels
have larger receptive fields and prefer to extract advanced information concerning semantics. As for
the inshore ship targets we focus on, although they usually have similar slender shapes, their sizes vary
a lot according to different types of ships. In order to adapt to various scales of targets, we propose to
fuse features of different layers and construct a multi-scale feature extraction network structure.

Different convolutional layers naturally constitute a feature pyramid. Inspired by Feature Pyramid
Network (FPN) [38], we can fuse different layers of this feature pyramid to achieve multi-scale
description with balance of speed and precision. Since many ship detection tasks adopt Fast R-CNN or
Faster R-CNN as the baseline detection network, we can also employ VGG-16 as the backbone feature
extraction network in our pipeline for parallel comparison. Similarly, other benchmark networks
such as ResNet can also be employed as the basic structure. For feature fusion, the backbone network
is used as the basic structure with removing its fully connected layers and the last pooling layer.
The convolutional layers of the 3rd, 4th and 5th convolutional module are named conv3, conv4 and
conv5 for convenient description. As shown in Figure 3, we fuse the features coming from these three
layers by pooling features of a low level and deconvoluting features of a high level at the same time.
By means of this, feature maps of different layers are converted to the same size, which provides the
prerequisite of feature fusion. Since the feature value ranges of low and high levels are often different,
for the sake of better model generalization, feature values should be adjusted to a similar range



Remote Sens. 2020, 12, 339 6 of 19

before feature fusion. Therefore, we adopt L2 normalization to process them respectively, and then
concatenate them together. Finally, a 1× 1 convolution is applied to make the fused feature map have
the same depth of conv5 layer.

pooling
L2 normalize

deconv

L2 normalize

L2 normalize

conv3

conv4

conv5

256

512

512

e conv

1280 512

Figure 3. Multi-scale feature fusion scheme.

L2 normalization is applied to each pixel in the feature maps, which can be formulated by:

x̂ =
x
‖x‖2

(1)

‖x‖2 =

(
d

∑
i=1
|xi|2

)1/2

(2)

where x and x̂ represent the original pixel vector and normalized vector respectively, and d denotes the
depth of the feature map.

When simple normalization as the above-mentioned is implemented on feature maps,
the processed results may lie within a different value range from the original feature maps, which will
reduce the learning rate. Inspired by the Batch Normalization (BN) layer, we bring in a learnable
scaling factor γ to affect the normalized results. Let yi denote the value after scaling:

yi = γi x̂i (3)

According to the Chain Rule, the back-propagation gradient of L2 normalization layer in the
training process will be:

∂l
∂x̂

=
∂l
∂y

γ (4)

∂l
∂x

=
∂l
∂x̂

(
I
‖x‖2

− xxT

‖x‖3
2

)
(5)

∂l
∂γi

= ∑
yi

∂l
∂yi

x̂i (6)

where y = [y1, y2, . . . , yd].
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3.2. Rotation Region Proposal Network

The function of a rotation region proposal network is to generate rotation bounding boxes of
arbitrary orientations. It has a similar architecture as the region proposal network (RPN) of Faster
R-CNN, whereas the generation of rotation bounding boxes asks for some modifications on the
representation and pipeline. More specifically, representation of boxes and anchors, non-maximum
suppression, loss function design as well as rotation angles all need to be taken into account.

3.2.1. Rotation Bounding Box

A horizontal bounding box is simple to represent; the top-left and bottom-right corners are
sufficient to locate it with four coordinates (xmin, ymin, xmax, ymax). Since rotation bounding box can
not be represent by two corners, a new scheme should be adopted. Let (x, y, w, h, θ) denote a rotation
bounding box, which is depicted in Figure 4, where x and y represent the center of it, w and h represent
the longer side and shorter side, and θ indicates the angle between the longer side and the horizontal
direction with a range set to be [−π

4 , 3π
4 ).

)(x,yw

h �

ww

hhh �

)))(x,y(

Figure 4. Representation of a rotation bounding box.

3.2.2. Rotation Anchors

The RPN network in Faster R-CNN provides k candidate windows for each pixel in the feature
map, which are also called the anchors. Original anchors only concern the aspect-ratios and scales.
In order to generate rotation boxes, we define the rotation anchors (R-anchors) which contain one more
parameter, i.e., the skew angle. According to the characteristics of ships, we set the aspect ratios of
R-anchors to be 1 : 3, 1 : 5, 1 : 7 and 1 : 9, and the scales as 4, 8, 16, and 32. The angles are divided as
same as the literature [26]: −π

6 , 0, π
6 , π

3 , π
2 and 2π

3 (Figure 5). Similar with the rotation bounding boxes,
each R-anchor is indicated by 5 variables (x, y, w, h, θ). Therefore, in the RRPN architecture, each pixel
in the feature map corresponds to 96 R-anchors (4× 4× 6), and the depth of classification layer and
regression layer will be 192 (2× 96) and 480 (5× 96), respectively.

1:3 

1:5 

1:7 

1:9 

4 

8 16 

32 

−
𝜋

6
 

𝜋

6
 

𝜋

3
 

𝜋

2
 2𝜋

3
 

0 

           (a) aspect ratios                                   (b) scales                         (c) angles  

Figure 5. Anchor strategy used in our RRPN.
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3.2.3. Skew Intersection over Union and Non-Maximum Suppression

RPN networks usually generate a lot of bounding boxes, most of which contain no targets. In order
to improve detection efficiency, selection of boxes with higher confidence before classification and
regression is natural and effective. This process is often realized by Non-Maximum Suppression (NMS),
which sorts region proposals according to their classification confidence coefficients, and reserves the
one with highest confidence and deletes all the others overlapping more than a certain threshold with
it. In the computation of NMS and the evaluation of detection accuracy, Intersection over Union (IoU)
is a very important concept. Original IoU measures the degree of overlap between two rectangular
bounding boxes A and B. The IoU is defined as the ratio of overlapping area to the area of A and
B unions:

IoU = (A ∩ B)/(A ∪ B) (7)

In the RRPN scheme, skew IoU and skew NMS take the place of original methods to deal with
rotation bounding box issues. The algorithm of skew IoU is listed in Algorithm 1. As shown in Figure 6,
we first find intersection points of two boxes, and then find the vertices inside the other [26]. These two
kinds of points constitute the polygon of overlapping, so the area can be computed by sorting its
vertices and triangulating the polygon. Non-maximum suppression for rotation regions proposals is
the same as the original one except for the computation of IoU. Redundant candidate bounding boxes
with lower confidences are removed if they have large enough skew IoU with high confidence.

Algorithm 1 Calculate skew IoU

Input: Rotation rectangles R1, R2, . . . , RN

Output: IoU[1, N][1, N]

1: Initialize IoU[1, N][1, N] with 0

2: for each pair of 〈Ri, Rj〉 (i < j) do

3: Point set PSet← ∅

4: Add intersection points of Ri and Rj to PSet

5: Add the vertices of Ri inside Rj to PSet

6: Add the vertices of Rj inside Ri to PSet

7: Sort PSet into anticlockwise order

8: Compute intersection I of PSet by triangulation

9: IoU(i, j) = Area(I)/
(

Area(Ri) + Area(Rj)− Area(I)
)

10: end for

11: return IoU

A

B

A

B

C

D

A

B

C D

E

F

C

D

E

F

Figure 6. Examples of compute skew IoU. Intersection points are marked in black, and vertices inside
the other rectangle are marked in dark blue.
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3.2.4. Loss Function for RRPN Training

In the training of RRPN, the sampling strategy for R-anchors needs to be developed. In our
application, the positive R-anchors are defined as: (a) the highest skew IoU, or (b) skew IoU larger
than 0.5 and the intersection angle with respect to the ground truth of less than π

12 . Negative R-anchors
are characterized as: (a) skew IoU lower than 0.2, or (b) skew IoU larger than 0.5 but the intersection
angle with the ground truth of larger than π

12 . The loss function for the proposals takes the form of
multi-task loss, which is defined as:

L(p, l, v∗, v) = Lcls(p, l) + λlLreg(v∗, v) (8)

where l is the indicator of the class label (l = 1 for target and l = 0 for background), p = [p0, p1] is the
probability belonging to background or target. λ is a balancing parameter to trade off two terms of
classification and regression. v = (vx, vy, vw, vh, vθ) represents the predicted rotation bounding box,
and v∗ = (v∗x, v∗y , v∗w, v∗h, v∗θ ) denotes the ground truth.

The classification loss for class l is defined as:

Lcls(p, l) = − log pl (9)

And for bounding box location regression, the loss function is:

Lreg(v∗, v) = ∑
i∈{x,y,h,w,θ}

smoothL1(v
∗
i − vi) (10)

smoothL1(x) =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise

v and v∗ are computed by:

vx =
x− xa

wa
, vy =

y− ya

ha
, vh = log

h
ha

, vw = log
w
wa

, vθ = θ � θa (11)

v∗x =
x∗ − xa

wa
, v∗y =

y∗ − ya

ha
, v∗h = log

h∗

ha
, v∗w = log

w∗

wa
, v∗θ = θ∗ � θa (12)

where x, xa and x∗ denote the predicted bounding box, anchor and the ground truth box, and the same
for y, h, w and θ. The operation a � b = a− b + kπ, where k ∈ Z to ensure that a � b ∈ [−π

4 , 3π
4 ).

3.3. Contextual RRoI pooling

Due to the fully connected layers for classification or regression, features from the feature map
for each proposal should be pooled into a fixed length one. The same as described in Faster R-CNN,
our classification and regression network includes two fully connected layers and two cls and reg
multi-task branches (see Figure 2). Therefore, pooling of features is quite necessary in our pipeline.
Since our region proposals are of arbitrary orientations, if a common pooling strategy is employed,
there will be a lot of redundant information pooled in the horizontal boxes. So the pooling of a rotation
Region-of-Interest (RoI) is developed in this subsection. Moreover, with the consideration of our
application that background usually contains areas similar to ship targets in terms of structure and
texture, if only the features of targets are considered, it is easy to increase false alarms. Therefore,
we propose to bring in contextual information of targets when pooling the features.

3.3.1. Pooling of Rotation RoI

According to the fixed size of input of fully connected layers, RoI pooling is employed to convert
feature map areas of different sizes (corresponding to different region proposals) into a vector of the
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same length. For rotation RoI, the pooling process is indicated in Figure 7. We divide the inclined
feature map into Hr ×Wr subregions along the long and short sides of the bounding box, and then
carry out max pooling within each subregion to generate the RROI pooling results.

Feature map
RROI

max-pooling

Figure 7. Rotation RoI pooling.

3.3.2. Contextual Information

There are different ways to bring in contextual information. The most common one is the
horizontal bounding rectangle, which is used as “ROI Align” in [6]. However, as we have observed
from port images, many ships are lying at docks one by one. Under this circumstance, we believe an
inclined context is more adequate and reasonable than a horizontal one.

As shown in Figure 8, we extend the rotation bounding box produced by RRPN and obtain a box
with context. Let (xp, yp, wp, hp, θp) denote the rotation box and (xc, yc, wc, hp, θc) denote the box with
context, the relationship between them can be represent as:

xc = xp, yc = yp, hc = αhp, wc = βwp, θc = θp (13)

We implement RRoI pooling on feature map areas corresponding to a rotation bounding box and
a box with context, respectively, and then concatenate the pooling results to obtain a feature vector
that describes the target itself as well as its contextual information. Finally, this feature will be sent to
the classification and regression networks.

proposal

context

qp

qc

 

 Figure 8. Contextual information of a region proposal.
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4. Experimental Results and Discussions

4.1. Data Sets and Evaluation Criteria

Two datasets are employed in our experiments. The first dataset is collected from Google Earth,
which covers various ports all over the world and originally contains 278 color images with a resolution
of approximate 1 m. The length (width) of each image varies from 1000 to 3000 pixels. This dataset is
provided with both semantic labels and rotated bounding box labels, which can be used for port image
segmentation and inshore ship detection. We have made it available on: https://github.com/lllltdaf2/
Ship-Seg-Detect-data. We augment the original set to 400 images by rotation, where 100 images are
selected as the test set and the remaining are used as training ones. Ship targets are manually marked
with rotation bounding boxes and very tiny yachts are ignored. For scale evaluation, targets are
divided into ones of large sizes and ones of small sizes according to their length, where 80 pixels
(approximate 80 m in real world) are set as the threshold of division. Sample images of this dataset
are shown in Figure 9. For the images used for training, we crop image blocks of 1000× 1000 pixels
with a stride of 600 on the original images to generate training samples. In the training process, these
samples are augmented with random flips.

Figure 9. Sample images and manually marked ground truth of the port image dataset collected from
Google Earth.

The other dataset is the public HRSC2016 ship dataset [27,39], which contains 1061 images with
resolutions between 0.4m and 2m. Images in this dataset range from 300× 300 to 1500× 900, and the
number of training, validation and test images are 436, 181 and 444, respectively. The HRSC2016 is
a multi-applicable dataset, which includes instance labels of three levels. The first level is ship class,
and L2 and L3 are ship types of finer categories. Since our method is a detection approach but not a
classification one, evaluation on Level 1 is enough to show the capability of ship detection.

Precision and recall are employed as evaluation criteria, which are defined as the ratio of correct
number of detected targets to detected number of targets, and the ratio of correct number of detected
targets to actual number of targets. The false alarm, which means the number of wrong detected
targets, can also reflect the effects of a model. For HRSC2016 dataset, most literatures use Mean
Average Precision (mAP) as a criterion. Since mAP is popular on public datasets, we employ it as well
for convenient comparison.

https://github.com/lllltdaf2/Ship-Seg-Detect-data
https://github.com/lllltdaf2/Ship-Seg-Detect-data
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In the test process, an IoU threshold of 0.5 is adopted [25,26], which is also convenient for fair
comparison with other methods. Actually, as the literature [29] has pointed out, the difficulty of a
same threshold of rotated bounding box is not comparable with a horizontal bounding box. As shown
in Figure 10, since ships are usually in narrow-rectangle shapes, the rotated IoU overlap between the
detected bounding box and the ground truth box is very sensitive to the angle variation, which makes
the rotated box more difficult to meet the detected IoU threshold than a horizontal box under the same
threshold value. Consequently, methods producing horizontal boxes are listed for reference, and direct
comparison on measure values between different bounding boxes does not make much sense.

Figure 10. Rotated bounding box is very sensitive to angle variation, as a result, it is more difficult to
be determined as “detected” than horizontal box under the same value of IoU threshold.

4.2. Experimental Settings

The experiments were carried out on Ubuntu 16.04, NVIDIA 1080Ti GPU, with Caffe and
TensorFlow deep learning framework. Since we have employed the VGG-16 model as the backbone
structure in the multi-scale feature extraction module, we use its parameters pre-trained on ImageNet
which come from the Caffe Model Zoo (https://github.com/BVLC/caffe/wiki/Model-Zoo) [40] and
then fine-tune the model in the end-to-end training. The model is trained end-to-end with gradually
decreased learning rates (10−3 for the first 40,000 iterations, 10−4 for the next 40,000 iterations, and 10−5

for the last 20,000), weight decay of 5× 10−4 and momentum of 0.9. The parameters of contextual
expansion boxes are: α = 2.2 and β = 1.4.

4.3. Model Analysis

Because multi-scale features, rotation bounding boxes and contextual RRoI pooling are all
employed in our method, experiments are designed to validate the benefits of each approach. In our
own dataset, we classify ships into large ships and small ships according to their length (threshold
length of 80 pixels, approximate 80m in reality), and the results of the model analysis are given
in Table 1.

It can be seen from Table 1 that MSF (multi-scale features), RRPN (rotation region proposal
network) and C-RRoI (pooling of contextual rotation RoI) are all beneficial to enhance the precision
and recall of ship detection. The employment of a rotation bounding box ensures a more accurate
representation of target location, and the skew non-maximum suppression avoids target loss of NMS
when ships are densely docked. As a result, Model_1 for analysis shows better recall rates than Faster
R-CNN. Precision of Model_2 for analysis is further enhanced compared to Model_1 and Faster R-CNN

https://github.com/BVLC/caffe/wiki/Model-Zoo
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due to the use of contextual RRoI pooling. When ships are inclined, a rotation bounding box includes
less surrounding background information than a horizontal one, which may be insufficient for accurate
target description. Since the RRoI is expanded with more contexts, the effect is validated by Model_2.
The proposed method includes all three key structures as described in Section 3, where multi-scale
features are fused to better describe targets of different sizes. Therefore, results on both small and large
ships are superior to the former models.

Table 1. Results of model analysis on our own dataset. MSF means multi-scale features, RRPN
respresents rotation region proposal network, C-RRoI indicates pooling of contextual rotation RoI.
“X” means adopted while “×” means not. If one approach is not adopted, that part of structure is
employed according to Faster R-CNN [19].

Method MSF RRPN C-RRoI Target Type Actual Number Correct Detected Number Recall(%) False Alarm Precision(%)

Faster R-CNN × × × Large 394 327 83.0 37 91.4Small 92 68 73.9

Model_1 × X × Large 394 334 84.8 39 91.2Small 92 70 76.1

Model_2 × X X
Large 394 357 90.6 37 92.2Small 92 79 85.9

Proposed Method X X X
Large 394 365 92.6 22 95.3Small 92 82 89.1

4.4. Contrast Experiments

In order to evaluate the effectiveness of the proposed method, we further compare it with the
following methods on our own dataset: Faster R-CNN [19], SSD [21] and RRPN [26]. The quantitative
results are listed in Table 2.

Table 2. Comparative results with other methods on our dataset.

Method Target Type Actual Number Correct Detected Number Recall(%) False Alarm Precision(%)

Faster R-CNN Large 394 327 83.0 37 91.4Small 92 68 73.9

SSD Large 394 293 74.4 95 76.8Small 92 22 23.9

RRPN Large 394 352 89.3 55 88.6Small 92 77 83.7

Proposed Method Large 394 365 92.6 22 95.3Small 92 82 89.1

Table 2 illustrates that the proposed method outperforms the other contrast approaches on both
recall and precision rates. Although the model of RRPN adopts rotation RPN and pooling as well,
it ignores the multi-scale features and target context information. Because the port usually contains a
lot of interference objects similar to ships, the recall and precision of RRPN model suffer from these
problems. Table 3 shows the computational consumption of the above methods. Our proposed method
enhances the detection results with the price of a reasonable increase of computation power and
running time.

Table 3. Computational consumption of each tested model on our dataset.

Method Faster R-CNN RRPN Proposed Method

Memory occupied 2010 M 2124 M 2546 M
Average time 0.11 s 0.16 s 0.25 s

Table 4 shows the detection results of state-of-the-art methods on HRSC2016 dataset. Baseline
methods include 1, 2, 5, 5 and 7 [27,39] which are proposed by the research group that released
HRSC2016 data. These methods adopt an SRBBS candidate proposal approach and they are not
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end-to-end frameworks. Since this dataset provides ground truth of both horizontal and rotated
bounding boxes, several typical methods generating horizontal boxes are also listed for reference,
including Faster R-CNN [19] retested by us. It should be pointed out that ground truth of horizontal
bounding boxes and rotated ones are different. Some results are cited from state-of-the-art methods
including RDFPN [6] and RRPN+RROI Pooling [37]. Most of the involved methods adopt VGG-16
as the backbone feature extraction network. It is seen from the table that our method has achieved
state-of-the-art performance.

Table 4. Detection results of state-of-the-art methods on HRSC2016 dataset.

No. Method End-to-End Model Bbox Type mAP

1 SRBBS (NRER-REG-BB) [39] × horizontal 55.7
2 SRBBS (NBEB-REG-BB) [39] × horizontal 79.7
3 SHD-HBB [41] X horizontal 69.5
4 Faster R-CNN [19] X horizontal 84.0
5 SRBBS (NRER-REG-RBB) [39] × rotated 69.6
6 SRBBS (NREB-REG-RBB) [39] × rotated 79.0
7 RR-CNN [27] × rotated 75.7
8 RDFPN [6] X rotated 76.2
9 RRPN+RROI Pooling [37] X rotated 79.6

10 Proposed Method X rotated 80.8

4.5. Visualized Results

Figure 11 shows the visual effects of contextual RRoI pooling. The top row exhibits some
inaccurate results produced by RRPN, including improper bounding boxes and undetected ships,
and the bottom row indicates the correction effects of contextual RRoI. By introducing contextual
information around the targets, insufficient contextual features of RRoI are supplemented for a better
detection precision.

Figure 11. Visual effects of contextual RRoI pooling.

More visualized results are provided in Figure 12 and Figure 13 to display detection effect of the
proposed method. The figures show that it can detect inshore ships of different types and various sizes,
as well as ships close to each other.
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Figure 12. Visualization of detected ships with the proposed method on our dataset.
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Figure 13. Visualization of detected ships with the proposed method on HRSC2016 dataset.

5. Conclusions

In this paper, we propose an inshore ship detection framework based on a multi-scale feature
pyramid fusion network, rotation region proposal network and contextual rotation region of interest
pooling. In consideration of various sizes of inshore ships, the proposed method fuses multi-scale
features from a pyramid of a backbone feature extraction network to better describe targets of different
sizes. In order to locate inshore ships more accurately and distinguish targets that are densely
arranged, a rotation region proposal network with skew non-maximum suppression is introduced
to generate region proposals. Moreover, to offset the context loss impact of inclined region proposal,
a contextual region alongside the rotation RoI is added to supplement effective information of inshore
ships. Experiments of model analysis validate that each step mentioned above contributes to the final
results of detection, and the proposed model with all three steps achieves state-of-the-art performance
compared to other methods.

In the future work, the following aspects are worth further investigation and should be improved
for the detection of inshore ships: (1) Backbone detection framework. Currently, Faster R-CNN is
employed as the most popular backbone detection network, and improved efficient and concise models
may be used as the backbone in the future. (2) A Method of multi-scale feature extraction and fusion.
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Many approaches aim to extract multi-scale features, whereas more accurate and faster methods are
still in demand. (3) An Approach to produce region proposals. How to generate effective region
proposals of reasonable quantity is a key step in object detection, which will affect the efficiency and
performance of the whole model. (4) The selection of pooling method, loss function and context
addition method. All of these details will influence the model performance especially under conditions
of imbalanced samples and complex interferences. (5) Detection and other methods in combination,
for example, with semantic segmentation and visual saliency may all contribute to the detection
of ships.
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The following abbreviations are used in this manuscript:

SAR Synthetic Aperture Radar
CNNs Convolutional Neural Networks
R-CNN Region proposal Convolutional Neural Network
RPN Region Proposal Network
NMS Non-Maximum Suppression
SSP-Net Spatial Pyramid Pooling Network
YOLO You Only Look Once
SSD Single Shot Multibox Detector
Bbox Bounding box
R2CNN Rotational Region CNN
RRPN Rotation Region Proposal Network
RRoI Rotation Region of Interest
MSF Multi-Scale Feature
RoI Region of Interest
BN Batch Normalization
IoU Intersection over Union
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