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Abstract: Distribution of Land Cover (LC) classes is mostly imbalanced with some majority LC
classes dominating against minority classes in mountainous areas. Although standard Machine
Learning (ML) classifiers can achieve high accuracies for majority classes, they largely fail to provide
reasonable accuracies for minority classes. This is mainly due to the class imbalance problem. In this
study, a hybrid data balancing method, called the Partial Random Over-Sampling and Random
Under-Sampling (PROSRUS), was proposed to resolve the class imbalance issue. Unlike most data
balancing techniques which seek to fully balance datasets, PROSRUS uses a partial balancing approach
with hundreds of fractions for majority and minority classes to balance datasets. For this, time-series
of Landsat-8 and SRTM topographic data along with various spectral indices and topographic data
were used over three mountainous sites within the Google Earth Engine (GEE) cloud platform.
It was observed that PROSRUS had better performance than several other balancing methods and
increased the accuracy of minority classes without a reduction in overall classification accuracy.
Furthermore, adopting complementary information, particularly topographic data, considerably
increased the accuracy of minority classes in mountainous areas. Finally, the obtained results from
PROSRUS indicated that every imbalanced dataset requires a specific fraction(s) for addressing the
class imbalance problem, because different datasets contain various characteristics.

Keywords: class imbalance problem; Google Earth Engine; land cover mapping; mountainous
regions; time-series of Landsat

1. Introduction

Mountains, covering a quarter of earth’s land surface, are globally distributed from the Tropics
to the poles and from maritime to continental environments [1]. Obtaining up-to-date and accurate
information of Mountain Land Cover (MLC) types is important for various applications, including
global warming and environmental changes [2–4]. Moreover, MLC data is a vital part of the assessment
and management of natural hazards studies (e.g., landslides and wildfires) [5–7]. Considering the large
extent and limited accessibility of mountainous areas, Remote Sensing (RS) datasets are well-suited for
mapping MLC classes. This is mainly related to the global coverage, the availability of various spatial
and spectral resolutions, and frequent observations from RS systems [8–10].

The RS community has been so far examined various datasets and methodologies to meet users’
requirements for generating accurate MLC maps [11–14]. The advent of state-of-the-art Machine
Learning (ML) techniques has particularly helped the RS community to improve the accuracy of MLC
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classifications [4,15]. However, the class imbalance problem, which mainly happens during the training
of classification algorithms, is a common issue in almost all ML classifiers [16]. In most supervised
classifiers, the class imbalance problem occurs when one or some of the classes have fewer samples
than the others [17]. This is mainly because the numbers of samples for each MLC class depend on
various factors, such as area and accessibility. For example, some classes may only cover a small
portion of the study area, while the others cover larger regions, which causes inconsistency in the
numbers of samples for different classes [18,19].

To date, several methods have been proposed to address the class imbalance problem, which can
be generally classified into three approaches: (1) applying specific classification methods by focusing
on the learning of minority classes [16], (2) assigning higher weights on minority classes by adjusting
classifiers (e.g., cost-sensitive methods) [20], and (3) rebalancing training datasets (e.g., oversampling
and under-sampling techniques) [21,22]. Among these methods, rebalancing training datasets has
been received more attention mainly because these techniques are simple to implement and yield
reasonable accuracies [23]. Rebalancing methods can be added to existing classifiers, and do not
change the base classifiers [21]. Although rebalancing techniques are well-documented in the literature,
they have multiple limitations related to the absence of the choice ‘fit for all data sets’ method, removal
of some useful information, potential overfitting, and generating noisy samples [16,24]. Regarding the
balancing rules, although it was argued that fully rebalancing original data might lead to a decrease
in Overall Accuracy (OA) [25], partial balancing of datasets has been rarely considered by the RS
community. Additionally, the role of different balancing ratios (fractions) to balance imbalanced
datasets has been ignored in most data balancing studies [26–28]. However, this is important because
datasets are different in terms of imbalance ratio, number of classes, and number of samples per
class [25]. Therefore, investigating the impacts of different balancing fractions on balancing datasets is
of great importance.

MLC classification can be relatively challenging due to a series of factors, such as high spatial
heterogeneity, rugged terrain, and the cloud contamination in optical satellite imagery over the
mountainous areas [4,9]. It has been proven that obtaining high classification accuracy over complex
landscapes, such as mountainous regions, was challenging with the sole use of spectral bands [9,29].
Thus, examining the role of different complementary information (e.g., spectral indices and topographic
data) to achieve more accurate MLC maps, particularly for minority classes, is necessary. Therefore,
this study also discussed the role of different complementary datasets, including spectral indices and
topographic data, on the accuracies of minority classes in mountainous areas. Additionally, MLC
classification becomes more challenging over large mountainous areas because hundreds to thousands
of satellite imagery might need to be processed and classified in a cost and time-efficient approach.
To resolve these issues, different cloud computing platforms have been developed, one of the most
commonly-used of which is Google Earth Engine (GEE) [30–32]. GEE is a cloud-based geospatial
data analyzing server, which ensures that users can access and process massive troves of RS datasets.
GEE allows experts and researchers to employ rich RS datasets to study local, regional, and global
applications [32,33]. GEE not only allows users to access long time-series data but also substantially
decreases the computational time [34,35]. Given the aforementioned background, the role of different
balancing fractions was investigated in this study by proposing a new hybrid balancing technique,
called the Partial Random Over-Sampling and Random Under-Sampling (PROSRUS). PROSRUS
integrated by Random Forest (RF) based on time series of Landsat-8 OLI and Google Earth Engine
(GEE) platform to handle the class imbalance problem in MLC classification.

2. Study Areas

In this study, three experiment sites (Figure 1) with different areas, elevation ranges,
climate conditions, spatial distributions of MLC types, and number of samples were selected to
comprehensively evaluate the robustness and performance of the proposed method. Site-1 (Figure 1A,
Lon = 49◦21′54”–49◦34′09”E, Lat = 36◦43′36”–36◦51′10”N) covers an area of approximately 270 km2
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in Gilan province, Iran, with an elevation ranging from 150 to 2382 m. This site covers a wide range
of MLC types, dominated by Forest and Bare land. Site-2 (Figure 1B, Lon = 47◦44′07”–48◦08′27”E,
Lat = 38◦02′35”–38◦17′28”N) covers an area of approximately 462 km2. This site belongs to Ardabil
province, Iran, and is a part of Savalan Mountain with an elevation varying between 1400 and 4100 m.
Bare land and Cultivated land are two dominant MLC types in this experiment site. Site-3 (Figure 1C,
Lon = 48◦39′46”–48◦57′24”E, Lat = 37◦54′14”–38◦06′59”N) covers an area of 620 km2 with an elevation
ranging from 36 to 2500 m. Site-1 and Site-3 belong to Gilan province, Iran, and are parts of the Alborz
chain. Most area in Site-3 is covered by Forest. Based on the Köppen-Geiger climate classification [36],
Site-1 has arid, steppe, cold (BSk) climate; Site-2 has cold, dry summer, cold summer (Dsc) climate;
and Site-3 has temperate, dry summer, hot summer (Csa) climate.

Figure 1. Experiment sites: (A) Site-1, (B) Site-2, and (C) Site-3. Left and right columns show
the true color composites of Landsat-8 (R: Band-4, G: Band-3, B: Band-2) and the SRTM elevation
maps, respectively

3. Method

3.1. Overall Workflow

As illustrated in Figure 2, the overall workflow of this study, which were implemented in
GEE consists of five main steps: (1) acquiring time-series of Landsat-8 OLI and SRTM imagery and
generating complementary data (i.e., spectral indices and topographic products) within the GEE
platform, (2) Generating reference samples and splitting them into three groups based on the number
of samples (i.e., majority classes, middle classes, and minority classes), (3) Selecting the best spectral
and topographic features for LC classification and assessing the effects of various features on the
accuracy of minority classes using RF classifier, (4) Applying the PROSRUS method using 200 different
fractions, and (5) Accuracy assessment of PROSRUS and evaluating its accuracy compared to those
of the Random Over-Sampling (ROS) [24], Random Under-Sampling (RUS) [37], Synthetic Minority
Over-sampling Technique (SMOTE) [21], and Geometric SMOTE (G-SMOTE) [38] techniques.
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3.2. Acquiring Landsat and Elevation Data, and Generating Complementary Data within the GEE Platform

The time-series of Landsat-8 surface reflectance Tier 1 products (ID: LANDSAT/LC08/C01/T1_SR)
with less than 10% cloud coverage between May and October 2019 were used in this study. A total of
9, 13, and 15 Landsat-8 scenes were processed for the Site-1, Site-2, and Site-3, respectively (refer to
Appendix A for more information). From the available spectral bands of Landsat-8 image, six bands
(i.e., Bands 2-7) were used in this study. A median function, which can remove noisy, very dark,
and very bright pixels [39], was applied to produce a single Landsat-8 mosaic image for each experiment
site. Several spectral indices, including Normalized Difference Vegetation Index (NDVI), Normalized
Difference Water Index (NDWI), Soil-Adjusted Vegetation Index (SAVI), and Normalized Difference
Built-up Index (NDBI) (see Table 1) were also generated from Landsat-8 imagery to investigate the
effect of the spectral indices on the overall classification accuracy and the accuracies of the minority
classes. NDVI, which helps us for generating an image showing the relative biomass, has been applying
broadly in LC mapping [40]. It has been proven that NDBI along with NDVI are effective indices for
identifying urban built-up area and discriminating them from other land cover types (e.g., trees and
grassland) [41]. The NDWI allows scholars to recognize water bodies from other objects such as soil
and terrestrial vegetation features [42]. SAVI can help us to discriminate soil-vegetation systems [43].
Furthermore, the Shuttle Radar Topography Mission (SRTM) data, which is available in the GEE
platform (ID: USGS/SRTMGL1_003), was applied to generate complementary topographic information,
including elevation, slope, and aspect. The effects of these elevation products were also investigated
on the accuracy of classification.

Table 1. List of generated spectral indices and their corresponding formulas (NIR = near infrared,
SWIR = short wave infrared, L = 0.428).

Name Formula Reference

NDVI (NIR − Red)/(NIR + Red) [44]
NDWI (Green − NIR)/(Green + NIR) [45]
SAVI ((NIR − Red)/(NIR + Red+ L)) × (1 + L) [43]
NDBI (SWIR − NIR)/(SWIR + NIR) [41]
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3.3. Generating Reference Samples and Spitting Them into Majority, Middle, and Minority Groups

Collection of in-situ samples in mountainous areas is often labor-intensive and expensive. However,
generating reliable reference datasets is a basic requirement for accurate supervised Land Cover (LC)
classification. Therefore, the reference samples over the experiment sites were generated using accurate
visual interpretation of very high spatial resolution images of Google Earth (Figure 3). The specifications
of the LC Classification System, developed by the Food and Agriculture Organization of the United
Nations [46], were considered in the generating reference samples. It includes nine LC types, including
Forest, Grassland, Shrub land, Cultivated land, Artificial land, Water bodies, Wetland, Permanent
snow/ice, and Bare land. Based on the distributions of MLC types, 1089, 970, and 1044 samples were,
respectively, generated for Site-1, Site-2, and Site-3. It should be noted that MLC classes covering
larger areas relatively received more samples. Finally, the generated reference samples were randomly
divided into two groups training and validation (50% and 50%).

To split the generated reference samples into three different groups (i.e., Majority, Middle,
and Minority), first, the Highest Number of Samples (HNS) among different classes in each experiment
site (i.e., Forest class with 244 samples in Site-1, Bare land Class with 326 samples in Site-2, and Forest
class with 280 samples in Site-3) were selected. Then, the class(es) with samples between 70% and
100% of HNS was grouped as the Majority Class; the class(es) with samples between 35% and 70% of
the HNS was grouped as the Middle Class; and the class(es) with samples between 0% and 35% of the
HNS was grouped as the Minority Class.
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3.4. Selecting Best Classification Scenario Based on the Optimum Features

Among the available ML algorithms, RF has been drawing considerable attention in LC mapping [8,47].
This is mainly due to its high performance, availability in different computing environments, and its low
sensitivity to noisy data [48,49]. RF combines multiple decision trees to classify the input data [50,51].
Moreover, it takes and resamples the input dataset several times to avoid the overfitting problem [5,50].
To achieve the most accurate RF model, two main parameters should be accurately optimized: (1) the
number of trees in the forest (ntree); (2) the number of variables available for splitting at each tree node
(mtry). In this study, after multiple trial and errors to find the optimum values of these parameters,
the ntree and mtry were set to 500 and the square root of the total number of input features, respectively.

Four well known spectral indices, including NDVI, NDWI, SAVI, and NDBI, along with
topographic products features, including elevation, slope, and aspect were used to identify best
classification scenario. The most optimum spectral and topographic features were selected based
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on the results of RF classifications applied to four following scenarios. Additionally, the effects of
the complementary datasets (i.e., spectral indices and topographic features) on the accuracy of MLC
mapping, especially those of the minority classes, were investigated.

• Scenario 1: Time-series of Landsat images + original imbalanced data.
• Scenario 2: Time-series of Landsat images + spectral indices + original imbalanced data.
• Scenario 3: Time-series of Landsat images + topographic features + original imbalanced data.
• Scenario 4: Time-series of Landsat images + topographic features + spectral indices+ original

imbalanced data.

After comparing the results of the four scenarios and selecting the optimal input features (i.e.,
scenario with the best result), the proposed PROSRUS method was implemented to address the class
imbalance problem.

3.5. Applying PROSRUS Method

In this study, a hybrid data balancing method, called PROSRUS, was proposed. The PROSRUS
method combines two well-known data-level balancing methods, including ROS [24] and RUS [37].
ROS, as a straightforward oversampling technique, randomly duplicates samples from minority
class(es) to balance the distribution of classes. Fully balancing of an original imbalanced dataset using
this method could cause overfitting of the classifier because of the duplication [52]. On the other hand,
RUS randomly deletes samples from the majority class(es) to adjust the data distribution. The main
shortcoming of a fully balancing dataset using RUS is that it may miss valuable information [23].

The proposed hybrid method not only takes the advantages of both ROS and RUS, but also limits
their disadvantages by examining 200 different fractions in the balancing scheme. More specifically,
as shown in Figure 4, original data were initially divided into three following groups based on the
number of samples of different LC classes: Group-1 (minority classes), Group-2 (middle classes),
and Group-3 (majority classes). Subsequently, after multiple trial and errors, 200 different fractions (it
is possible to define any other preferred fractions) are employed for balancing LC classes to extract
the optimal fraction(s) among them. In this way, as a partial balancing approach, ROS was used
for oversampling samples in Group-1, and RUS was applied for under-sampling in Group-3, while
samples of Group-2 were unchanged. For example, in fraction-1, only 10% of samples from Group-3
(90% of samples removed using RUS), 100% of Group-2 (unchanged), and 110% of Group-1 (10%
new samples added using ROS) were contributed to the balancing process. The code for applying
PROSRUS in the GEE platform is available in the Supplementary Material.

3.6. Accuracy Assessment and Comparison

The accuracy of obtained MLC maps using the proposed PROSRUS method were evaluated using
the OA, User’s Accuracy (UA), and Producer’s Accuracy (PA) measures. Since OA is affected by
majority classes rather than the minority ones [25], the Geometric Mean (G-Mean) index was also
applied for accuracy assessment. G-Mean is particularly suitable for the evaluation of a classification
with a class imbalance problem with more focusing on the accuracy of minority classes [53]. Accordingly,
the G-Mean of PA (GM-PA) and G-Mean of UA (GM-UA) were also calculated.

The results of PROSRUS were also compared with those of the four well-known balancing
techniques, including ROS, RUS, SMOTE, and G-SMOTE. To this end, RF along each of these data
balancing techniques were applied to the optimum features (i.e., best scenario discussed in Section 3.4).
For comparison purposes, the methods were named as RF-PROSRUS, RF-ROS, RF-RUS, RF-SMOTE,
and RF-G-SMOTE.
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4. Results

After grouping the LC classes based on the number of samples over each experiment site (Table 2),
the impacts of different complementary information and different balancing techniques in MLC classes
were investigated as follows:

Table 2. Grouping the land cover classes based on the number of samples over each experiment site.

Site Group-1 (Minority Classes) Group-2 (Middle Classes) Group-3 (Majority Classes)

1 Wetland, Water bodies, Grassland Shrubland, Cultivated land,
Artificial land Forest, Bare land

2 Water bodies, Snow, Wetland Artificial land, Grassland Cultivated land, Bare land

3 Artificial land, Shrubland, Wetland Water bodies, Bare land,
Grassland, Cultivated land Forest

4.1. Optimum Classification Scenario

The effects of different complementary information, such as spectral indices (see Table 1) and
topographic data (elevation, slope, and aspect) on the accuracy of minority classes in mountainous
areas were investigated using four different classification scenarios explained in Section 3.2. As it is
clear from Figure 5, including complementary information considerably improved the accuracy of
MLC classification, particularly minority classes. Scenario-4 (time-series of Landsat images + original
imbalanced data + topographic features + spectral indices) resulted in the highest accuracy. The OAs,
GM-UAs, and GM-PAs of this classification scenario, respectively, ranged between 87.3%–93.8%,
85.6%–91.6%, and 82.6%–89.4% over the three experiment sites. As shown in Figure 5, all three overall
accuracy assessment metrics (i.e., OA, GM-UA, and GM-PA), generally had the highest values using
Scenario-4. For example, in Site-1, OA, GM-UA, and GM-PA, respectively, increased from 80% to
87.3%, 76.3% to 85.6%, and 70.7% to 82.6% compared to when only spectral bands of Landsat-8 were
used (i.e., Scenario-1).

Although both topographic features (Scenario-3) and spectral indices (Scenario-2) improved all
three accuracy assessment metrics for simple RF (Scenario-1), topographic data had higher impacts
than spectral indices on improving MLC classification results (see Figure 5). The OAs, GM-UAs, and
GM-PAs of Scenario-3, respectively, ranged between 86.2%–92.7%, 85.3%–90.8%, and 81.7%–88.9%
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over the three experiment sites. Moreover, the OAs, GM-UAs, and GM-PAs of Scenario-2, respectively,
ranged between 83.4%–88%, 79.1%–85.3%, and 76.3%–79.7% over the three experiment sites.
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Figure 5. Mountain Land Cover (MLC) classification results based on the Random Forest (RF) algorithm
and imbalanced samples over Site-1 (A), Site-2 (B), and Site-3 (C) using different classification scenarios
(see Section 3.2 for the explanations of the scenarios).

Regarding different MLC types, minority classes showed stronger responses to including
topographic and spectral features (Table 3). For example, regarding UA values, the highest improvement
compared to Scenario-1, were observed in two (out of three) experiment sites for the minority classes:
Grassland class in Site-1 (18.9%), and Wetland class in Site-3 (17.8%). According to the PA values, the
highest improvement also achieved by minority classes as follows: Wetland class in Site-1 (31.2%),
Wetland class in Site-2 (18.7%), and Artificial land class in Site-3 (28.5%). The results indicated that
including complementary information to the classification procedure was necessary to improve not
only the overall classification accuracy but also the individual class accuracies, especially those of the
minority MLC types.

Table 3. Effects of the Scenario-4 on User’s Accuracy (UA) and Producer’s Accuracy (PA) values over
three experiment sites. The increased and decreased in the accuracies are indicated by + and − signs,
respectively (refer to Appendix B for more detailed information).

Sites
Evaluation

Metrics
(per Class)

LC Classes

Artificial
Land

Bare
Land

Cultivated
Land Forest Grassland Shrub

Land
Water
Bodies Wetland Snow

Site-1
UA (%) +1.3 +3.8 +17.2 0 +18.9 +14.5 0 +14.6 none
PA (%) +5.9 −1.9 +28.9 +6 +5.4 +12.2 0 +31.2% none

Site-2
UA (%) +8.1 +11.8 +9.9 none +22.4 none 0 +3.3 0
PA (%) +9.8 +5.9 +11.8 none −0.2 none 0 +18.7 +9.6

Site-3
UA (%) +4.9 +8.1 +3.2 0 +3.6 +7.7 0 +17.8 none
PA (%) +28.5 +2.6 +9.1 0 +6.1 +4.6 0 +6 none

4.2. Comparison of Balancing Techniques

The proposed method along with four balancing techniques (i.e., ROS, RUS, SMOTE,
and G-SMOTE) were applied over three experiment sites to study the impact of different balancing
techniques on the accuracy of MLC classification. The results are these investigations are discussed in
the following.

4.2.1. Site-1

In Site-1, the proposed PROSRUS with the fraction numbers of 190 showed the best performance
(Figure 6). This fraction used 210%, 100%, and 100% of Group-1 (minority classes), Group-2 (middle
classes), and Group-3 (majority classes), respectively. As is clear from Figure 6, in comparison to
Scenario-4 with imbalanced samples, it respectively improved GM-PA, GM-UA, and OA values by
approximately 3.5%, 1.2%, and 1.2%. This proved the high potential of the proposed balancing
method to provide high accuracies for both majority and minority classes. RF-G-SMOTE yielded the
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second-best result by providing OA = 86.6%, GM-UA = 84.03%, and GM-PA = 83.01%. Unlike the
PROSRUS-190 and RF-G-SMOTE that increased all three overall metrics, the price for increasing the
accuracy of minority classes was a reduction in the OA values for the other three resampling techniques
(i.e., RF-SMOTE, RF-RUS, and RF-ROS). For example, although RF-ROS increased the value of GM-PA
by approximately 1.6%, it reduced OA by approximately 1.1%. This amount for RF-SMOTE was even
higher (i.e., a decrease of 1.5% in OA).
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Figure 6. Accuracy assessment of the five resampling methods and the Scenario-4 classification method
(i.e., RF with imbalanced samples) over Site-1.

Regarding individual MLC classes, the fraction numbers of 190 of PROSRUS improved the UA
values of four classes (out of eight), including Wetland (1.2%), Bare land (2.8%), Cultivated land
(3.9%), and Shrub land (4.6%) (see Figure 7). However, two classes of Artificial land (0.9%) and
Grassland (1.9%) experienced downtrends. RF-G-SMOTE, as the second-best method, improved
UA values of the Bare land class by 0.5% and the Shrub land class by 2.8%, while decreased UA
values for four classes, including Artificial land (1.3%), Grassland (10%), Cultivated land (0.1%),
and Wetland (7.5%). Regarding the PA values, the proposed method improved the values of three
classes (Artificial land = 5.9%, Grassland = 18.5%, and Wetland = 6.3%). However, the PA values of
the Bare land, Cultivated land, and Shrub land classes, respectively, decreased by 1.9%, 3.3%, and 1.3%
using the proposed RF-PROSRUS method.Remote Sens. 2020, 11, x FOR PEER REVIEW 10 of 20 
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4.2.2. Site-2

In Site-2, the fraction numbers of 26 using 130% of Group-1 (minority classes), 100% of Group-2
(middle classes), and 70% of Group-3 (majority classes), showed the best performance (Figure 8).
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The proposed method, respectively, increased GM-PA, GM-UA, and OA values by approximately 4.5%,
4.2%, and 1.2% in comparison to Scenario-4. This confirmed the high potential of PROSRUS in dealing
with the class imbalance problem. Similar to Site-1, RF-G-SMOTE showed the second-best results by
providing OA = 93.86%, GM-UA = 91.67%, and GM-PA = 92.88%.
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(i.e., RF with imbalanced samples) over Site-2.

PROSRUS-26, improved the UA values of four classes (out of seven) of Water bodies (14.3%),
Wetland (7.5%), Cultivated land (0.6%), and Bare land (1.7%). However, it decreased the UA values
of the Artificial land and Grassland classes by approximately 1.2% and 1.7%, respectively (Figure 9).
The RF-G-SMOTE algorithm, which provided the second-best performance, increased UA values for
the Water bodies (11.5%) and Bare land (1.4%) classes and decreased PA values for the Cultivated land
(1%), Wetland (2%), and Artificial land (7.1%) classes. In the case of PA values, PROSRUS-26 increased
the accuracies of three classes of Water bodies (7.2%), Artificial land (5.6%), and Wetland (18.8%),
while decreased the accuracies of the Bare land class by 1.1%. Moreover, RF-G-SMOTE increased
the accuracies of Water bodies (16.2%), Cultivated land (2.3%), and Artificial land (10.6%), while it
decreased the accuracies of the other four classes (Snow = 4%, Bare land = 6.2%, Wetland = 2.7%,
and Grassland = 8.8%).Remote Sens. 2020, 11, x FOR PEER REVIEW 11 of 20 
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4.2.3. Site-3

In Site-3, the fraction numbers of 74 using 180% of Group-1 (minority classes), 100% of Group-2
(middle classes), and 50% of Group-3 (majority classes) had the best performance in improving MLC
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classification using the proposed method (Figure 10). Reaching to OA = 92.15, GM-UA = 91.53,
and GM-PA = 88.85 in comparison to the Scenario-4, the proposed method increased these overall
accuracy metrics by approximately 1.6%, 1.7%, and 5.3%, respectively. RF-G-SMOTE outperformed
remaining three resampling methods and obtained the second-best place.
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Figure 10. Accuracy assessment of the five resampling methods and the Scenario-4 classification
method (i.e., RF with imbalanced samples) over Site-3.

Applying PROSRUS-74 led to an increase in the UA values for four classes (out of eight), including
Grassland, Bare land, Forest, and Artificial land classes by 5%, 1.3%, 2.7%, and 6.8%, respectively.
However, it decreased the accuracy of the Shrub land (−0.4) and Cultivated land (−2.2%) classes.
RF-G-SMOTE, respectively, increased the UA values for the Forest, Cultivated land, Bare land,
and Grassland classes approximately by 2%, 0.1%, 2.1%, and 3.38%. It however decreased the PA
values of the other three classes. Regarding PA values, PROSRUS-74 improved the results of five
classes compared to the Scenario-4 (Shrub land = 23%, Bare land = 2.4%, Cultivated land = 1.5%,
Grassland = 1.5%, and Artificial land = 0.01%) (Figure 11). However, there was a reduction of 1.4% in
the PA value of the Forest class using the proposed method.
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5. Discussion

GEE has markedly improved the LC mapping studies by providing a huge number of geospatial
datasets, in particular, the archive of Landsat data [54,55]. In this study, 37 Landsat-8 OLI scenes and
SRTM data were used to study the potential of balancing methods on MLC classification. The GEE
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platform allowed us to have a faster and easier classification process because of several factors,
such as providing atmospherically corrected time-series of Landsat data, high-performance computing
capability, image-based functions, and integrated RF algorithm to the GEE API.

The experiments demonstrated the efficiency of adopting complementary information to improve
the accuracy of MLC classification. We were able to increase the average OA, GM-UA, and GM-PA by
7%, 7.2%, and 10.2% using all spectral and topographic features (i.e., slope, elevation, aspect, NDVI,
NDWI, NDBI, and SAVI), respectively. This can be explained by the fact that both topographic data
and spectral indices provided important information, which in turn improved the MLC mapping
accuracy [56,57]. By comparing the results of the four different scenarios over three experiment sites,
it was observed that although Scenario-4 (i.e., integrating spectral indices and topographic data)
showed the highest accuracies, the impact of topographic data was higher than the spectral indices
in MLC classification (see Figure 12). This corresponded well to multiple studies, such as [29,58,59].
Based on Figure 5, among all three overall accuracy metrics, the GM-PA metric showed the highest
improvement (Site-1 = 11.9%, Site-2 = 12.4%, and Site-3 = 6.5%) after adopting the complementary
information. It can be concluded that including spectral and topographic features had bigger effects on
the accuracy of minority classes.
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It was also observed that PROSRUS outperformed all other data balancing techniques, including
ROS, RUS, SMOTE, and G-SMOTE. PROSRUS along with RF algorithm improved the average OA by
approximately 1.3% considering all experiment sites (Figure 13). Higher improvements in the GM-UA
and GM-PA values were even observed after adopting the proposed method (i.e., approximately
by 1.8% and 4.6%, respectively). The reason might be attributed to two main factors as follows:
(1) PROSRUS only duplicated samples from minority classes and did not generate artificial samples.
Generating artificial samples by some balancing methods can sometimes lead to misclassification [24];
(2) PROSRUS partially balanced dataset to find the most optimal fraction(s) for addressing the class
imbalance problem. This decreased the drawbacks of fully balancing datasets using ROS and RUS
(e.g., overfitting for fully ROS [52] and losing critical information for RUS [60]).
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Figure 13. Performance of different resampling methods in improving overall classification accuracy
compared to the Scenario-4 classification method (i.e., RF with imbalanced samples).

Based on previous studies, improving the accuracy of minority classes usually leads to decrease
in OA. For example, Waldner et al. [25] reported that “the price for increasing the accuracy of minority
classes was a decrease in OA”. However, among all five resampling methods, PROSRUS was the only
method that successfully improved the accuracy of minority classes without a reduction in OA in
all experiment sites (i.e., Site-1 = 1.57%, Site-2 = 1.23%, and Site-3 = 1.17%). Our experiments also
confirmed that G-SMOTE outperforms SMOTE in most cases, which was in agreement with [27],
ROS had higher accuracies than RUS, which confirmed the findings of [61], and had lower accuracies
than SMOTE, which was in the agreement with [16].

The experiments showed that a specific balancing ratio cannot provide optimal results in all
datasets and settings. For example, fraction numbers of 190, 74, and 26 showed the best results among
all applied 200 fractions over Site-1, Site-2, and Site-3, respectively. The reason that different datasets
react differently to various fractions can be related to the issue that the imbalance ratio is different from
a dataset to another one [25]. Therefore, it is necessary to investigate different fractions to achieve the
most accurate MLC map.

6. Conclusions

In this study, a hybrid data balancing technique was proposed to address the class imbalance
problem, which is a common problem in LC classification using ML algorithms. Additionally, the role of
complementary information on MLC mapping was investigated. All the investigations were conducted
over three different experiment sites using the time-series of Landsat-8 OLI within the GEE cloud
computing platform. The study revealed the feasibility and reliability of improving the accuracy of
LC classes in mountainous areas by adopting the RF classification algorithm, using both spectral and
topographic features, and PROSRUS as a data balancing technique. The experiments also showed
that topographic data including elevation, slope, and aspect had higher impacts than spectral indices
in improving the accuracy of MLC maps. Moreover, it was illustrated that higher accuracies could
be obtained for both minority and majority classes using an appropriate balancing ratio. Moreover,
it was concluded that every dataset requires a specific balancing ratio to obtain the optimal result
because the imbalance ratios and complexity levels are different for different datasets. In summary,
since the performance of the proposed balancing method was substantially better than those of the
RF with imbalanced data and four rebalancing techniques (i.e., ROS, RUS, SMOTE, and G-SMOTE),
it was concluded that the integration of complementary information and PROSRUS method was a
valid alternative practice that should be considered for LC classification in mountainous areas.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/20/3301/s1,
S1: Scripts for investigating the role of different complementary information on the accuracies of MLC classes. S2:
Scripts for implementing PROSRUS based on time-series of Landsat and the GEE platform.
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Appendix A

Table A1. Detailed information of the selected Landsat images (Title of all images: USGS Landsat 8
Surface Reflectance Tier 1).

ID Site WRS_Path WRS_Row Cloud Cover Sensing Time

1 1 166 34 5.4 2019-06-27

2 1 166 34 3.92 2019-09-15

3 1 166 35 0.9 2019-06-11

4 1 166 35 0.13 2019-06-27

5 1 166 35 0.61 2019-07-13

6 1 166 35 2.61 2019-07-29

7 1 166 35 1.08 2019-08-14

8 1 166 35 3.81 2019-08-30

9 1 166 35 0.13 2019-09-15

10 2 167 33 2.21 2019-06-18

11 2 167 33 7.94 2019-07-04

12 2 167 33 2.78 2019-07-20

13 2 167 33 6.29 2019-08-05

14 2 167 33 0.72 2019-08-21

15 2 167 34 8.7 2019-05-01

16 2 167 34 6.75 2019-05-17

17 2 167 34 1.77 2019-06-02

18 2 167 34 1.96 2019-06-18

19 2 167 34 1.96 2019-07-04

20 2 167 34 1.74 2019-07-20

21 2 167 34 2.9 2019-08-05

22 2 167 34 1 2019-08-21

23 3 167 34 5.4 2019-06-27

24 3 166 34 3.92 2019-09-15

25 3 167 33 2.21 2019-06-18

26 3 167 33 7.94 2019-07-04

27 3 167 33 2.78 2019-07-20

28 3 167 33 6.29 2019-08-05

29 3 167 33 0.72 2019-08-21

30 3 167 34 8.7 2019-05-01

31 3 167 34 6.75 2019-05-17

32 3 167 34 1.77 2019-06-02

33 3 167 34 1.96 2019-06-18

34 3 167 34 1.96 2019-07-04

35 3 167 34 1.74 2019-07-20

36 3 167 34 2.9 2019-08-05

37 3 167 34 0.98 2019-08-21
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Appendix B

Table A2. The result of accuracy assessment using four different scenarios in the three experiment sites.

Experiment
Sites

Scenarios
Evaluation

Metrics
(per Class)

LC Classes Overall Metrics

Artificial
Land

Bare
Land

Cultivated
Land Forest Grassland Shrub

Land
Water
Bodies Wetland Snow OA (%) GM-UA

(%)
GM-PA

(%)

Site-1

1
UA (%) 83.7 79.6 56.3 97.8 61.1 72.5 100 66.6 - 80 76.3 70.7
PA (%) 60.7 93.3 51.6 91.8 59.4 78.3 94.2 50 -

2
UA (%) 84 81.5 67.3 97.8 66.6 76.8 100 66.6 - 83.4 79.1 76.3
PA (%) 72.5 92.3 55 98.5 64.8 85.1 91.4 62.5 -

3
UA (%) 79 78.5 72.5 97.8 82.7 89.3 100 86.6 - 86.2 85.3 81.7
PA (%) 66.6 90.4 75 97.8 64.8 90.5 94.2 81.2 -

4
UA (%) 85 83.4 73.5 97.8 80 87 100 81.2 - 87.3 85.6 82.6
PA (%) 66.6 91.4 83.3 97.8 64.8 90.5 91.4 81.2 -

Site-2

1
UA (%) 88.8 84.7 79.4 - 71.7 - 80 83.3 100 82.9 83.6 77
PA (%) 77.7 91.7 84.5 - 85.9 - 80 62.5 90.4

2
UA (%) 89 85.4 84.7 - 76 - 80 83.3 100 83.9 85.2 79.7
PA (%) 79.1 89.9 88 - 62.5 - 80 68.7 95.2

3
UA (%) 96.9 95.3 90.6 - 94.1 - 76.6 84.3 100 92.7 90.8 88.9
PA (%) 86.8 96.4 96.4 - 80.7 - 80 83.5 100

4
UA (%) 96.9 96.5 90.8 - 94.1 - 78.5 86.6 100 93.8 91.6 89.4
PA (%) 87.5 97.6 97.8 - 85.7 - 78.5 81.2 100

Site-3

1
UA (%) 84.4 80 85.3 94.4 73.5 76.9 98.8 82.2 - 87.8 84.8 77
PA (%) 60.7 84.4 84.8 97.8 75.7 45.4 98.8 82.2 -

2
UA (%) 85 82.7 85.5 94.4 69.3 83.3 98.8 86.6 - 88 85.3 77.8
PA (%) 60.7 84.7 89.4 98.5 80.3 45.4 98.8 82.2 -

3
UA (%) 89.3 87.2 85.1 94.4 76.1 84.6 98.8 100 - 90 89.1 83
PA (%) 89.2 86.2 92.4 97.8 80.3 50 98.8 82.2 -

4
UA (%) 89.3 88.1 88.5 94.4 77.1 84.6 98.8 100 - 90.5 89.4 83.5
PA (%) 89.2 87 93.9 97.8 81.8 50 98.8 88.2 -
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Appendix C

Table A3. Accuracy assessment of the four data balancing methods and traditional RF (Scenario-4) over Site-1.

Method
Evaluation

Metrics
(per Class)

LC Classes Overall Metrics

Artificial
Land

Bare
Land

Cultivated
Land Forest Grassland Shrub

Land
Water
Bodies Wetland OA (%) GM-UA

(%)
GM-PA

(%)

RF-ROSRUS-190
UA (%) 84.1 86.2 77.4 97.8 78.1 91.6 100 82.3 88.54 86.85 86.16
PA (%) 72.5 89.5 80 97.8 83.8 89.2 91.4 87.5

RF-Scenario 4 UA (%) 85 83.4 73.5 97.8 80 87 100 81.2 87.37 85.61 82.60
(original data) PA (%) 66.6 91.4 83.3 97.8 64.8 90.5 91.4 81.2

RF-SMOTE
UA (%) 80.3 79 80 97.8 72.9 85.1 94.2 81.2 85.83 83.51 83.01
PA (%) 70.7 85.5 76.2 91.1 67.5 88.3 97 86.6

RF-ROS
UA (%) 82.2 86 72.7 97.8 78.7 87 100 77.7 86.28 84.82 84.22
PA (%) 72.5 87.6 80 97.8 70.2 90.5 91.4 87.5

RF-RUS
UA (%) 81 85.1 63.5 97.8 62.2 80 100 63.6 82.72 77.91 79.16
PA (%) 58.8 81.9 66.6 91.8 75.6 86.5 85.7 87.5

Appendix D

Table A4. Accuracy assessment of the four data balancing methods and traditional RF (Scenario-4) over Site-2.

Method
Evaluation

Metrics
(per Class)

LC Classes Overall Metrics

Water
Bodies Snow Cultivated

Land Bare Land Artificial
Land Wetland Grassland OA (%) GM-UA

(%)
GM-PA

(%)

RF-ROSRUS-26
UA (%) 100 100 91.4 98.2 95.7 94.1 92.3 95.09 95.9 93.94
PA (%) 85.7 100 97.8 96.5 93.1 100 85.7

RF-Scenario 4 UA (%) 78.5 100 90.8 96.5 96.9 86.6 94.1 93.86 91.67 89.43
(original data) PA (%) 78.5 100 97.8 97.6 87.5 81.2 85.7

RF-SMOTE
UA (%) 88.8 100 97.3 89.8 73.3 91.4 84.2 93.79 90.31 89.77
PA (%) 84.2 96 97 94.7 98.1 78.5 82

RF-ROS
UA (%) 88.8 100 90.4 98 91.4 76.9 100 93.79 91.89 87.70
PA (%) 84.2 96 100 94.7 98.1 71.4 74.3

RF-RUS
UA (%) 90 100 93.2 97.8 91.3 76.9 100 91.03 86.03 90.23
PA (%) 94.7 96 93.9 88.1 94.4 78.5 78.1



Remote Sens. 2020, 12, 3301 17 of 21

Appendix E

Table A5. Accuracy assessment of the four data balancing methods and traditional RF (Scenario-4) over Site-3.

Method
Evaluation

Metrics
(per Class)

LC Classes Overall Metrics

Water
Bodies Snow Cultivated

Land Bare Land Artificial
Land Wetland Grassland OA (%) GM-UA

(%)
GM-PA

(%)

RF-ROSRUS-26
UA (%) 100 100 91.4 98.2 95.7 94.1 92.3 95.09 95.9 93.94
PA (%) 85.7 100 97.8 96.5 93.1 100 85.7

RF-Scenario 4 UA (%) 78.5 100 90.8 96.5 96.9 86.6 94.1 93.86 91.67 89.43
(original data) PA (%) 78.5 100 97.8 97.6 87.5 81.2 85.7

RF-SMOTE
UA (%) 88.8 100 97.3 89.8 73.3 91.4 84.2 93.79 90.31 89.77
PA (%) 84.2 96 97 94.7 98.1 78.5 82

RF-ROS
UA (%) 88.8 100 90.4 98 91.4 76.9 100 93.79 91.89 87.70
PA (%) 84.2 96 100 94.7 98.1 71.4 74.3

RF-RUS
UA (%) 90 100 93.2 97.8 91.3 76.9 100 91.03 86.03 90.23
PA (%) 94.7 96 93.9 88.1 94.4 78.5 78.1
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