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Abstract: Vine pathologies generate several economic and environmental problems, causing serious
difficulties for the viticultural activity. The early detection of vine disease can significantly improve
the control of vine diseases and avoid spread of virus or fungi. Currently, remote sensing and
artificial intelligence technologies are emerging in the field of precision agriculture. They offer
interesting potential for crop disease management. However, despite the advances in these
technologies, particularly deep learning technologies, many problems still present considerable
challenges, such as semantic segmentation of images for disease mapping. In this paper, we present
a new deep learning architecture called Vine Disease Detection Network (VddNet). It is based
on three parallel auto-encoders integrating different information (i.e., visible, infrared and depth).
Then, the decoder reconstructs and retrieves the features, and assigns a class to each output pixel.
An orthophotos registration method is also proposed to align the three types of images and enable the
processing by VddNet. The proposed architecture is assessed by comparing it with the most known
architectures: SegNet, U-Net, DeepLabv3+ and PSPNet. The deep learning architectures were trained
on multispectral data from an unmanned aerial vehicle (UAV) and depth map information extracted
from 3D processing. The results of the proposed architecture show that the VddNet architecture
achieves higher scores than the baseline methods. Moreover, this study demonstrates that the
proposed method has many advantages compared to methods that directly use the UAV images.

Keywords: plant disease detection; precision agriculture; UAV multispectral images; machine
learning; orthophotos registration; 3D information; orthophotos segmentation

1. Introduction

In agricultural fields, the main causes of losing quality and yield of harvest are virus, bacteria,
fungi and pest [1]. To prevent these harmful pathogens, farmers generally treat the global crop to
prevent different diseases. However, using a large amount of chemicals has a negative impact on
human health and ecosystems. This constitutes a significant problem to be solved; precision agriculture
presents an interesting alternative.

In recent decades, the precision agriculture [2,3] has introduced many new farming methods to
improve and optimize crop yields, constituting a research field in continuous evolution. New sensing
technologies and algorithms have enabled the development of several applications such as water stress
detection [4], vigour evaluation [5], estimation of evaporate-transpiration and harvest coefficient [6],
weed localization [7,8], and disease detection [9,10].

Disease detection in vine is an important topic in precision agriculture [11–22]. The aim is to
detect and treat the infected area at the right place and the right time, and with the right dose of
phytosanitary products. At the early stage, it is easier to control diseases with small amounts of
chemical products. Indeed, intervention before infection spreads offers many advantages, such as
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preservation of vine, grap production and environment, and reducing the economics losses. To achieve
this goal, frequent monitoring of the parcel is necessary. Remote sensing (RS) methods are among the
most widely used for that purpose and essential in the precision agriculture. RS images can be obtained
at leaf- or parcel-scale. At the leaf level, images are acquired using a photo sensor, either held by a
person [23] or mounted on a mobile robot [24]. At the parcel level, satellite was the standard RS imaging
system [25,26]. Recently, drones or UAVs have gained popularity due to their low cost, high-resolution
images, flexibility, customization and easy data access [27]. In addition, unlike satellite imaging,
UAV does not have the cloud problem, which has helped to solve many remote sensing problems.

Parcels monitoring generally requires orthophotos building from geo-referenced visible and
infrared UAV images. However, two separated sensors generate a spatial shift between images of the
two sensors. This problem also occurred after building the orthophotos. It has been established that
it is more interesting to combine the information from the two sensors to increase the efficiency of
disease detection. Therefore, image registration is required.

The existent algorithms of registration rely on an approach based on either the area or feature
methods. The most commonly used in the precision agriculture are feature-based methods, which are
based on matching features between images [28]. In this study, we adopted the feature-based approach
to align orthophotos of the visible and infrared ranges. Then, the two are combined for the disease
detection procedure, where the problem consists of assigning a class-label to each pixel. For that
purpose, the deep learning approach is currently the most preferred approach for solving this type
of problem.

Deep learning methods [29] have achieved a high level of performance in many applications, in
which different network architectures have been proposed. For instance, R-CNN [30], Siamese [31],
ResNet [32], SegNet [33] are architectures used for object detection, tracking, classification and
segmentation, respectively, which operate in most cases in visible ranges. However, in certain
situations, the input data are not only visible images but can be combined with multispectral or
hyperspectral images [34], and even depth information [35]. In these contexts, the architectures
can undergo modification for improving the methods [36]. Thus, in some studies [37–40],
depth information is used as input data. These data generally provide precious information about
scene or environment.

Depth or height information is extracted from the 3D reconstruction or photogrammetry
processing. In UAV remote sensing imagery, the photogrammetry processing can to build a digital
surface model (DSM) before creating the orthophoto. The DSM model can provide much information
about the parcel, such as the land variation and objects on its surface. Certain research works have
shown the ability to extract vinerows by generating a depth map from the DSM model [41–43].
These solutions have been proposed to solve the vinerows misextraction resulting from the NDVI
vegetation index. Indeed, in some situations, the NDVI method cannot be used to extract vinerows
when the parcel has a green grassy soil. The advantage of the depth map is its ability to separate areas
above-ground from the ground, even if the color is the same for all zones. To date, there has been no
work on the vine disease detection that combines depth and multispectral information with a deep
learning approach.

This paper presents a new system for vine disease detection using multispectral UAV images.
It combines a highly accurate orthophotos registration method, a depth map extraction method and a
deep learning network adapted to the vine disease detection data.

The article is organized as follows. Section 2 presents a review of related works. Section 3
describes the materials and methods used in this study. Section 4 details the experiments. Section 5
discusses the performances and limitations of the proposed method. Finally, Section 6 concludes the
paper and introduces ideas to improve the method.
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2. Related Work

Plant disease detection is an important issue in precision agriculture. Much research has been
carried out and a large survey has been realised by Mahlein (2016) [44], Kaur et al. (2018) [45],
Saleem et al. (2019) [46], Sandhu et al. (2019) [47] and Loey et al. (2020) [48]. Schor et al. (2016) [49]
presented a robotic system for detecting powdery mildew and wilt virus in tomato crops. The system
is based on an RGB sensor mounted on a robotic arm. Image processing and analysis were
developed using the principal component analysis and the coefficient of variation algorithms.
Sharif et al. (2018) [50] developed a hybrid method for disease detection and identification in citrus
plants. It consists of lesion detection on the citrus fruits and leaves, followed by a classification of the
citrus diseases. Ferentinos (2018) [51] and Argüeso et al. (2020) [52] built a CNN model to perform plant
diagnosis and disease detection using images of plant leaves. Jothiaruna et al. (2019) [53] proposed a
segmentation method for disease detection at the leaf scale using a color features and region-growing
method. Pantazi et al. (2019) [54] presented an automated approach for crop disease identification
on images of various leaves. The approach consists of using a local binary patterns algorithm for
extracting features and performing classification into disease classes. Abdulridha et al. (2019) [55]
proposed a remote sensing technique for the early detection of avocado diseases. Hu et al. (2020) [56]
combined an internet of things (IoT) system with deep learning to create a solution for automatically
detecting various crop diseases and communicating the diagnostic results to farmers.

Disease detection in vineyards has been increasingly studied in recent years [11–22]. Some works
are realised at the leaf scale, and others at the crop scale. MacDonald et al. (2016) [11] used a Geographic
Information System (GIS) software and multispectral images for detecting the leafroll-associated virus
in vine. Junges et al. (2018) [12] investigated vine leaves affected by the esca in hyperspectral ranges
and di Gennaro et al. (2016) [13] worked at the crop level (UAV images). Both studies concluded
that the reflectance of healthy and diseased leaves is different. Albetis et al. (2017) [14] studied the
Flavescence dorée detection in UAV images. The results obtained showed that the vine disease
detection using aerial images is feasible. The second study of Albetis et al. (2019) [15] examined of
the UAV multispectral imagery potential in the detection of symptomatic and asymptomatic vines.
Al-Saddik has conducted three studies on vine disease detection using hyperspectral images at the leaf
scale. The aim of the first one (Al-Saddik et al. 2017) [16] was to develop spectral disease indices able to
detect and identify the Flavescence dorée on grape leaves. The second one (Al-Saddik et al. 2018) [17]
was performed to differentiate yellowing leaves from leaves diseased by esca through classification.
The third one (Al-saddik et al., 2019) [18] consisted of determining the best wavelengths for the
detection of the Flavescence dorée disease. Rançon et al. (2019) [19] conducted a similar study for
detecting esca disease. Image sensors were embedded on a mobile robot. The robot moved along
the vinerows to acquire images. To detect esca disease, two methods were used: the scale Invariant
Feature Transform (SIFT) algorithm and the MobileNet architecture. The authors concluded that
the MobileNet architecture provided a better score than the SIFT algorithm. In the framework of
previous works, we have realized three studies on vine disease detection using UAV images. The first
one (Kerkech et al. 2018) [20] was devoted to esca disease detection in the visible range using the
LeNet5 architecture combined with some color spaces and vegetation indices. In the second study
(Kerkech et al. 2019) [21], we used near-infrared images and visible images. Disease detection was
considered as a semantic segmentation problem performed by the SegNet architecture. Two parallel
SegNets were applied for each imaging modality and the results obtained were merged to generate
a disease map. In (Kerkech et al. 2020) [22], a correction process using a depth map was added to
the output of the previous method. Post-processing with these depth information demonstrated the
advantage of this approach in reducing detection errors.

3. Materials and Methods

This section presents the materials and each component of the vine disease detection system.
Figure 1 provides an overview of the methods. It includes the following steps: data acquisition,
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orthophotos registration, depth map building and orthophotos segmentation (disease map generation).
The next sections detail these different steps.

Visible 
UAV dataset

Visible 
orthophoto

Infrared 
UAV dataset

Infrared 
orthophoto

Orthophotos 
registration 

process

Depth map 
generation process

Depth 
map

Deep learning 
segmentation Disease map

UAV images 
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Photogrammetry
processing Depth mapDSM Model Post-processing

DSM Model

Figure 1. The proposed vine disease detection system.

3.1. Data Acquisition

Multispectral images are acquired using a quadricopter UAV that embeds a MAPIR Survey2
camera and a Global Navigation Satellite System (GNSS) module. This camera integrates two sensors
in the visible and infrared ranges with a resolution of 16 megapixels (4608 × 3456 pixels). The visible
sensor captures the red, green, and blue (RGB) channels and the infrared sensor captures the red,
green, and near-infrared (R-G-NIR) channels. The wavelength of the near-infrared channel is 850 nm.
The accuracy of the GNSS module is approximately 1 m.

The acquisition protocol consists of a drone flying over vines at an altitude of 25 m and at an
average speed of 10 km/h. During flights, the sensors acquire an image every 2 s. Each image has
a 70% overlap with the previous and the next ones. Each point of the vineyard has six different
viewpoints (can be observed on six different images). The flight system is managed by a GNSS module.
The flight plans include topographic monitoring aimed at guaranteeing a constant distance from the sol.
Images are recorded with their GNSS position. Flights are performed at the zenith to avoid shadows,
and with moderate weather conditions (light wind and no rain) to avoid UAV flight problems.

3.2. Orthophotos Registration

The multispectral acquisition protocol using two sensors causes a shift between visible and
infrared images. Hence, a shift in multispectral images automatically implies a shift in orthophotos.
Usually, the orthophotos registration is performed manually using the QGIS software. The manual
method is time-consuming, requires a high focus to select many key points between visible and
infrared orthophotos, and the result is not very accurate. To overcome this problem, a new method for
automatic and accurate orthophotos registration is proposed.

The proposed orthophotos registration method is illustrated in Figure 2 and is divided into
two steps. The first one concerns the UAV multispectral images registration and the second permits
the building of registered multispectral orthophotos. In this study, the first step uses the optimized
multispectral images registration method proposed in [21]. Based on the Accelerated-KAZE (AKAZE)
algorithm, the registration method uses feature-matching between visible and infrared images to
match key points extracted from the two images and compute the homographic matrix for geometric
correction. In order to increase accuracy, the method uses an iterative process to reduce the Root Mean
Squared Error (RMSE) of the registration. The second step consists of using the Agisoft Metashape
software to build and obtain the registered visible and infrared orthophotos. The Metashape software
is based on the Structure from motion (SfM) algorithm for the photogrammetry processing. Building
orthophotos requires the UAV images and the digital surface model (DSM). To obtain this DSM
model, the software must go through a photogrammetry processing and perform the following steps:
alignment of the images to build a sparse point cloud, then a dense point cloud, and finally the DSM.
The orthophotos building is carried out by the option “build orthomosaic” process in the software.
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To build the visible orthophotos, it is necessary to use the visible UAV images and the DSM model,
while, to build a registered infrared orthophoto, it is necessary to use the registered infrared UAV
images and the same DSM model of the visible orthophoto. The parameters used in the Metashape
software are detailed in Table 1.
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Figure 2. The proposed orthophotos registration method.

3.3. Depth Map

The DSM model previously built in the orthophotos registration process is used here to obtain the
depth map. In fact, the DSM model represents the terrain surface variation and includes all objects found
here (in this case, objects are vine trees). Therefore, some processings are required to determine only the
vine height. To extract the depth map from the DSM, the method proposed in [41] is used. It consists of
applying the following processings: the DSM is first filtered using a low-pass filter of size 20 × 20; this
filter is chosen to smooth the image and keep only the terrain surface variations, also called the digital
terrain model (DTM). The DTM is thereafter subtracted from the DSM to eliminate the terrain variations
and retain only the vine height. Due to the weak contrast of the result, an enhancement processing was
necessary. The contrast is enhanced here by using a histogram-based (histogram normalization) method.
The obtained result is an image with a good difference in grey levels between vines and non-vines.
Once the contrast is corrected, an automatic thresholding using the Otsu’s algorithm is applied to obtain
a binary image representing the depth map.

3.4. Segmentation and Classification

The last stage of the vine disease detection system concerns the data classification. This step
is performed using a deep learning architecture for segmentation. Deep learning has proven its
performance in numerous research studies and in various domains. Many architectures have been
developed, such as SegNet [33], U-Net [57], DeepLabv3+ [58], and PSPNet [59]. Each architecture
can provide good results in a specific domain and be less efficient in others. These architectures are
generally used for the segmentation of complex indoor/outdoor scenes, medical ultrasound images,
or even in agriculture. One channel is generally used for greyscale medical imaging or three channels
for visible RGB color images. Hence, they are not always adapted to a specific problem. Indeed,
for this study, multispectral and depth map data offer additional information. This can improve the
segmentation representation and the final disease map result. For this purpose, we have designed our
deep learning architecture adapted to the vine disease detection problem, and we have compared it to
the most well known deep learning architectures. In the following sections, we describe the proposed
deep learning architecture and the training process.

3.4.1. VddNet Architecture

Vine Disease Detection Network (VddNet), Figure 3 is inspired by VGG-Net [60], SegNet [33],
U-Net [57] and the parallel architectures proposed in [37,61–63]. VddNet is a parallel architecture
based on the VGG encoder; it has three types of data as inputs: visible a RGB image, a near-infrared
image and a depth map. VddNet is dedicated to segmentation, so the output has the same input,
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with a number of channels equal to the number of classes (4). It is designed with three parallel
encoders and one decoder. Each encoder can typically be considered as a convolutional neural network
without the fully connected layers. The convolutional operation is repeated twice using a 3 × 3 mask,
a rectified linear unit (ReLU), a batch normalization and a subsampling using a max pooling function
of 2 × 2 size and a stride of 2. The number of feature map channels is doubled at each subsampling
step. The idea of VddNet is to encode each type of data separately and, at the same time, concatenate
the near-infrared and the features map of the depth map with the visible features map before each
subsampling. Hence, the central encoder preserves the features of the near-infrared and the depth map
data merged with the visible features map, and concatenated at the same time. The decoder phase
consists of upsampling and convolution with a 2 × 2 mask. It is then followed by two convolution
layers with a 3 × 3 mask, a rectified linear unit, and a batch normalization. In contrast to the encoder
phase, after each upsampling operation, the number of features map channels is halved. Using the
features map concatenation technique of near-infrared and depth map, the decoder retrieves features
lost during the merging and the subsample process. The decoder follows the same steps until it reaches
the final layer, which is a convolution with a 1 × 1 mask and a softmax providing classes probabilities,
at pixel-wise.

Features map of visible range

Features map of depth map

Features map of near infrared range

Max pooling 2x2 + Conv 3x3, ReLU and BN 

Up sampling 2x2 + Conv 3x3, ReLU and BN

Conv 3x3, ReLU and Batch normalization

Conv 1x1 + Softmax

Copy and concatenate

Near 
infrared

Size of: 
256x256x1

RGB 
(visible 
range)

Size of:
256x256x3

Depth map

Size of:
256x256x1

Disease 
map

Size of:
256x256x4

Figure 3. VddNet architecture.

3.4.2. Training Dataset

In this study, one crop is used for model training and validation, and two crops for testing. To build
the training dataset, four steps are required: data source selection, classes definition, data labelling,
and data augmentation.

The first step is probably the most important one. Indeed, to allow a good learning, the data
source for feeding models must represent the global data in terms of richness, diversity and classes.
In this study, a particular area was chosen that contains a slight shadow area, brown ground (soil) and
a vine partially affected by mildew.

Once the data source has been selected, it is necessary to define the different classes present in
these data. For that purpose, each type of data (visible, near-infrared and depth map) is important
in this step. In visible and near-infrared images, four classes can be distinguished. On the other
hand, the depth map contains only two distinct classes, which are the vine canopy and the non-vine.
Therefore, the choice of classes must match all data types. Shadow is the first class; it is any dark
zone. It can be either on the vine or on the ground. This class was created to avoid confusion and
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misclassification on a non-visible pattern. Ground is the second class; from one parcel to another,
ground is generally different. Indeed, the ground can have many colors: brown, green, grey, etc.
To solve this color confusion, the ground is chosen as any pixels in the non-vine zone from the depth
map data. Healthy vine is the third class; it is the green leaves of the vine. Usually, it is easy to classify
these data, but when ground is also green, this leads to confusion between vine and ground in 2D
images. To avoid that, the healthy class is defined as the green color in the visible spectrum and
belonging to the vine canopy according to the depth map. The fourth and last class corresponds to
diseased vine. Disease symptoms can present several colors in the visible range: yellow, brown, red,
golden, etc. In the near-infrared, it is only possible to differentiate between healthy and diseased
reflectances. In general, diseased leaves have a different reflectance than healthy leaves [17], but some
confusion between disease and ground classes may occur when the two colors are similar. Ground must
also be eliminated from the disease class using the depth map.

Data labelling was performed with the semi-automatic labelling method proposed in [21].
The method consists of using automatic labelling in a first step, followed by manual labelling in
a second step. The first step is based on the deep learning LeNet-5 [64] architecture, where the
classification is carried out using a 32 × 32 sliding window and a 2 × 2 stride. The result is equivalent
to a coarse image segmentation which contains some misclassifications. To refine the segmentation,
output results were manually corrected using the Paint.Net software. This task was conducted based on
the ground truth (realized in the crop by a professional reporting occurred diseases), and observations
in the orthophotos.

The last stage is the generation of a training dataset from the labelled data. In order to enrich
the training dataset and avoid an overfitting of networks, data augmentation methods [65] are used
in this study. A 256 × 256 pixels patches dataset is generated from the data source matrix and its
corresponding labelled matrix. The data source consists of multimodal and depth map data and has a
size of 4626 × 3904 × 5. Four data augmentation methods are used: translation, rotation, under and
oversampling, and brightness variation. Translation was performed with an overlap of 50% using a sliding
window in the horizontal and vertical displacements. The rotation angle was set at 30◦, 60◦ and 90◦.
Under- and oversampling were parametrized to obtain 80% and 120% of the original data size. Brightness
variation is only applied to multispectral data. Pixel values are multiplied by the coefficients of 0.95 and
1.05, which introduce a brightness variation of±5%. Each method brings an effect on the data (translation,
rotation, etc.), allowing the networks to learn, respectively, transition, vinerows orientations, acquisition
scale variation and weather conditions. At the end, the data augmentation generated 35.820 patches.

4. Experimentations and Results

This section presents the different experimental devices, as well as qualitative and quantitative
results. The experiments are performed on Python 2.7 software, using the Keras 2.2.0 library for
the development of deep learning architectures, and GDAL 3.0.3 for the orthophotos management.
The Agisoft Metashape software version 1.6.2 is also used for photogrammetry processing. The codes
were developed under the Linux Ubuntu 16.04 LTS 64-bits operating system and run on a hardware
with an Intel Xeon 3.60 GHz × 8 processor, 32 GB RAM, and a NVidia GTX 1080 Ti graphics card with
11 GB of internal RAM. The cuDNN 7.0 library and the CUDA 9.0 Toolkit are used for deep learning
processing on GPU.

4.1. Orthophotos Registration and Depth Map Building

To realize this study, multispectral and depth map orthophotos were required. Two parcels were
selected and data were aquired at two different times to construct the orthophotos dataset. Each parcel
had one or more of the following characteristics: with or without shadow, green or brown ground,
healthy or partially diseased. Registered visible and infrared orthophotos were built from multispectral
images using the optimized image registration algorithm [21] and the Agisoft Metashape software
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version 1.6.2. Orthophotos were saved in the geo-referenced file format “TIFF”. The parameters used
in the Metashape software are listed in Table 1.

To evaluate the registration and depth map quality, we chose a chessboard test pattern. Figure 4
presents an example of visible and infrared orthophotos registration. As can be seen, the alignment
between the two orthophotos is accurate. The registration of the depth map with the visible range also
provides good results (Figure 6).

Table 1. The parameters used for the orthophotos building process in the Agisoft Metashape software.

Sparse point cloud

Accuracy : High
Image pair selection : Ground control

Constrain features by mask : No
Maximum number of feature points : 40,000

Dense point cloud

Quality : High
Depth filtering : Disabled

Digital Surface Model

Type : Geographic
Coordinate system : WGS 84 (EPSG::4326)

Source data : Dense cloud

Orthomosaic

Surface : DSM
Blending mode : Mosaic

4.2. Training and Testing Architectures

In order to determine the best parameters for each deep learning architecture, four
cross-optimizers with two loss functions were compared. Architectures were compiled using either
the loss function “cross entropy” or “mean squared error”, and with one among the four optimizers:
SGD [66], Adadelta [67], Adam [68], or Adamax [69]. Once the best parameters were defined for each
architecture, a final fine-tuning was performed on the “learning rate” parameter to obtain the best
results (to achieve a good model without overfitting). The best parameters found for each architecture
are presented in Table 2.

Table 2. The parameters used for the different deep learning architectures. LR means learning rate.

Network Base Model Optimizer Loss Function LR Learning Ate Decrease Parameters

SegNet VGG-16 Adadelta Categorical cross entropy 1.0 rho = 0.95, epsilon = 1 × 10−7

U-Net VGG-11 SGD Categorical cross entropy 0.1 decay = 1 × 10−6, momentum = 0.9
PSP-Net ResNet-50 Adam Categorical cross entropy 0.001 beta1 = 0.9, beta2 = 0.999, epsilon = 1 × 10−7

DeepLabv3+ Xception Adam Categorical cross entropy 0.001 beta1 = 0.9, beta2 = 0.999, epsilon = 1 × 10−7

VddNet Parallel VGG-13 SGD Categorical cross entropy 0.1 decay = 1 × 10−6, momentum = 0.9

For training the VddNet model, data from visible, near-infrared and depth maps were incorporated
separately in the network inputs. For the other architectures, a multi-data matrix consists of five channels
with a size of 256 × 256. The first three channels correspond to the visible spectrum, the 4th channel to
the near-infrared data and the 5th channel to the depth map. Each multi-data matrix has a corresponding
labelled matrix. Models training is an iterative process that is fixed at 30.000 epochs for each model.
For each iteration, a batch of five multi-data matrices with their corresponding labelled matrices are
randomly selected from the dataset and sent to feed the model. In order to check the convergence of the
model, a test using validation data is performed each 10 iterations.

A qualitative study was conducted for determining the importance of depth map information.
For this purpose, an experience was conducted by training the deep learning models with only
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multispectral data and with a combination of both (multispectral and depth maps). The comparison
results are shown in Figures 7 and 8.

To test the deep learning models, test areas are segmented using a 256 × 256 sliding window
(without overlap). For each position of the sliding window, the visible, near-infrared and depth maps
are sent to the network inputs (respecting the data order for each architecture) in order to perform
segmentation. The output of the networks is a matrix of size of 256 × 256 × 4. The results are saved
after an application of the Argmax function. They are then stitched together to obtain the original size
of the orthophoto tested data.

4.3. Segmentation Performance Measurements

Segmentation performance measurements are expressed in terms of recall, precision,
F1-Score/Dice and accuracy (using Equations (1)–(5)) for each class (shadow, ground, healthy and
diseased) at grapevine-scale. Grapevine-scale assessment was chosen because pixel-wise evaluation
is not suitable for providing disease information. Moreover, imprecision of the ground truth,
small surface of the disease and difference of deep learning segmentation results do not allow for a
good evaluation of the different architectures, at pixel-wise. These measurements use a sliding window
equivalent to the average size of a grapevine (in this study, approximatively 64 × 64 pixels). For each
step of the sliding window, the class evaluated is the dominant class in the ground truth. The window
is considered “true positive” if the dominant class is the same as the ground truth, otherwise it is a
“false positive”. The confusion matrix is updated for each step. Finally, the score is given by

Recall = TP
TP+FN (1)

Precision = TP
TP+FP (2)

F1-Score = 2 Recall×Precision
Recall+Precision = 2TP

FP+2TP+FN (3)

Dice = 2|X∩Y|
|X|+|Y| =

2(TP)
(FP+TP)+(TP+FN)

= 2TP
FP+2TP+FN (4)

Accuracy = TP+TN
TP+TN+FP+FN (5)

where TP, TN, FP and FN are the number of samples for “true positive”, “true negative”, “false positive”
and “false negative”, respectively. Dice equation is defined by X (set of ground truth pixels) and Y (set
of the classified pixels).

5. Discussion

To validate the proposed vine disease detection system, it is necessary to evaluate and
compare qualitative and quantitative results for each block of the whole system. For this purpose,
several experiments were conducted at each step of the disease detection procedure. The first
experience was carried out on the multimodal orthophotos registration. Figure 4 shows the obtained
results. As can be seen, the continuity of the vinerows is highly accurate and the continuity is respected
between the visible and infrared ranges. However, if image acquisition is incorrectly conducted,
this results in many registration errors. To avoid these problems, two rules must be followed. The first
one regards the overlapping between visible and infrared images acquired in the same position,
which must be greater than 85%. The second rule is that the overlapping between each acquired image
must be greater than 70%; this rule must be respected in both ranges. Non-compliance with the first
rule affects the building of the registered infrared orthophoto. Indeed, this latter may present some
black holes (this means that there are no data available to complete these holes). Non-compliance
with the second rule affects the photogrammetry processing and the DSM model. This can lead to
deformations in the orthophoto patterns (as can be seen on the left side of the visible and infrared
orthophotos in Figure 5). In case the DSM model is impacted, the depth map automatically undergoes
the same deformation (as can be seen in the depth map in Figure 5). The second quality evaluation is
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the building of the depth map (Figure 6). Despite the slight deformation in the left side of the parcel,
the result of the depth map is consistent and well aligned with the visible orthophotos, and can be
used in the segmentation process.

Figure 4. Qualitative results of orthophotos registration using a chessboard pattern.

Orthophoto of visible spectrum Orthophoto of infrared spectrum Depth map

Figure 5. Qualitative results of orthophotos and depth map.
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Figure 6. Evaluation of the depth map alignment using a chessboard pattern.

In order to assess the added value of depth map information, two training sessions were
performed on the SegNet [33], U-Net [57], DeepLabv3+ [58] and PSPNet [59] networks. The first
training session was conducted only on multispectral data, and the second one on multispectral data
combined with depth map information. Figures 7 and 8 illustrate the qualitative test results of the
comparison between the two trainings. The left side of Figure 7 shows an example of a parcel with a
green ground. The center of the figure presents the segmentation result of the SegNet model trained
only on multispectral data. As can be seen, in some areas of the parcel, it is difficult to dissociate
vinerows. The right side of the figure depicts the segmentation result of the SegNet model trained on
multispectral data combined with depth map information. This result is better than the previous one
and it can easily separate vinerows. This is due to additional depth map information that allows a
better learning of the scene environment and distinction between classes. Figure 7 illustrates other
examples realised under the same conditions as above. On the first row, we observe an area composed
of green ground. The segmentation results using the first and second models are displayed in the
centre and on the right side, respectively. We can notice in this example a huge confusion between
ground and healthy vine classes. This is mainly due to the fact that the ground color is similar to
the healthy vine one. This problem has been solved by adding depth map information in the second
model, the result of which is shown on the right side. The second row of Figure 8 presents an example
of a partially diseased area. The first segmentation result reveals the detection of the disease class on
the ground. The brown color (original ground color) merged with a slight green color (grass color)
on the ground confused the first model and led it to misclassifying the ground. This confusion does
not exist in the second segmentation result (right side). From these results, it can be concluded that
the second model learned that the diseased vine class could not be detected on “no-vine” when this
one was trained on multispectral and depth map information. Based on these results, the following
experiments were conducted using multispectral data and the depth map information.



Remote Sens. 2020, 12, 3305 12 of 18

Orthophoto of visible spectrum Segmentation result using a model 
trained only on multispectral images

Segmentation result using a model 
trained on multispectral images + 

depth map

Shadow Ground Healthy Diseased

Figure 7. Difference between a SegNet model trained only on multispectral data and the same
trained on multispectral data combined with depth map information. The presented example is on an
orthophoto of a healthy parcel with a green ground.

Image on visible spectrum Segmentation result using a model trained 
only on multispectral images

Segmentation result using a model trained 
on multispectral images + depth map

Shadow Ground Healthy Diseased

Figure 8. Difference between a SegNet model trained only on multispectral data and the same trained
on multispectral data combined with depth map information. Two examples are presented here,
the first row is an example on a healthy parcel with a green ground. The second one is an example on a
partially diseased parcel with a brown ground.

In order to validate the proposed architecture, a comparative study was conducted on the most
well-known deep learning architectures, SegNet [33], U-Net [57], DeepLabv3+ [58] and PSPNet [59].
All architectures were trained and tested on the following classes: shadow, ground, healthy and
diseased, with the same data (same training and test). Table 3 lists the segmentation results of the
different architectures. The quantitative evaluations are based on the F1-score and the global accuracy.
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As can be seen, the shadow and ground classes have obtained an average scores of 94% and 95%,
respectively, with all architectures. The high scores are due to the easy detection of these classes.
The healthy class scored between 91% and 92% for VddNet, SegNet, U-Net and DeepLabv3+. However,
PSPNet obtained the worst result of 73.96%, due to a strong confusion between the ground and healthy
classes. PSPNet was unable to generate a good segmentation model although the training dataset was
rich. The diseased vine class is the most important class in this study. VddNet obtained the best result
for this class with a score of 92.59%, followed by SegNet with a score of 88.85%. The scores of the
other architectures are 85.78%, 81.63% and 74.87% for U-Net, PSPNet and DeepLabv3+, respectively.
VddNet achieved the best result because the feature extraction was performed separately. Indeed, in [21]
it was proven that merging visible and infrared segmentations (with two separate trained models)
provides a better detection than visible or infrared separately. The worst result of the diseased class
was obtained with DeepLabv3+; this is due to a insensibility in the color variation. In fact, the diseased
class can correspond to the yellow, brown or golden color and these colors are usually between the
green color of healthy neighbour leaves. This situation led classifiers to be insensitive to this variation.
The best global segmentation accuracy was achieved by VddNet, with an accuracy of 93.72%. This score
can be observed on the qualitative results of Figures 9 and 10. Figure 9 presents an orthophoto of a
parcel (on the left side) partially contaminated with mildew. The right side shows the segmentation
result by VddNet. It can be seen that it correctly detects the diseased areas. Figure 10 is an example of
parcel without disease; here, VddNet also performs well in detecting true negatives.

Shadow Ground Healthy Diseased

Figure 9. Qualitative result of VddNet on a parcel partially contaminated with mildew and with green
ground. The visible orthophoto of the healthy parcel is in the left side, and its disease map in the
right side.
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Table 3. Quantitative results with measurement of recall (Rec.), precision (Pre.), F1-Score/Dice (F1/D.) and accuracy (Acc.) for the performances of VddNet, SegNet,
U-Net, DeepLabv3+ and PSPNet networks, using multispectral and depth map data. Values are presented as a percentage.

Class name Shadow Ground Healthy Diseased Total

Measure Rec. Pre. F1/D. Rec. Pre. F1/D. Rec. Pre. F1/D. Rec. Pre. F1/D. Acc.
VddNet 94.88 94.89 94.88 94.84 95.11 94.97 87.96 94.84 91.27 90.13 95.19 92.59 93.72
SegNet 94.97 94.60 94.79 95.16 94.99 95.07 90.14 94.81 92.42 83.45 95.00 88.85 92.75
U-Net 95.09 94.70 94.90 94.99 95.07 95.03 89.09 94.74 91.83 78.27 94.90 85.78 90.69

DeepLabV3+ 94.90 94.68 94.79 95.21 94.90 95.06 88.78 95.16 91.86 61.78 94.98 74.87 88.58
PSPNet 95.07 94.25 94.66 94.94 87.29 90.95 60.54 95.04 73.96 71.70 94.75 81.63 84.63

Shadow Ground Healthy Diseased

Figure 10. Qualitative result of VddNet on a healthy parcel with brown ground. The visible orthophoto of the healthy parcel is in the left side, and its disease map in
the right side.
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6. Conclusions

The main goal of this study is to propose a new method that improves vine disease detection in
UAV images. A new deep learning architecture for vine disease detection (VddNet), and automatic
multispectral orthophotos registration have been proposed. UAV images in the visible and
near-infrared spectra are the input data of the detection system for generating a disease map. UAV input
images were aligned using an optimized multispectral registration algorithm. Aligned images were
then used in the process of building registered orthophotos. During this process, a digital surface
model (DSM) was generated to built a depth map. At the end, VddNet generated the disease map
from visible, near-infrared and depth map data. The proposed method brought many benefits to the
whole process. The automatic multispectral orthophotos registration provides high precision and
fast processing compared to conventional procedures. A 3D processing enables the building of the
depth map, which is relevant for the VddNet training and segmentation process. Depth map data
reduce misclassification and confusion between close color classes. VddNet improves disease detection
and global segmentation compared to the state-of-the-art architectures. Moreover, orthophotos are
georeferenced with GNSS coordinates, making it easier to locate diseased vines for traitment. In future
work, it would be interesting to acquire new multispectral channels to enhance disease detection and
improve the VddNet architecture.
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