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Abstract: Snow is a critical component of the climate system, provides fresh water for millions of
people globally, and affects forest and wildlife ecology. Snowy regions are typically data sparse,
especially in mountain environments. Remotely-sensed snow cover data are available globally but
are challenging to convert into accessible, actionable information. SnowCloudMetrics is a web portal
for on-demand production and delivery of snow information including snow cover frequency (SCF)
and snow disappearance date (SDD) using Google Earth Engine (GEE). SCF and SDD are computed
using the Moderate Resolution Imaging Spectroradiometer (MODIS) Snow Cover Binary 500 m
(MOD10A1) product. The SCF and SDD metrics are assessed using 18 years of Snow Telemetry
records at more than 750 stations across the Western U.S. SnowCloudMetrics provides users with the
capacity to quickly and efficiently generate local-to-global scale snow information. It requires no
user-side data storage or computing capacity, and needs little in the way of remote sensing expertise.
SnowCloudMetrics allows users to subset by year, watershed, elevation range, political boundary, or
user-defined region. Users can explore the snow information via a GEE map interface and, if desired,
download scripts for access to tabular and image data in non-proprietary formats for additional
analyses. We present global and hemispheric scale examples of SCF and SDD. We also provide
a watershed example in the transboundary, snow-dominated Amu Darya Basin. Our approach
represents a new, user-driven paradigm for access to snow information. SnowCloudMetrics benefits
snow scientists, water resource managers, climate scientists, and snow related industries providing
SCF and SDD information tailored to their needs, especially in data sparse regions.

Keywords: snow covered area; snow cover frequency; snow disappearance date; cloud computing;
Google Earth Engine

1. Introduction

We have developed SnowCloudMetrics (www.snowcloudmetrics.app) as a cloud-computing
portal where users can access and customize snow information globally to help address a wide range
of challenges. Snow is Earth’s most climatically sensitive land cover type. Streamflow derived from
snowmelt provides critical water supply for hydropower, agriculture, ecosystems, industry, and
municipalities [1,2]. Biologically, the onset of snow in the winter and the timing of its disappearance in
spring and summer is a key control on phenology and ecology of vegetation and wildlife [3—6]. The
timing of melt also affects the timing and severity of wildfire in seasonally snow-covered landscapes [7].
Satellite observations show global changes in the spatial extent of snow [8,9], maximum snow water
equivalence (SWE), elevational distributions in mountainous regions, and the timing of meltwater
production and snow disappearance from the land surface [10-13]. Data suggest that high elevation
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mountain regions are warming faster than low elevations, with the most significant trends along the
0 °C isotherm level due to the albedo-temperature feedback associated with declining snow cover and
glacier extent [14,15]. The annual duration of snow cover is also critically important to the winter
tourism economy. In the United States (U.S.) alone, the snow sports economy generates about $11.3B
per year and supports over 191,000 jobs [16]. In spite of snow’s critical importance to multiple sectors,
informative in situ snow observations are sparse in most regions of the world.

Long-term, high quality observational snow datasets exist primarily in Canada, the U.S., the
European Union, Russia, and China. Yet seasonal snow cover is vital to mountain hydrology across the
globe, including many countries in Central Asia where long-term environmental monitoring programs
once existed but were terminated following the collapse of the Soviet Union [17-19].

Most of the world’s major rivers begin in mountain regions, with alpine headwaters often crossing
international boundaries. International, transboundary watersheds where nations have effective
data sharing provisions are more likely to have improved adaptive capacity and increased flexibility
with regards to flow variability, especially in the context of climate change [20,21]. Despite their
importance many transboundary watersheds have not implemented data sharing provisions [20,22,23],
further exacerbating the challenges of sparse snow data. For example, the snowy reaches of the upper
Amu Darya Basin (ADB) primarily spans four Central Asian countries: Afghanistan, Turkmenistan,
Tajikistan, and Uzbekistan. Currently this watershed does not have a treaty of river basin organization
to facilitate data sharing [23]. In addition to the lack of international agreements, many Central Asian
watersheds do not have long-term environmental monitoring programs despite the fact that agriculture
heavily relies on surface water runoff for irrigation in these transboundary watersheds, equaling >85%
of water withdrawals for the region [18,19].

Even in locations where snow data are available, such data may not translate into relevant
information. For example, in the western U.S., ground-based transects and station-based snow
observations have been the standard for measuring mountain snowpacks for decades [11,24]. However,
the snow telemetry (SNOTEL) and snow course observations may not be spatially representative of snow
distributions across steep elevation gradients, land cover types, or remote mountain regions [25-27].
As mountain snowpacks continue to decline, information from the fixed locations of such networks
may become less spatially representative than originally intended [28,29]. In regions where seasonal
snowpacks are highly susceptible to warming winter temperatures, such as the Oregon Cascade Range,
U.S. [30,31], lower elevation stations lose their predictive value for streamflow forecasting when their
snow cover disappears, and high elevation snow cover is not routinely monitored [32]. Globally these
challenges are even more acute, especially when focusing on data-scarce regions.

Changes in the duration of snow cover due to anthropogenic climate change in mountain and
Arctic environments are occurring globally, and decreases in the duration of snow cover have been
observed and modeled, especially in the North American Arctic [33-35]. The changing cryosphere
is spatially heterogeneous throughout mountain environments and the Pan-Arctic region, and local
changes are occurring in the timing of snow cover onset in autumn, the timing of snow disappearance
in spring, mid-winter melt events, and snow cover duration [35]. These changes in snow conditions
profoundly affect the ecosystems of mountain and Arctic environments [35,36]. For example, two
studies have found that snow cover duration is one of the primary factors that prompt migratory
behavior in red deer populations in Europe and moose in Scandinavia [37,38]. Similarly, an earlier
onset of the green-up period for vegetation has been found to positively affect reindeer calf body mass
in the subsequent months [39]. Another study found that some populations of Dall sheep in the Arctic
have more success rearing their young when the snow disappears earlier in the spring season [40].
This recent research in plant phenology and wildlife ecology suggests the importance and utility of
global-to-local scale snow metrics, which can characterize changing snow conditions in the context of
climate change.

Remotely-sensed snow (RSS) products provide a rich data resource for understanding and
quantifying snow cover and runoff [32,41]. While RSS data are freely available, there are technological
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and cost barriers that limit their use in developed and developing countries. Satellite-derived snow data
products are not easily customized for user-specific needs. RSS data, such as the National Aeronautics
and Space Administration (NASA) MOD10A1 version 6 snow cover product [42—44], in addition to
other satellite-derived snow cover datasets, are freely available via the EarthData web portal, but
multiple barriers limit their use. First, the lack of data storage capacity limits the user’s capabilities
for analyses that span the full temporal and spatial scope of the satellite collections [45]. Even with
the digital storage capacity, these large datasets require intensive computing power for analysis [45].
Similarly, there are obstacles related to the financial cost of performing geospatial analysis that are not
unique to satellite-derived snow datasets, but nevertheless important to highlight. Access to expensive
proprietary software limits the usage of these datasets among non-academic researchers, and the cost
associated with a geospatial technician further raises the budget required for many potential users
of RSS data. The GEE framework and data library allows the user to take their questions to the data
and harness the power of cloud computing. This transition democratizes data and computing access,
bringing applied research questions to the data. This represents a new paradigm in data processing and
information delivery for scientists, data providers, natural resource managers, and the general public.

2. Datasets and Methods

Here, we introduce SnowCloudMetrics, and two of its data products that are calculated entirely
in a cloud-based platform using the GEE data library and analysis tools: (1) snow cover frequency
(SCF) and (2) snow disappearance date (SDD). The SnowCloudMetrics app allows users to define
temporal and spatial subsets of snow cover data based upon time period, watershed, elevation range,
political boundary, or user-defined region. The interface allows users to explore the snow information
and download scripts for access to tabular and image data in non-proprietary formats for additional
analyses. These metrics employ the global, daily, 500 m MOD10A1 version 6 snow cover dataset to
identify when and where snow cover occurs on the landscape. The MOD10A1 relies on the Normalized
Difference Snow Index (NDSI) to determine the presence or absence of snow [42]. We note that
Moderate Resolution Imaging Spectroradiometer (MODIS) binary snow classification has been shown
to have lower detection accuracy in areas of patchy snow, such as during the spring season and at
lower elevations in the seasonal snow zone [46].

2.1. Snow Cover Frequency

SCF is computed as the number of days that snow is observed on the land surface divided by the
number of valid observations in the time period of interest (Equation (1)).

Number of snow observations

SCF = Number o f valid observations

)

A valid observation is one that does not include pixels with ocean, lakes, detector saturation,
missing data, night, or no-decision within the MOD10A1 data set. The result is a single image of SCF
with pixel floating point values ranging from 0 to 1.0, with zero denoting a pixel having no snow covered
days in the time period and 1.0 denoting all days in the time period are snow covered (Figure 1a).
Within SnowCloudMetrics, users can compute SCF for any water year within the MOD10A1 data set.

A lower SCF threshold of <=0.07 is set for the SnowCloudMetrics app images based on the
snow persistence metric developed by Hammond et al. [47,48]. Additionally, the MOD10A1 version 6
product contains all values of NDSI that are >0, but previous versions of the product set the minimum
NDSI value at 0.40 [42,49]. In areas with forest cover, setting the minimum NDSI value at 0.15 allows
for detection of snow in the gaps [46,50-52]. For the SCF images, we set the NDSI threshold at 0.15 to
increase the detection of snow in areas with forest cover.
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Figure 1. (a) An idealized schematic representing the snow cover frequency (SCF) algorithm in Google
Earth Engine (GEE). The number of satellite observed snow days, along with a cloud correction, are
divided by the valid number of observations from the same time period to create an image that contains
the number of days snow was observed in each pixel. (b) An idealized schematic representing the snow
disappearance date (SDD) algorithm in GEE for a water year in the Northern Hemisphere. The SDD
algorithm builds a yearly image collection based on the water year from October 1 to September 30, and
searches from end to beginning for the day when the pixel switches from snow covered to no-snow.

2.2. Snow Disappearance Date

SDD also uses the MOD10A1 snow cover product. Computationally, SDD is based upon an image
collection of 365 days in the water year (WY; described subsequently) by searching each grid cell
temporally backwards, from the end of the water year to the beginning. We locate the last 5-day time
period without snow at the end of the water year that is preceded by a 5-day presence of snow, and
find the date that the grid cell switches from ‘snow’ to ‘no-snow’ in the image collection. This 5-day
period was selected to avoid missing late-season snow events but also to disregard transient late season
snow events. The result is an image with values that represent the day of snow disappearance from
the landscape based on the water year (Figure 1b). The WY designation contains assumptions about
the seasonality of the snowpack. The SDD algorithm for SnowCloudMetrics assumes an October 1 to
September 30 WY because of the timing and prevalence of seasonal snow in the Northern Hemisphere.
If the SDD algorithm were to be employed in the Southern Hemisphere, a different beginning and end
for the WY would need to be implemented for it to accurately assess the switch from ‘snow’ to ‘no-snow’
at the end of the season. When no snow is found during the water year, the pixel is masked, and no
value is assigned for SDD. Since glacier surfaces may have the presence of snow year-round, we account
for the glacier surfaces in the SnowCloudMetrics app using the Global Land Ice Measurements from
Space (GLIMS) 2017 dataset available in GEE. Additionally, the Southern Hemisphere calculation of
SDD lies outside the scope of this research, but will be addressed in subsequent versions of the platform.

2.3. Cloud Correction in GEE Algorithm

One of the realities of snowfall is that it is coincident in time with cloud cover. Thus, we need to
account for cloudy days in both the SCF and SDD algorithms. Pixels are designated as cloud-covered
or cloud-free in the MOD10A1 version 6 product. The version 6 product contains a cloud designation
based on the MOD32_L2 cloud mask noted in the product user guide. We use this built-in cloud mask
to adjust both the SCF and SDD algorithms based on the following three temporal cases: (1) snow
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cover, followed by cloud cover, followed by snow cover; (2) snow cover, followed by cloud cover,
followed by snow-free; and (3) snow-free, followed by cloud cover, followed by snow cover. For a
complete description of the cloud mask algorithm, please refer to Sproles et al. [41].

2.4. An Example Application of SCF and SDD in the Amu Darya Basin

The ADB is used as an example of the application of SCF and SDD. We selected the ADB because
it is the largest watershed in Central Asia (623,000 km?). It is also a transboundary watershed, with
its headwaters originating in Afghanistan, Tajikistan, and Uzbekistan, before flowing downstream to
Kyrgyzstan, and Turkmenistan. The snowy and glacierized upper elevations of the ADB serve as the
main source of surface water for the lower elevation, desert-steppe region [53]. The ADB makes up a
portion of the headwaters for the Aral Sea, along with the Syr Darya Basin to the north. Precipitation
in the ADB is spatially heterogeneous, with much of the arid portion receiving as little as 100 mm
yr 1, while parts of the higher elevation regions receive 1000 mm yr~! [53]. For these reasons, the
ADB is a location where the SCF and SDD snow metrics have the potential to add supplemental snow
information where little currently exists.

For mapping and subsetting, the SCF and SDD metrics within the ADB, we used the publicly
available United States Geological Survey HydroSHEDS global watershed dataset [54]. Following
computation of SCF and SDD, further geospatial post-processing was completed using open-source
QGIS software, along with a free, publicly available hypsometric shaded relief global raster, and
a country border vector layer from Natural Earth. The spatial analysis described here used the
SnowCloudMetrics app in GEE, publicly available datasets, and publicly available, free software, so
that it can be replicated without the need for expensive, proprietary software. Ancillary elevation data
incorporated into SnowCloudMetrics allows users to subset regions by elevation. The elevation model,
accessed via GEE, is the Shuttle Radar Topography Mission’s (SRTM) 30 m global digital elevation
model [55]. For the ADB country-level analysis, country boundary shapefiles were downloaded from
the Thematic Mapping and accessed in GEE through uploaded shapefiles.

First, the nineteen SCF and SDD yearly images were exported in GeoTIFF format, in the same
manner that a potential SnowCloud user might export these datasets to a Google Drive folder. Second,
these images were imported back into GEE as nineteen separate assets for each metric. Third, an image
collection was created in GEE that was spatially bounded by the ADB shapefile from the HydroSHEDS
dataset. From each 19-layer image collection (one per year), three calculations were made on a
pixel-by-pixel basis: (1) the 19-year maximum value per metric (SCFmax, SDDmax); (2) the 19-year
minimum value per metric (SCFmin, SDDmin); and (3) the 19-year mean value per metric (SCFmean,
SDDmean). These min, max, and mean images were then subset into six different elevation bands
ranging from 0 to >5000 m by creating masks using the SRTM 30 m DEM. Lastly, each elevation-subset
metric was spatially averaged and compared to the WY2016 SCF and WY2016 SDD images.

2.5. Assessment Using Snow Telemetry Network in the Western ULS.

The Snow Telemetry (SNOTEL) network is used to assess the SCF and SDD metrics generated
in GEE from the MOD10A1 version 6 product. The SNOTEL network contains over 800 automated
data collection sites in the Western U.S., with daily records of snow depth, SWE, precipitation, solar
radiation, and temperature [24]. For the assessment of the SCF and SDD metrics, the SWE record at 755
SNOTEL sites in 12 states is accessed during the MOD10A1 version 6 satellite collection years, from
October 1st, 2000 through September 31st, 2018. We use the Bias Correction/Quality Control (BCQC)
SNOTEL dataset from the Pacific Northwest National Laboratory for our analysis [56,57]. We use an
18-year period for the SNOTEL analysis because the 2019 water year has not yet been added to the
BCQC dataset.

At each SNOTEL station, the record contains daily measurements of SWE obtained from the
snow pillow. A snow pillow relies on measuring the pressure from the overlying mass of snow at a
specific location, whereas the MODIS satellite product relies on the reflectance values of light collected
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passively by the instrument, with snow cover determined by the NDSI values. The reported SNOTEL
snow pillow sensitivity is 2.54 mm (0.1 in) of SWE. The instrument limitations have been discussed by
previous studies, with accuracy issues divided into two categories, SWE-over measurement errors
and SWE-under measurement errors, most of which occur during mid-accumulation season [24,58].
In order to compare the GEE-derived SCF and SDD metrics to the SNOTEL dataset, a SNOTEL-derived
SCF and SDD value are calculated at each station for each WY over the 18-year assessment time period.
The SNOTEL-derived SCF metric counts the number of days in the WY when the snow pillow data is >
0 and divides this number by 365. The SNOTEL-derived SDD metric finds the last 5-day time period
with snow present during each WY, and records the day of the WY when the SNOTEL switches from
‘snow’ to ‘no-snow’. This is repeated for all stations and all years. For more information on the snow
pillow sensors used by SNOTEL stations, see the data availability section.

3. Results

3.1. Global Mapping of SCF and SDD

Global SCF (WY2016—Figure 2) is a global representation of the number of days in WY2016 that
the MODIS satellite observed snow on the landscape relative to the total number valid observations.
The resolution was modified to 2 km from the MODIS 500 m resolution due to the increased image
export time required when generating an image with more than 100 million pixels from the GEE code
editor. Mountain regions such as coastal Alaska, the Patagonian Andes, the Himalayan Mountains,
and the North American cordillera and high latitudes in North America, Asia, and Europe have the
highest annual values of SCF. The lowest values represent locations where snowpack is ephemeral or
only persists for a few months during the winter. Locations that received no snow are masked out of
the image.

Figure 2. Global snow cover frequency (SCF) aggregated to 2 km resolution for the 2016 water year
generated using Google Earth Engine and the MOD10A1 snow cover area product.

Northern Hemisphere SDD (WY2016—Figure 3), represents the day of water year that snow
disappears from the landscape. We aggregated the day of year values to monthly values for the SDD
map visual representation in Figure 3. The highest latitudes and mountain ranges in North America,
Europe, and Asia have the latest SDD values, and Greenland contains no data values because it remains
primarily snow covered all year. Antarctica was masked out of the analysis completely for the SDD
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and SCF metrics, and is not represented in our global maps. We focus our SDD results on the Northern
Hemisphere for the present study. Recall that SDD represents a water year from October to September.
If the same algorithm were applied to the Southern Hemisphere, the results would not align with the
definition of a water year defined in this study. In a future version of SnowCloudMetrics, we plan to
implement an SDD algorithm that is specific to the water year in the Southern Hemisphere.

SDD
Il Oct-Nov
Il December
BN January
February
March
April
May
June
B July
Il August
Il September

{/)

Figure 3. Northern Hemisphere snow disappearance date (SDD) aggregated to 2 km resolution for
the 2016 water year generated by Google Earth Engine and the MOD10A1 snow cover area product.
The SDD values represent the day of the water year that snow disappears from the landscape and are
binned into months for visualization and interpretation. The Southern Hemisphere is not included
because the water year date range differs by hemisphere.

3.2. Results from the SNOTEL Assessment

In order to assess the GEE-derived SCF and SDD snow metrics, we accessed 18 years of SNOTEL
site SWE records at >750 stations across the Western United States. A SNOTEL-derived SCF and
SDD value for each WY and each station are compared to the GEE-derived SCF and SDD values in
Figure 4 below. The assessment was performed at the colocated 500 m MODIS pixels and the individual
SNOTEL station sites. In Figure 4, the two datasets are subset by state, averaged over the 18-year time
period, and the SNOTEL dataset is subtracted from the GEE dataset. For the SCF metric, the bulk of
the GEE-derived values are lower than the SNOTEL-derived SCF. Likewise, for the SDD metric, the
bulk of the GEE-derived occur earlier than the SNOTEL-derived SDD dates. A detailed comparison
of the SNOTEL-derived SCF and the GEE-derived SCF metric subset by state is available in Table 1.
The root mean squared error (RMSE) of the SCF values, calculated at each station and aggregated by
state, show that the GEE-derived SCF metric shows more agreement with the SNOTEL dataset in some
regions and elevation bands (Utah, California, and Colorado) than others (Washington, Oregon, and
New Mexico). Table 2 compares the GEE-derived and SNOTEL-derived SDD values divided by state.
The high elevation stations consistently show more agreement with the SNOTEL dataset than the low-
and mid- elevation stations. The effects of these differences between the SNOTEL-derived metrics and
the GEE-derived metrics are examined further in the discussion section.
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Figure 4. (a) Swarmplots of the difference between the GEE-derived snow cover frequency (SCF values
at the SNOTEL pixel locations for water years 2001 through 2018. (b) Swarmplots of the difference
between the GEE-derived snow cover frequency (SDD) values at the SNOTEL pixel locations for water

years 2001 through 2018. The swarmplots include the 18-year average at each station. States are listed in
alphabetical order as Alaska (AK), Arizona (AZ), California (CA), Colorado (CO), Idaho (ID), Montana
(MT), New Mexico (NM), Nevada (NV), Oregon (OR), Utah (UT), Washington (WA), Wyoming (WY).

Table 1. Table of SNOTEL derived Snow Cover Frequency (SCF) vs. GEE derived SCF by state (1 = 758).
Dataset includes water years 2001 through 2018 for each state. The regional elevation bands were

chosen by grouping the data into bands based on the 33rd and 66th elevation quantiles in each state.

Standard Deviation (o)

GEE-SNOTEL
by Regional Elevation Band

State # Stations SNIS\;[SE ve  SNOTEL GEE(+/- Low  Mid High
Sampled GEEGSCH) (+/~SCF) SCP) (SCF)  (SCP) (SCF)
Alaska 35 0.1 0.07 0.09 -009  -0.03 ~0.04
Arizona 8 0.09 0.07 0.07 ~0.09  -0.07 -0.07
California 29 0.13 0.10 0.07 -009  —0.01 -0.07
Colorado 113 0.10 0.08 0.08 -010  -0.05 -0.05
Idaho 79 0.11 0.09 0.09 -010  -0.06 ~0.04
Montana 86 0.14 0.10 0.10 -012  —0.09 -0.05
New 17 0.13 0.09 0.09 -007  -0.11 -0.13
Mexico
Nevada 39 0.11 0.09 0.1 -009  -0.10 -0.05
Oregon 68 0.15 0.13 0.09 -0.10 -0.11 -0.10
Utah 129 0.10 0.08 0.09 -010  -0.06 -0.02
Washington 67 0.16 0.08 0.11 -0.16 -0.15 -0.07
Wyoming 88 0.1 0.09 0.08 -007  -0.05 -0.05
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Table 2. SNOTEL derived Snow Disappearance Date (SDD) vs. GEE derived SDD by state (1 = 755).
Dataset includes water years 2001 through 2018 for each state. The regional elevation bands were
chosen by grouping the data into bands based on the 33rd and 66th elevation quantiles in each state.

GEE-SNOTEL
Mean SDD by Regional Elevation Band
#
SNOTEL RMSESNOTEL SNOTEL Low Mid High
State Stations vs. GEE (Days) (Day) GEE (Day) (Days) (Days) (Days)
Sampled
Alaska 35 11 14-May 9-May —4 —4 -6
Arizona 8 13 6-Apr 25-Mar -11 -13 =12
California 28 24 18-May 4-May -19 3 -6
Colorado 113 17 20-May 11-May -15 -7 —4
Idaho 78 26 20-May 5-May 24 -12 -9
Montana 86 27 28-May 13-May -18 -14 -9
New
Mexico 17 19 21-Apr 8-Apr -12 -13 =17
Utah 129 19 8-May 1-May -14 -7 -1
Washington 67 30 26-May 4-May =31 =27 -8
Wyoming 87 18 22-May 15-May -7 -6 -5

In Table 3 we use a confusion matrix to estimate the ability of the GEE algorithm to correctly
identify the presence or absence of snow after performing the cloud adjustment. We disaggregated
the GEE dataset into daily images of snow occurrence and compare these images to the SNOTEL
time-series for each SNOTEL station. We subset the datasets into early-, mid-, and late-snow season
using a confusion matrix. We include the accuracy and Kappa Coefficient values for each subset. The
mid-season true positive (TP) values are the highest and the true negative (TN) are the lowest of any
subset. The mid-season also contains the best accuracy score while the entire dataset contains the
highest Kappa Coefficient. The confusion matrix, overall accuracy, Kappa Coefficient all show that
the GEE-derived snow metrics are adequately identifying the presence and absence of snow during
all parts of the water year, although there is some variation during different parts of the year. The
expected increase in FNs during the early- and late-snow season are also revealed by the confusion
matrix analysis, and these are examined further in the discussion section.

Table 3. Confusion matrix analysis to quantify the identification of the presence or absence of snow at
all SNOTEL station locations during the assessment time period (2000-2018). The actual values are
the SNOTEL dataset and the predicted values are the GEE dataset. Percentages are included for each
value because of the large n values. The overall accuracy and the Kappa Coefficient are included for

each timeframe.

True Positive True Negative  False Positive =~ False Negative  Accuracy (A)
(TP) (TN) (EP) (FN) Kappa (K)
Entire Time Series 0.81 (A)

1,451,797 (39%) 1,543,337 (42%) 196,740 (5%) 500,152 (14%)

n = 3,692,026 0.62 (K)
Early-Season (Oct, 0.73 (A)
Nov, Dec) 420,149 (45%) 263,841 (28%) 82,702 (9%) 164,091 (18%) ’
0.46 (K)
n =930,783
Mid-Season (Jan, 0.85 (A)
Feb, Mar) 759,940 (83%) 18,492 (2%) 33,253 (4%) 101,625 (11%) ’
0.15 (K)
n =913,310
Late-Season (Apr, 0.71 (A)
May, Jun) 269,728 (29%) 383,927 (42%) 65,910 (7%) 199,839 (22%) 0' 13 (K)

n = 919,404
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The SNOTEL station locations include a wide ranges of elevations and latitudes. Figure 5 is a
plot of the 18-year average SNOTEL- and GEE-derived metrics subset by elevation band and colored
by latitude. Within each elevation range, the lower SCF metric values and the earlier SDD metric
values occur more frequently at lower latitudes and the opposite occurs at higher latitudes. The range
SDD metric values is lowest in the highest elevation band (3500 m) while the mid-elevation bands
contain large ranges in SDD values, mostly dependent on latitude, especially apparent in the 2000 m
and 2500 m bands. The low elevation bands (1000 m and 1500 m) for the SDD metric show more values
that are underestimated, below and right of the 1:1 identity line, in the GEE-derived SDD values when
compared to the SNOTEL-derived SDD values.
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Figure 5. The GEE- and SNOTEL- derived SCF (a) and SDD (b) values at each station location subset
by elevation and colored by latitude. Elevation bins are +/— 250 with the exception of the first bin that
includes elevations from 0 to 250 m.

3.3. Results for the Amu Darya Basin Example

For the ADB, yearly SCF images were calculated in GEE from 2001 to 2019. Figure 6a is a map of
the ADB, while Figure 6b displays an SCF image exported from GEE for WY2016, and Figure 6¢ shows
the maximum, mean, and minimum values spatially binned by elevation in the ADB. For the following
case study, WY2016 was chosen as a sample year to compare with the 19-year averages for each metric.
The SRTM 30 m elevation data were spatially averaged into six 1000 m elevation zones. While this
short-term record is not long enough to analyze trends or to create SCF climatologies, this snow metric
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provides valuable spatial information that can augment in situ observations of snow water equivalent
and snow depth that may exist within the study area.

(c) Amu Darya SCF
1.20
—19yr Min
100 19yr Mean
0g0 | T 1oyrMax
- -SCF 2016

> 0.60
0.40

0.20

0.00
0-999m 1000m 2000m 3000m 4000m >5000m

Elevation Band (m)

Figure 6. (a) The Amu Darya Basin (ADB) transboundary map with country boundaries. (b) The
WY2016 snow cover frequency (SCF) map of the ADB at 500 m resolution generated from the
SnowCloudMetrics portal. (c) The 19-year maximum, 19-year minimum, and 19-year mean SCF values
for the ADB, spatially averaged and binned by elevation band plotted with the WY2016 SCF dataset.

SDD images for the ADB were computed for the same 20012019 time period. Maximum,
minimum, and mean SDD images were compiled and spatially binned by elevation. Figure 7a is a
map of the ADB, while Figure 7b displays the yearly SDD image exported from GEE for WY2016 in
which the seasonality of SDD changes from April to September throughout the high elevation Pamir
Mountains. Figure 7c shows the maximum, mean, and minimum values spatially binned by elevation.
The WY2016 mean SDD values are lower than the 19-year average at the lowest elevations and higher
than average at the highest elevations, much like the WY2016 mean SCF values within the ADB Basin.

() Amu Darya SDD
Sep
Aug | —19yrMin
Jul 19yr Mean

Jun —19yr Max

- -SDD 2016

SDD (Day of Water Year)
1
=

Jan

<Dec
0-999m 1000m 2000m 3000m 4000m >5000m

Elevation Band (m)

Figure 7. (a) The Amu Darya Basin (ADB) transboundary map with country boundaries. (b) The
WY2016 snow disappearance date (SDD) map of the ADB watershed at 500 m resolution generated
from the SnowCloudMetrics portal. (c) The 19-year maximum, 19-year minimum, and 19-year mean
SDD values for the ADB, spatially averaged and binned by elevation band plotted with the WY2016
SDD dataset.

Since these trends are likely to vary by country in this transboundary watershed, we spatially
subset the SCF and SDD datasets by country and elevation. Turkmenistan contains only the lowest
elevation ranges in the ADB, so we focus our country-level analysis on Afghanistan, Tajikistan, and
Uzbekistan. The results of the country-level SCF and SDD metrics within the transboundary ADB
(Figure 8) show that differences arise by country and elevation. The range in SCFmax and SCFmin
values for Afghanistan and Uzbekistan is lower in the 3000-4000 m elevation bands, while Tajikistan
shows more variability in the SCFmax and SCFmin at the same elevations. The SDDmax and SDDmin
values for Afghanistan and Tajikistan have higher ranges in the upper elevations. Note that the ADB
within Uzbekistan does not contain elevations above 5000 m and, therefore, were not included in the
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Figure 6. The WY2016 has a unique SCF and SDD signature among all countries in the ADB. At the
highest elevations in WY2016, the SCF and SDD values are varied when compared to the 19-year
average, with some above, below, or basically equivalent to the 19-year average.
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Figure 8. The snow cover frequency (SCF) values and snow disappearance date (SDD) values for the
Amu Darya Basin (ADB) binned by elevation and spatially subset by country. The WY2016 data is
plotted against the average, maximum, and minimum of 19 years of SCF and SDD data.

4. Discussion

The GEE cloud computing and visualization tools provide easy, web-based access to petabytes of
snow-centric satellite data for scientists and a variety of other potential users. The SCF and SDD metrics
calculated in SnowCloudMetrics provide information on the spatial and temporal characteristics of
local to global snow cover dynamics. These metrics can offer valuable insights on snow cover processes
across multiple spatial and temporal scales, and cloud-based GEE analysis has the potential to transform
the types of questions and the geographic scope of scientific snow research. The SnowCloudMetrics
app is freely accessible and available to natural resource managers, snow industry representatives,
scientists, and the general public. This gives the users the ability to create information based on
these satellite datasets that is “fit for purpose” and customizable. We have designed the GEE app
functionality to give multiple options to users that include global WY visualization for both metrics,
graphing of point-based time series, multi-band GeoTIFF image export, importing of vector-based
shapefiles, and SNOTEL station location. See Table 4 for more information about SnowCloudMetrics
functionality. In order to get access to the table and GeoTIFF export SCF and SDD images, the user must
become a developer with Google Earth Engine and download the source code from GitHub. Detailed
instructions are located in the SnowCloudMetrics app, at our website, and in the data availability
section of this publication.
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Table 4. SnowCloudMetrics app and script custom functionality.

SCF Metric SDD Metric
Annual date range (WY2001 to WY2019) Annual date range (WY2000 to WY2019)
Custom spatial extent Custom spatial extent
Shapefile import Shapefile import
Global coverage Northern Hemisphere coverage
Pixel-level data inspector Pixel-level data inspector
Time series plotting Time series plotting
Data table output (.csv) Data table output (.csv)
GeoTIFF image export GeoTIFF image export
SRTM 30 m DEM analysis SRTM 30 m DEM analysis

The access that GEE provides empowers users to create custom datasets that address their
questions and specific problems, and may lead to the creation of new information for questions of
global or regional interest. While this is generally applicable to all remotely-sensed, global satellite
collections (Landsat, Sentinel 1, MODIS, etc.), we have found it to be particularly applicable in the case
of global snow products and the application of new snow metrics for scientists. For example, Sproles
et al. outline a simple operational hydrologic model, SnowCloudHydro, which predicts streamflow for
snow-dominated watersheds [41]. In an Alaskan wildlife study of Dall sheep populations, Van de
Kerk et al. used GEE-derived SCF and SDD information to understand the spatially varying effects of
snow conditions on lamb survival across multiple sheep ranges [40]. They found that SCF and SDD
have a greater impact on northern Dall sheep populations compared to their southern counterparts.
Information derived from SnowCloudMetrics is also being incorporated into a local scale climate
action plan for the town of Whitefish, Montana [59]. The authors of this plan are using SCF and SDD
to explore past and potential future impacts of climate change on their local ski area and the related
economic impact. While still preliminary, these examples demonstrate how users can customize these
snow metrics for their unique purposes without a considerable investment of hardware or software.

Global snow metrics based on satellite-derived snow cover datasets can provide new information
about seasonal snow in data sparse regions. SNOTEL assessment is the first step to verify that these
new, global scale metrics perform adequately for use in scientific research. SNOTEL stations are
also often located in open, flat, meadow areas with snow cover that persists longer in the season
than the surrounding more complex terrain and forest cover [60,61]. An earlier GEE-derived SDD is
expected, given the difference in spatial resolution between the two methods and the known challenges
of using MODIS snow cover in forested regions [60,62]. During the melt season, the presence of
snow at a SNOTEL site is not likely to be represented by the patchy snow cover in a MODIS pixel
with heterogeneous land cover. There is likely differential melting of snow occurring throughout the
surrounding 0.25 km?, with rock, vegetation, and water contributing to the spectral signature of the
pixel, thus altering the NDSI values calculated by MODIS during the ablation season [63]. For similar
reasons, we expect the GEE-derived SCF values to be lower than the SNOTEL-derived SCF values.
This is because ephemeral snow days (several days of coverage followed by complete melt-off) that
occur at the beginning or end of the season would likely be measured by the SNOTEL snow pillow,
and possibly not characterized as snow cover at the 500 m resolution of the MODIS satellite product.

Still, assessment limitations exist for these datasets. One limitation is that the 500 m scale of the
snow cover observation may not be representative of the physical process scales that affect snowpacks,
especially in mountain and forested regions [62,64]. Furthermore, a 500 m pixel is likely to represent
a combination of snow, rock, vegetation, water, etc. [63] making accurate snow cover mapping a
challenge. This brings into focus two issues regarding the assessment and interpretation of SCF and
SDD. First, in situ data that are spatially extensive and have daily temporal resolution simply do
not exist. A second issue is that spatially extensive data from finer-scale remote sensing data such
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as Landsat, which can tease apart snow cover in mixed pixels, is only available at 16-day temporal
resolution. Interpretation of SCF in terms of SWE is challenging. Conceptually, pixels that have
high SCF may have high SWE but this is likely to be regionally specific. For instance, the tundra
snow climate can retain snow cover for nine months of the year, yet tundra snowpacks are relatively
shallow [65]. Maritime snowpacks of the Pacific Northwestern United States may persist for five
or six months, but store considerable amounts of water as snow [65]. We see from our preliminary
analyses that lower elevation snowpacks have lower SCF and earlier SDD, implying that they have
less SWE than higher elevation snowpacks. Thus, interpretation of SCF in terms of SWE requires
understanding of the local-to-regional snow climate conditions and further investigations into the
relationship between SCF and SWE are merited.

The confusion matrix analysis reveals some interesting and expected characteristics of the
GEE-derived dataset. The SNOTEL station elevations and latitudes would most likely have snow
occurrences during the vast majority of the mid-season time periods. The early- and late-season false
negatives (FN) are both higher than the mid-season FN values, and this is expected. Short-term or
transient snow storms are likely in the early-season, and often they include shallow snow depths that
melt away quickly after the storm passes. These storms would likely include multiple cloudy days
during snowfall events. Similarly, as the snow melt season progresses, patchy late-season snow would
increase the likelihood that a 500-m MODIS pixel may record the absence of snow (according to the
NDSI value) and, thus, provide a FN value when in reality, the SNOTEL stations have recorded some
amount of SWE on the snow pillow. Additionally, there is one temporal sequence that was omitted
from the cloud correction algorithm, the case in which a pixel is snow-free, followed by cloud, followed
by snow-free. This would represent a snowfall event at the beginning or end of the season that quickly
melts. This case may potentially add to the discrepancy between the GEE-derived metric values and
the SNOTEL-derived values.

Despite the assessment concerns, global snow metrics generated using GEE have the potential to
overcome these challenges simply because of the diverse global-scale datasets that can be simultaneously
accessed within the platform. The MODIS Snow Cover Area and Grain Size (MODSCAG) product from
NASA uses spectral unmixing to differentiate the fractional components of the spectral end-members,
and provides a proportion of each pixel that is composed of those end-members [60]. While the
MODSCAG dataset has not been added to the GEE datasets as of this writing, GEE developers have
the ability to program the MODSCAG algorithm in GEE using the spectral unmixing capabilities that
already exist within the platform. Many global-scale spectral datasets (top-of-atmosphere reflectance,
surface reflectance, etc.) can be accessed in GEE, as well as a ready-made spectral unmixing function.
Additionally, the entire Landsat image archive is accessible and GEE allows users to upload their
own grid-based products. While global-scale assessment of these snow metrics is at the moment
unattainable, the distinct advantage that GEE offers is the ability to cross-reference spatially and
temporally continuous global satellite datasets simultaneously within the same platform, algorithm, or
function, without the need for the computational resources of a supercomputer.

5. Conclusions

In this study, we present SnowCloudMetrics (https://www.snowcloudmetrics.app), a snow
information web portal that produces two global-to-local scale snow metrics, snow cover frequency
(SCF) and snow disappearance date (SDD). Access to relevant and timely global snow datasets has
traditionally required proprietary software, remote sensing expertise and prohibitive financial costs
for storage, computing resources, and geospatial analysis. Yet seasonal snow plays a crucial role in
the hydrological cycle in remote, mountainous regions around the globe where much needed snow
information is often sparse or non-existent. By employing GEE cloud computing and cloud storage
capabilities, SnowCloudMetrics efficiently accesses the entire spatial (global) and temporal (daily from
February 2000 to present) satellite collection for the MODIS/Terra snow covered area binary product
(MOD10A1). Anyone with a web browser can create customizable snow information rather than simply
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downloading spatially specific and temporally partial datasets. This new, cloud-based paradigm for
data processing and delivery is applied to the ADB basin in Central Asia, a transboundary watershed
where snow dynamics play a critical role in the hydrologic regime of multiple countries. Potential
users, such as natural resource managers or snow industry representatives, can generate annual SCF
and SDD datasets for any local-to-global scale inquiry in minutes. This new snow information will
help these users understand the snow component of their landscapes and watersheds.
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at https://dhsvm.pnnl.gov/bcqc_snotel_data.stm#:~:text=BCQC%20SNOTEL%20data%20consists %
200f,and %20Alaska%20(Figure%201) (last accessed 20 August 2020).

Thematic Mapping shapefiles available online at www.thematicmapping.org (last accessed 20
August 2020).

Natural Earth shapefiles available online at www.naturalearthdata.com (last accessed 20
August 2020).

References

1. Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in
snow-dominated regions. Nature 2005, 438, 303-309. [CrossRef] [PubMed]

2. Mankin, J.S.; Viviroli, D.; Singh, D.; Hoekstra, A.Y.; Diffenbaugh, N.S. The potential for snow to supply
human water demand in the present and future. Environ. Res. Lett. 2015, 10. [CrossRef]

3.  Gehrmann, FE; Hanninen, H.; Liu, C.; Saarinen, T. Phenological responses to small-scale spatial variation
in snowmelt timing reveal compensatory and conservative strategies in subarctic-alpine plants. Plant Ecol.
Divers. 2017, 10, 453-468. [CrossRef]

4.  Lane, J.E; Kruuk, L.E.; Charmantier, A.; Murie, ].O.; Dobson, ES. Delayed phenology and reduced fitness
associated with climate change in a wild hibernator. Nature 2012, 489, 554. [CrossRef] [PubMed]

5. Bjork, R.G.; Molau, U. Ecology of alpine snowbeds and the impact of global change. Arctic Antarct. Alp. Res.
2007, 39, 34-43. [CrossRef]

6. Trujillo, E.; Molotch, N.P.; Goulden, M.L.; Kelly, A.E.; Bales, R.C. Elevation-dependent influence of snow
accumulation on forest greening. Nat. Geosci. 2012, 5, 705. [CrossRef]

7. Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western
US forest wildfire activity. Science 2006, 313, 940-943. [CrossRef]

8. Allchin, M.L; Déry, S.J. A spatio-temporal analysis of trends in Northern Hemisphere snow-dominated area
and duration, 1971-2014. Ann Glaciol. 2017, 58, 21-35. [CrossRef]


www.snowcloudmetrics.app
https://github.com/orgs/SnowCloudMetrics
https://github.com/orgs/SnowCloudMetrics
https://developers.google.com/earth-engine/datasets/catalog
https://developers.google.com/earth-engine/datasets/catalog
https://dhsvm.pnnl.gov/bcqc_snotel_data.stm#:~:text=BCQC%20SNOTEL%20data%20consists%20of,and%20Alaska%20(Figure%201)
https://dhsvm.pnnl.gov/bcqc_snotel_data.stm#:~:text=BCQC%20SNOTEL%20data%20consists%20of,and%20Alaska%20(Figure%201)
www.thematicmapping.org
www.naturalearthdata.com
http://dx.doi.org/10.1038/nature04141
http://www.ncbi.nlm.nih.gov/pubmed/16292301
http://dx.doi.org/10.1088/1748-9326/10/11/114016
http://dx.doi.org/10.1080/17550874.2018.1428693
http://dx.doi.org/10.1038/nature11335
http://www.ncbi.nlm.nih.gov/pubmed/22878721
http://dx.doi.org/10.1657/1523-0430(2007)39[34:EOASAT]2.0.CO;2
http://dx.doi.org/10.1038/ngeo1571
http://dx.doi.org/10.1126/science.1128834
http://dx.doi.org/10.1017/aog.2017.47

Remote Sens. 2020, 12, 3341 16 of 18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Zhong, E.; Li, Q.; Sun, S.; Chen, W.; Chen, S.; Nath, D. Improvement of a snow albedo parameterization in
the Snow—Atmosphere-Soil Transfer model: Evaluation of impacts of aerosol on seasonal snow cover. Adv.
Atmos. Sci. 2017, 34, 1333-1345. [CrossRef]

Rosenzweig, C.; Karoly, D.; Vicarelli, M.; Neofotis, P.; Wu, Q.; Casassa, G.; Menzel, A.; Root, T.L.; Estrella, N.;
Seguin, B.; et al. Attributing physical and biological impacts to anthropogenic climate change. Nature 2008,
453, 353. [CrossRef]

Mote, PW.; Hamlet, A.F; Clark, M.P.; Lettenmaier, D.P. Declining mountain snowpack in western North
America. Bull. Am. Meteorol. Soc. 2005, 86, 39-49. [CrossRef]

Mote, PW.,; Li, S.; Lettenmaier, D.P,; Xiao, M.; Engel, R. Dramatic declines in snowpack in the western US.
Clim. Atmos. Sci. 2018, 1, 2. [CrossRef]

Brown, R.D.; Mote, P.W. The response of Northern Hemisphere snow cover to a changing climate. J. Clim.
2009, 22, 2124-2145. [CrossRef]

Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraér, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.;
Hashmi, M.Z; Liu, X.D.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim.
Chang. 2015, 5, 424. [CrossRef]

Rangwala, I.; Miller, J.R. Climate change in mountains: A review of elevation-dependent warming and its
possible causes. Clim. Chang. 2012, 114, 527-547. [CrossRef]

Hagenstad, M.; Burakowski, E.; Hill, R. The Economic Contributions of Winter Sports in a Changing Climate.
Available online: https://protectourwinters.org/wp-content/uploads/2019/12/POW-2018-economic-report.pdf
(accessed on 20 August 2020).

Global Cryosphere Watch. Available online: https://globalcryospherewatch.org/reference/snow_inventory.
php (accessed on 20 August 2020).

Karthe, D.; Chalov, S.; Borchardt, D. Water resources and their management in central Asia in the early
twenty first century: Status, challenges and future prospects. Environ. Earth Sci. 2015, 73, 487-499. [CrossRef]
Unger-Shayesteh, K.; Vorogushyn, S.; Farinotti, D.; Gafurov, A.; Duethmann, D.; Mandychev, A.; Merz, B.
What do we know about past changes in the water cycle of Central Asian headwaters? A review. Glob.
Planet. Chang. 2013, 110, 4-25. [CrossRef]

Gerlak, A.K; Lautze, J.; Giordano, M. Water resources data and information exchange in transboundary
water treaties. Int. Environ. Agreem. Polit. Law Econ. 2011, 11, 179-199. [CrossRef]

Milman, A.; Bunclark, L.; Conway, D.; Adger, W.N. Assessment of institutional capacity to adapt to climate
change in transboundary river basins. Clim. Chang. 2013, 121, 755-770. [CrossRef]

Plengsaeng, B.; Wehn, U.; van der Zaag, P. Data-sharing bottlenecks in transboundary integrated water
resources management: A case study of the Mekong River Commission’s procedures for data sharing in the
Thai context. Water Int. 2014, 39, 933-951. [CrossRef]

De Stefano, L.; Petersen-Perlman, J.D.; Sproles, E.A.; Eynard, J.; Wolf, A.T. Assessment of transboundary
river basins for potential hydro-political tensions. Glob. Environ. Chang. 2017, 45, 35-46. [CrossRef]
Serreze, M.C.; Clark, M.P,; Armstrong, R.L.; McGinnis, D.A.; Pulwarty, R.S. Characteristics of the western
United States snowpack from snowpack telemetry (SNOTEL) data. Water Resour. Res. 1999, 35, 2145-2160.
[CrossRef]

Dozier, J.; Bair, E.H.; Davis, R.E. Estimating the spatial distribution of snow water equivalent in the world’s
mountains. Wiley Interdiscip. Rev. Water 2016, 3, 461-474. [CrossRef]

Rice, R.; Bales, R.C. Embedded-sensor network design for snow cover measurements around snow pillow
and snow course sites in the Sierra Nevada of California. Water Resour. Res. 2010, 46. [CrossRef]
Silverman, N.L.; Maneta, M.P. Detectability of change in winter precipitation within mountain landscapes:
Spatial patterns and uncertainty. Water Resour. Res. 2016, 52, 4301-4320. [CrossRef]

Cayan, D.R. Interannual climate variability and snowpack in the western United States. J. Clim. 1996, 9,
928-948. [CrossRef]

Pederson, G.T.; Gray, S.T.; Woodhouse, C.A.; Betancourt, J.L.; Fagre, D.B.; Littell, ].S.; Watson, E.;
Luckman, B.H.; Graumlich, L.J. The unusual nature of recent snowpack declines in the North American
Cordillera. Science 2011, 333, 332-335. [CrossRef]

Nolin, A.W,; Daly, C. Mapping “at risk” snow in the Pacific Northwest. ]. Hydrometeorol. 2006, 7, 1164-1171.
[CrossRef]


http://dx.doi.org/10.1007/s00376-017-7019-0
http://dx.doi.org/10.1038/nature06937
http://dx.doi.org/10.1175/BAMS-86-1-39
http://dx.doi.org/10.1038/s41612-018-0012-1
http://dx.doi.org/10.1175/2008JCLI2665.1
http://dx.doi.org/10.1038/NCLIMATE2563
http://dx.doi.org/10.1007/s10584-012-0419-3
https://protectourwinters.org/wp-content/uploads/2019/12/POW-2018-economic-report.pdf
https://globalcryospherewatch.org/reference/snow_inventory.php
https://globalcryospherewatch.org/reference/snow_inventory.php
http://dx.doi.org/10.1007/s12665-014-3789-1
http://dx.doi.org/10.1016/j.gloplacha.2013.02.004
http://dx.doi.org/10.1007/s10784-010-9144-4
http://dx.doi.org/10.1007/s10584-013-0917-y
http://dx.doi.org/10.1080/02508060.2015.981783
http://dx.doi.org/10.1016/j.gloenvcha.2017.04.008
http://dx.doi.org/10.1029/1999WR900090
http://dx.doi.org/10.1002/wat2.1140
http://dx.doi.org/10.1029/2008WR007318
http://dx.doi.org/10.1002/2014WR016493
http://dx.doi.org/10.1175/1520-0442(1996)009&lt;0928:ICVASI&gt;2.0.CO;2
http://dx.doi.org/10.1126/science.1201570
http://dx.doi.org/10.1175/JHM543.1

Remote Sens. 2020, 12, 3341 17 of 18

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Sproles, E.A ; Kerr, T.; Nelson, C.O.; Aspe, D.L. Developing a snowmelt forecast model in the absence of field
data. Water Resour. Manag. 2016, 30, 2581-2590. [CrossRef]

Dozier, ]. Mountain hydrology, snow color, and the fourth paradigm. Eos Trans. Am. Geophys. Union 2011, 92,
373. [CrossRef]

Callaghan, T.V,; Johansson, M.; Brown, R.D.; Groisman, P.Y.; Labba, N.; Radionov, V.; Barry, R.G,;
Bulygina, O.N.; Essery, R.L.; Frolov, D.M.; et al. The changing face of Arctic snow cover: A synthesis of
observed and projected changes. AMBIO J. Hum. Environ. 2011, 40, 17-31. [CrossRef]

Liston, G.E.; Hiemstra, C.A. The changing cryosphere: Pan-Arctic snow trends (1979-2009). J. Clim. 2011, 24,
5691-5712. [CrossRef]

Olsen, M.S; Callaghan, T.V,; Reist, ].D.; Reiersen, L.O.; Dahl-Jensen, D.; Granskog, M.A.; Goodison, B.;
Hovelsrud, G.K.; Johansson, M.; Kallenborn, R ; etal. The changing Arctic cryosphere and likely consequences:
An overview. AMBIO ]J. Hum. Environ. 2011, 40, 111-118. [CrossRef]

Berteaux, D.; Gauthier, G.; Domine, F; Ims, R.A.; Lamoureux, S.F.; Lévesque, E.; Yoccoz, N. Effects of
changing permafrost and snow conditions on tundra wildlife: Critical places and times. Arct. Sci. 2016, 3,
65-90. [CrossRef]

Martin, J.; Tolon, V.; Morellet, N.; Santin-Janin, H.; Licoppe, A.; Fischer, C.; Bombois, J.; Patthey, P.; Pesenti, E.;
Chenesseau, D.; et al. Common drivers of seasonal movements on the migration-residency behavior
continuum in a large herbivore. Sci. Rep. 2018, 8, 7631. [CrossRef] [PubMed]

Singh, N.J.; Borger, L.; Dettki, H.; Bunnefeld, N.; Ericsson, G. From migration to nomadism: Movement
variability in a northern ungulate across its latitudinal range. Ecol. Appl. 2012, 22, 2007-2020. [CrossRef]
Pettorelli, N.; Weladji, R.B.; Holand, O.; Mysterud, A.; Breie, H.; Stenseth, N.C. The relative role of winter
and spring conditions: Linking climate and landscape-scale plant phenology to alpine reindeer body mass.
Biol. Lett. 2005, 1, 24-26. [CrossRef]

van de Kerk, M.; Verbyla, D.; Nolin, A.W,; Sivy, K.J.; Prugh, L.R. Range-wide variation in the effect of spring
snow phenology on Dall sheep population dynamics. Environ. Res. Lett. 2018. [CrossRef]

Sproles, E.A.; Crumley, R.L.; Nolin, A.W.; Mar, E.; Lopez Moreno, ].I. SnowCloudHydro—A New Framework
for Forecasting Streamflow in Snowy, Data-Scarce Regions. Remote Sens. 2018, 10, 1276. [CrossRef]

Hall, D.K,; Riggs, G.A. MODIS/Terra Snow Cover Daily L3 Global 500m Grid, Version 6. Available online:
http://nsidc.org/data/MOD10A1/versions/6 (accessed on 20 August 2020).

Hall, D.K;; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS snow-cover products. Remote
Sens. Environ. 2002, 83, 181-194. [CrossRef]

Hall, D.K;; Riggs, G.A. Accuracy assessment of the MODIS snow products. Hydrol. Process. Int. ]. 2007, 21,
1534-1547.

Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine:
Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18-27. [CrossRef]
Rittger, K.; Painter, T.H.; Dozier, J. Assessment of methods for mapping snow cover from MODIS. Adv. Water
Resour. 2013, 51, 367-380. [CrossRef]

Hammond, J.C.; Saavedra, FA.; Kampf, S.K. Global snow zone maps and trends in snow persistence
2001-2016. Int. J. Climatol. 2018, 38, 4369-4383. [CrossRef]

Saavedra, F.A.; Kampf, S.K; Fassnacht, S.R.; Sibold, J.S. A snow climatology of the Andes Mountains from
MODIS snow cover data. Int. J. Climatol. 2017, 37, 1526-1539. [CrossRef]

NASA National Snow and Ice Data Center. MODIS/Terra Snow Cover Daily L3 Global 500m SIN Grid,
Version 5. Available online: https://doi.org/10.5067/63NQASRDPDBO (accessed on 20 August 2020).

Klein, A.G.; Hall, D.K,; Riggs, G.A. Improving snow cover mapping in forests through the use of a canopy
reflectance model. Hydrol. Process. 1998, 12, 1723-1744.

Salomonson, V.V.; Appel, I. Estimating fractional snow cover from MODIS using the normalized difference
snow index. Remote Sens. Environ. 2004, 89, 351-360. [CrossRef]

Arsenault, K.R.; Houser, PR.; De Lannoy, G.J. Evaluation of the MODIS snow cover fraction product. Hydrol.
Process. 2014, 28, 980-998. [CrossRef]

Rakhmatullaev, S.; Huneau, F.; Kazbekov, J.; Le Coustumer, P.; Jumanov, J.; El Oifi, B.; Motelica-Heino, M.;
Hrkal, Z. Groundwater resources use and management in the Amu Darya river basin (Central Asia). Environ.
Earth Sci. 2010, 59, 1183. [CrossRef]


http://dx.doi.org/10.1007/s11269-016-1271-4
http://dx.doi.org/10.1029/2011EO430001
http://dx.doi.org/10.1007/s13280-011-0212-y
http://dx.doi.org/10.1175/JCLI-D-11-00081.1
http://dx.doi.org/10.1007/s13280-011-0220-y
http://dx.doi.org/10.1139/as-2016-0023
http://dx.doi.org/10.1038/s41598-018-25777-y
http://www.ncbi.nlm.nih.gov/pubmed/29769562
http://dx.doi.org/10.1890/12-0245.1
http://dx.doi.org/10.1098/rsbl.2004.0262
http://dx.doi.org/10.1088/1748-9326/aace64
http://dx.doi.org/10.3390/rs10081276
http://nsidc.org/data/MOD10A1/versions/6
http://dx.doi.org/10.1016/S0034-4257(02)00095-0
http://dx.doi.org/10.1016/j.rse.2017.06.031
http://dx.doi.org/10.1016/j.advwatres.2012.03.002
http://dx.doi.org/10.1002/joc.5674
http://dx.doi.org/10.1002/joc.4795
https://doi.org/10.5067/63NQASRDPDB0
http://dx.doi.org/10.1016/j.rse.2003.10.016
http://dx.doi.org/10.1002/hyp.9636
http://dx.doi.org/10.1007/s12665-009-0107-4

Remote Sens. 2020, 12, 3341 18 of 18

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.
65.

Lehner, B.; Verdin, K,; Jarvis, A. Hydrological Data and Maps Based on Shuttle Elevation Derivatives at Multiple
Scales (HydroSHEDS)-Technical Documentation; World Wildlife Fund US: Washington, DC, USA, 2006. Available
online: http://hydrosheds.cr.usgs.gov (accessed on 20 August 2020).

Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.;
Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45. [CrossRef]

Sun, N.; Yan, H.; Wigmosta, M.; Skaggs, R.; Leung, R.; Hou, Z. Regional snow parameters estimation for
large-domain hydrological applications in the western United States. ]. Geophys. Res. Atmos. 2019. [CrossRef]
Yan, H.; Sun, N.; Wigmosta, M.; Skaggs, R.; Hou, Z.; Leung, R. Next-generation intensity-duration-frequency
curves for hydrologic design in snow-dominated environments. Water Resour. Res. 2018, 54, 1093-1108.
[CrossRef]

Johnson, J.B.; Schaefer, G.L. The influence of thermal, hydrologic, and snow deformation mechanisms on
snow water equivalent pressure sensor accuracy. Hydrol. Process. 2002, 16, 3529-3542.

Climate Action Plan. Available online: http://www.cityofwhitefish.org/229/Climate- Action-Plan (accessed
on 20 August 2020).

Raleigh, M.S,; Rittger, K.; Moore, C.E.; Henn, B.; Lutz, J.A.; Lundquist, ].D. Ground-based testing of MODIS
fractional snow cover in subalpine meadows and forests of the Sierra Nevada. Remote Sens. Environ. 2013,
128, 44-57. [CrossRef]

Roth, T.R.; Nolin, A.W. Forest impacts on snow accumulation and ablation across an elevation gradient in a
temperate montane environment. Hydrol. Earth Syst. Sci. 2017, 21, 5427-5442. [CrossRef]

Varhola, A.; Coops, N.C.; Weiler, M.; Moore, R.D. Forest canopy effects on snow accumulation and ablation:
An integrative review of empirical results. J. Hydrol. 2010, 392, 219-233. [CrossRef]

Painter, T.H.; Rittger, K.; McKenzie, C.; Slaughter, P; Davis, R.E.; Dozier, J. Retrieval of subpixel snow covered
area, grain size, and albedo from MODIS. Remote Sens. Environ. 2009, 113, 868-879. [CrossRef]

Bloschl, G. Scaling issues in snow hydrology. Hydrol. Process. 1999, 13, 2149-2175. [CrossRef]

Sturm, M.; Holmgren, J.; Liston, G.E. A seasonal snow cover classification system for local to global
applications. J. Clim. 1995, 8, 1261-1283. [CrossRef]

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://hydrosheds.cr.usgs.gov
http://dx.doi.org/10.1029/2005RG000183
http://dx.doi.org/10.1029/2018JD030140
http://dx.doi.org/10.1002/2017WR021290
http://www.cityofwhitefish.org/229/Climate-Action-Plan
http://dx.doi.org/10.1016/j.rse.2012.09.016
http://dx.doi.org/10.5194/hess-21-5427-2017
http://dx.doi.org/10.1016/j.jhydrol.2010.08.009
http://dx.doi.org/10.1016/j.rse.2009.01.001
http://dx.doi.org/10.1002/(SICI)1099-1085(199910)13:14/153.0.CO;2-8
http://dx.doi.org/10.1175/1520-0442(1995)0082.0.CO;2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Datasets and Methods 
	Snow Cover Frequency 
	Snow Disappearance Date 
	Cloud Correction in GEE Algorithm 
	An Example Application of SCF and SDD in the Amu Darya Basin 
	Assessment Using Snow Telemetry Network in the Western U.S. 

	Results 
	Global Mapping of SCF and SDD 
	Results from the SNOTEL Assessment 
	Results for the Amu Darya Basin Example 

	Discussion 
	Conclusions 
	References

