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Abstract: Sparse representation (SR)-based models have been widely applied for hyperspectral image
classification. In our previously established constraint representation (CR) model, we exploited
the underlying significance of the sparse coefficient and proposed the participation degree (PD)
to represent the contribution of the training sample in representing the testing pixel. However,
the spatial variants of the original residual error-driven frameworks often suffer the obstacles to
optimization due to the strong constraints. In this paper, based on the object-based image classification
(OBIC) framework, we firstly propose a spectral-spatial classification method, called superpixel-level
constraint representation (SPCR). Firstly, it uses the PD in respect to the sparse coefficient from CR
model. Then, transforming the individual PD to a united activity degree (UAD)-driven mechanism
via a spatial constraint generated by the superpixel segmentation algorithm. The final classification is
determined based on the UAD-driven mechanism. Considering that the SPCR is susceptible to the
segmentation scale, an improved multiscale superpixel-level constraint representation (MSPCR) is
further proposed through the decision fusion process of SPCR at different scales. The SPCR method
is firstly performed at each scale, and the final category of the testing pixel is determined by the
maximum number of the predicated labels among the classification results at each scale. Experimental
results on four real hyperspectral datasets including a GF-5 satellite data verified the efficiency and
practicability of the two proposed methods.

Keywords: hyperspectral remote sensing; image classification; constraint representation; superpixel
segmentation; multiscale decision fusion

1. Introduction

Hyperspectral remote sensing is a leading technology developed from remote sensing (RS) in
the field of Earth observation, which accesses multidimensional information by combining imaging
technology and spectral technology [1,2]. Hyperspectral image (HSI) can be viewed as a data cube
with a diagnostic continuous spectrum, providing abundant spectral-spatial information, and different
substances usually exhibit diverse spectral curves [3,4]. Because of the ability of characterization and
discrimination of ground objects, HSI has become an indispensable technology in a wide range of
applications such as civil construction and military fields [5,6]. As one of the popular applications
in remote sensing, HSI classification (HSIC) is to use a mapping function to assign each pixel with
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a class label via its spectral characteristic and spatial information [7-9]. At present, a large number
of HSIC methods have been proposed successively, mainly including the following two aspects: one
is the classification based on the spectral information, which mainly focuses on the study of spectral
features and spectral classifiers, such as support vector machines (SVM) and the maximum likelihood
classifier (MLC). The other is realized by extracting spatial features to assist the discrimination, for
example, SVM-based Markov Random Field (SVM-MRF) and some segmentation-based classification
frameworks [10-13]. However, due to the high dimensionality of HSI, the high correlation and
redundancy have been discovered in both the spectral and spatial domains, it can be inferred that HSI
is mainly low-rank and can be represented sparsely, though the original HSI is not sparse [14,15].

In this context, sparse representation (SR)-based methods have been widely applied for HSIC
and accompanied a state-of-the-art performance [16]. The classic SR-based classifier (SRC) is to use as
few samples as possible to better represent the testing pixel [17]. Concretely, SRC firstly constructs a
dictionary by labeling samples in different classes, and then represents the testing pixel by a mean of a
linear combination of the dictionary and a weight coefficient under a sparse constraint. After obtaining
the approximation of the testing pixel, the classification can be realized by analyzing which class
yields the least reconstruction error [18]. However, this residual error-driven mechanism ignores the
underlying significance and property of the sparse coefficient to a certain extent. The sparse coefficient
plays a decisive role in the constraint representation (CR) model, and the category of the testing pixel is
determined by the maximum participant degree (PD) in CR, of which PD is the contribution of labeled
samples from different classes in representing the testing pixel. The CR model makes full use of a
sparse principle to deal with the sparse coefficient, and achieves an equivalent and simplified effect
to the classic SRC. As a powerful pattern recognition, both the SRC model and the CR model are the
effective representational-based model, and generate a rather accurate result compared with SVM and
some other spectral classifiers [19].

However, due to the sparse coefficients are susceptible to suffer spectral variability, some joint
representation (JR)-based frameworks have successively appeared with consideration of the local
spatial consistency, such as the joint sparse representational-based classifier (JSRC) and the joint
collaborate representative-based classifier (JCRC) [20,21]. Similarly, based on the concept of PD and the
PD-driven decision mechanism, adjacent CR (ACR) utilizes the PD of adjacent pixels as class-dependent
constraints to classify the testing pixel. The adjacent pixels are defined in a fixed window in ACR,
lacking consideration of the correlation of ground object, although there is no strong constraint in
comparison with JSRC model. Therefore, in order to better characterize the image for classification,
it is reasonable to utilize various features from spectral and spatial domains in the image [22,23].

Object-based image classification (OBIC) is a widely adopted classification framework with
spatial discriminant characteristics. OBIC usually performs classification after segmentation [24].
Segmentation technology divides an image into several non-overlapping homogeneous regions
according to the agreed similarity criteria. Some segmentation algorithms have shown an effective
result in HSI, such as partitioned clustering and watershed segmentation [25-28]. In particular,
the combination of the vector quantization clustering methods and the representation based has
shown a well classification performance in some related literatures [29]. Therefore, the OBIC is a
well-established framework, which can be widely applied for the HSIC tasks.

In this paper, a superpixel-level constraint representation (SPCR) model is proposed, combining
a spatial constraint, simple linear iterative clustering (SLIC) superpixel segmentation, to the CR
model [30]. Differing from the ACR model, the proposed SPCR method extracts the spectral-spatial
information of pixels inside the superpixel block, preserves most of the edge information in the image,
and estimates the real distribution of ground objects [31]. In general, the SPCR model utilizes the
spectral feature of adjacent pixels, and transforms the individual PD to united activity degree (UAD)
through a relaxed and adaptive constraint. As shown on the right side of Figure 1, the decision
mechanism of the SPCR model is to classify the testing pixel into the category with the maximum
UAD. However, like most OBIC-based methods, the constrained representation classification with
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a single fixed scale needs to find the optimal scale. To address this issue, it is necessary to propose
a multiscale OBIC framework to comprehensively utilize image information [32]. As illustrated in
Figure 1, we proposed an improved version based on the above SPCR model, called the multiscale
superpixel-level constraint representation (MSPCR) method.

The MSPCR merges the classification maps generated by SPCR at different superpixel segmentation
scales, which is implemented in three steps: (1) a segmentation step, in which the processed
hyperspectral image is segmented into superpixel images with different scales by the SLIC algorithm;
(2) a classification step, in which the PD of pixels inside the superpixel is utilized to shape the
class-dependent constraint of the testing pixel; and (3) a decision fusion step, in which the final
classification map of MSPCR is obtained through the decision fusion processed, based on the
classification result of SPCR at each scale.

As mentioned above, the CR model classifies the testing pixel based on the PD-driven decision
mechanism, and obtains a reliable performance with relatively low computational time. Considering
the influence of the spectral variability, the ACR model adopts the PD of adjacent pixels to obtain
the category of the testing pixel. However, the ACR only regards the pixels within a fixed window
as adjacent pixels, lacking consideration to the correlation of ground objects. To address this issue,
the SPCR model is firstly established by joining the CR model with the SLIC superpixel segmentation
algorithm. Then, the MSPCR approach is successively proposed to alleviate the impact of the
segmentation scale on the classification result of the SPCR method, and obtains high accuracies.
Experimental results on four real hyperspectral datasets including a GF-5 satellite data are used to
evaluate the classification performance of the proposed SPCR and MSPCR methods.

The rest of this paper is organized as follows. Section 2 reviews the related models, including
classic representation-based classification methods and superpixel segmentation algorithm, i.e., SLIC
that we used in this paper. Section 3 presents our proposed methods, firstly introduces the CR method
and the ACR classifier, then presents the SPCR model and the MSPCR method proposed in this paper.
Section 4 evaluates the classification performance of our proposed methods and other related methods
via the experimental results on three real hyperspectral datasets. Section 5 takes a practical application
and analysis to our proposed methods via the experiment on a GF-5 satellite data. Section 6 concludes
this paper with some remarks.

2. Related Methods

In this section, we introduce several related methods of our framework. The classic sparse
representation (SR)-based model and the joint representation (JR)-based framework are firstly reviewed
in Section 2.1. Then the simple linear iterative clustering (SLIC) is presented in Section 2.2.

2.1. Representation-Based Classification Methods

Defining a testing pixel x;; € X in the location (i, j) of HSI X which contains B spectral bands
and N = r X ¢ pixels (r and ¢ index the row and column of scene). The dictionary can be denoted as
D = (Dy,...,Dg) € X, in which each column of Dy is the samples selected from class k € [1,K] (K is
the number of classes).

2.1.1. Sparse Representation-Based Model

Since pixels in HSI can be represented sparsely, representation-based methods have been widely
applied to process HSI due to their no assumption of data density distribution [33]. The SRC is a classic
SR-based model, implementing classification based on several steps as follows. Firstly, it constructs a
dictionary by training the available labeled samples, then represents the testing pixel by a sparse linear
combination of the dictionary. Moreover, in order to use as few labeled samples as possible to represent
the testing pixel, the weighted coefficients used in representation are sparsely constrained. Finally,
the classification is conducted by a residual error-driven decision mechanism, which classifies the
testing pixel as the class with minimum class-dependent residual error using the following formula:
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where ||oq,j||1 = Z1:1|O‘m| denotes the [;-norm and |||, is the I;-norm, due to the optimization of
lp-norm is a combinatorial NP-hard problem, the sparse constraint of weight coefficients «; ; adopts
l1-norm to substitute [j-norm, where l;-norm is the closet convex function to the [j-norm. Moreover,
A is a scalar regularization parameter. As an indicator function, 6(&; ;) can assign zero to the element
that does not belong to the class k. The weight vector, &; ;, can be optimized by the basis pursuit (BP)
or basis pursuit denoising (BPDN) algorithm.

2.1.2. Joint Representation-Based Framework

HSIC initially focused on the spectral information because of its data characteristic, while the
spatial information can be further exploited to reduce classification errors, according to the similar
spectral characteristic among neighborhood pixels. As the second generation of SRC, the joint SRC
(JSRC) is introduced under the JR-based framework, which has a solid classification performance after
integrating spectral information with the local spatial coherence.

Based on the local spatial consistency, the fundamental assumption of JSRC is that the sparse
vectors related with the adjacent pixels could share a common sparsity support [34]. In the JSRC,
both the testing pixel and its neighboring pixels are stacked into the joint signal matrix, and sparsely
represented using the dictionary and a row-sparse coefficient matrix [35]. The final classification result
of JSRC is obtained by calculating the minimum total residual error as follows:

A

A;j = argmin{|X;; — DA I} + AllA
L]
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where X; ; = (xi_w,]-_w, o Xij, .,xl-+w,]-+w) is a w X w pixel-sized square neighborhood centered on Xi, j,
and A, ; is the corresponding coefficient matrix. ||| is the Frobenius norm and ||A;, f”1,2 = 22:1 |a®]}, is
the I; p-norm, in which a® is the s-th row of A; ;.

2.2. Simple Linear Iterative Clustering

The OBIC is a widely used spectral-spatial classification framework, and it utilizes the spatial
information after the procedure of segmentation [36]. As one of the widely used segmentation methods,
the SLIC algorithm identifies superpixels by the over-segmentation approach. The idea of SLIC is to
locally apply the K-means algorithm to obtain an effectively cluster segmentation result. Specifically,
it measures the distance from each cluster center to pixels within a 25 x 25 block, where S = VN/P.
Here, N is the number of pixels, and P is the number of clustering centers which equals to the total
number of superpixels [37].

In general, the SLIC algorithm can be implemented in several steps as follows: the first step
is to select P initial clustering centers from the original image. Then it classifies each pixel to the
nearest clustering center, and constructs various clusters respectively. The iterative clustering process is
performed until the position of the cluster center became stable. As stated above, the original K-means
algorithm calculates the distance from the whole map, while the searching area of SLIC is in the local
area of each superpixel, thereby the SLIC algorithm alleviates the computation complexity to a great
extent. The distance in SLIC is defined as follows:

m
Dsuc = Dspectml + ;Dspatiulr 3)
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where Dyyectrq 18 a spectral distance, which is used to ensure the homogeneity inside the superpixel,
and the spectral distance between pixel i and pixel j is described as follows:

)

D spectral —

where x; 4 is the value of pixel i in band d, and Dy represents the spatial distance, which is used to
control the compact and regularity of the superpixels, the spatial distance between pixel i and pixel j is
defined as follows:

Degatiat = (@i = ;)% + (b~ b;)?, )

where (a;, b;) is the location of pixel i, m, and p in Equation (3) are the scale parameter of superpixels.

3. Proposed Approach

As introduced in Section 2.1, both the classic SR-based model and the variant JR-based method
conduct the classification using the class-dependent minimum residual error between the original
observation and the approximate representation value. However, the residual error-based decision
mechanism in the SR-based and JR-based frameworks ignore the importance of sparse coefficients.
Section 3.1 introduces that the CR method and the ACR classifier can exploit the characteristic of
the sparse coefficient. After that, we present the details of SPCR and the MSPCR in Section 3.2.
Both methods are generally based on the spatial correlation. Specifically, the SPCR utilizes the spectral
consistency feature among adjacent pixels in ACR, and then MSPCR achieves comprehensive utilization
of various regional distribution.

3.1. Constraint Representation (CR) and Adjacent CR (ACR)

3.1.1. CR Model

According to the principle of representation-based model, it can be regarded as representing the
testing pixel via a sparse linear combination of the labeled samples. For the sake of understanding, a
simple case can be assumed as Equation (6). The testing pixel is represented by a single element with
nonzero coefficient (ay, &g, a, . .., &) from some certain classes (k,k +1,...,k* € [1,K]) as follows [38]:

k k+1 k+2 k*
Xi i % apX; + oqut;r + ocmxtz+ o anxg, (6)

Since &;; is sparsely constrained, the labeled samples which contributes to representing the
testing pixel are the ones whose coefficients are not zero. In the process of representation, the larger
measurement of the coefficient value, the higher contribution in representing the testing pixel, such
that the testing pixel more likely belongs to the corresponding category. Therefore, CR directly exploits
the sparse coefficient to conduct the classification, which is concise and equivalent to the residual
error-driven determination mechanism. Specifically, it defines the participant degree (PD) from the
perspective of the sparse coefficient, which estimates the contribution of labeled samples from different
classes in representing the testing pixel x; ;. The PD of each class is calculated by the corresponding
weight vector with /;-normed measurement (d = 1 or d = 2) as follows:

PD; = ||~
k= lle Il

@)

The PD-driven decision mechanism of CR is to determine the category with the maximum PD,
which can be expressed in Equation (8):

class ;) = max{PD} Jee k) ®)
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3.1.2. ACR Model

Based on the PD-driven mechanism, an improved version, ACR has been proposed to correct
spectral variation by imposing spatial constraints during the classification. According to the spectral
similarity characteristic among the adjacent pixels, the adjacent pixels more likely belong to the same
class [39]. In this context, the ACR brings better classification performance than that of the CR model
through innovating the PD-driven mechanism with the spatial consistency of the adjacent pixels.
The main principle of ACR is to use the PD of adjacent pixels as a constraint to determine the category of
the testing pixel. Specifically, the ACR firstly defines adjacent pixels within a WX W pixel-sized window
centered on the testing pixel, then constructs a k-dimensional PD image, and each dimensionality of
the PD image shows the PD values of pixels in one class. The class-dependent activity degree (CAD) of
each element is obtained after successively normalizing the PD image at each dimensionality, which
could be expressed as follows:

ko k K K
CAD, =PDf,/)"  PDF, )

where k € [1, K] denotes the class index, and (i, j) are the location of the testing pixel. With consideration
of the spatial constraint of the adjacent pixels, the relative activity degree (RAD) is generated by
combining the CAD of the testing pixel with the inactivity degree of its adjacent pixels through a scale

~2
compensation parameter 7, where the index of the adjacent pixels is v € [1,w ]. The ACR uses the
RAD as the final contribution degree in representing the testing pixel x; j, and the class of x; j can be
determined by the maximum RAD as follows:

~2

k k k
RADf; = CADf, - ¢ %(’;1 (1 - CADE) 1)
class(x;j) = mkax{RADilj|k € [1,K]}

3.2. Superpixel-Level CR (SPCR) and Multiscale SPCR (MSPCR)

3.2.1. SPCR Model

As mentioned above, the ACR model defines the adjacent pixels as pixels within a fixed pixel-sized
window centered on the testing pixel. However, it does not consider the real distribution of ground
objects. The superpixel block obtained by the superpixel segmentation algorithm is made up of some
neighborhood pixels with similar spatial characteristics. Through combing the superpixel segmentation
algorithm, we establish the SPCR model to further utilize the spectral consistency feature from the
subset of adjacent pixels. In this way, the SPCR model conducts class-dependent constrained represent
according to the PD of pixels inside the superpixel block centered on the testing pixel, which preserves
most edge information of image in comparison to the sample selection in fixed window in ACR,
and has a more objective consideration to the spatial distribution of the testing pixel. As illustrated in
Figure 1, the schematic diagram of SPCR model is equal to MSPCR at a single segment scale, which can
be implemented in several steps as follows.

Firstly, we obtain superpixel blocks by the SLIC algorithm. Since the SLIC can only process an
image in the CIELAB color space, it is necessary to convert an HSI to a three bands image before
processed by the SLIC algorithm. Therefore, the principal component analysis (PCA) method is adopted
to reduce the spectral dimensionality in the SPCR method, which selects the first three components as
the input of SLIC to generate a stable superpixel segmentation result [40]. Then, the category of the
testing pixel can be measured by calculating the PD values of pixels inside the superpixel where the
testing pixel is located. Specifically, using the PD values of pixels at the corresponding position of
the superpixel, we built a SPD image surrounding x; ; with K dimension, and each dimension of SPD
image shows the PD values of pixels in one class. Similar to ACR, the normalized value of each pixel
in the k' SPD image is defined as the class-dependent activity degree (CAD) with regard to the class k.
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Figure 1. The workflow of multiscale superpixel-level constraint representation (MSPCR).
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In order to further utilize the correlation of ground objects, SPCR combines the CAD of x; ; with
CAD of other pixels insides superpixel through the scale compensation parameter, such that other
pixels can give a properly constraint in classifying the testing pixel x; ;. Compared to the constraint
with the local spatial information in RAD shown in formula (10), the united activity degree (UAD)
utilizes the correlation of ground object via a similar combination, represented as follows:

1
UAD}; = CADf; +7) | CADf, (11)

where e € [1,]] indicates the element index in superpixel block, y represents a scale compensation
parameter. Moreover, the SPCR model classifies x; j by analyzing which class leads to the maximum
UAD, ; as follows:

class (x;;) = max{UAD] Jee k) (12)

3.2.2. MSPCR Model

As shown in the aforementioned algorithm, the proposed SPCR method based on the OBIC
framework generates solid performance through exploiting the spatial contextual information.
However, as the classification results of SPCR with different segmentation scales are not the same,
the superpixel segmentation-based HSI classification may not generate a comprehensive and stable
result under a fixed segmentation scale. Thus, in particular, the performance of SPCR is highly affected
by the scale level [41]. In order to solve these problems, it is reasonable to propose multiscale OBIC
framework to comprehensively utilize image information. In this paper, MSPCR is firstly proposed by
means of decision fusion with the classification result maps obtained by SPCR method at different
segmentation scales. Compared with SPCR, the improved MSPCR not only uses multiple scales to
balance the different size and distribution of ground objects, but also solves the problem of selecting
the optimal segmentation scale.

Specifically, Figure 1 and Algorithm 1 illustrate the general schematic diagram and pseudo
procedures of the MSPCR method, respectively. Firstly, similar to the workflow of the SPCR
method, we simultaneously obtain the classification results of the testing pixel at different superpixel
segmentation scales. In this process, the superpixel block is generated by inputting the result of PCA
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into the SLIC algorithm, then classify the testing pixel by a relaxed and adaptive constraint inside the
superpixel. After performing the SPCR method at each scale, a decision fusion process is applied to
obtain the classification result of MSPCR, in which the category of the testing pixel y; is determined by
the maximum number of labels of the testing pixel x; ; among the classification results at each scale,
and the decision fusion process is expressed as follows:

class(y;) = arg mod class(y?), (13)

‘7:‘71/--Q

where y; is denoted as the final class label of x; j, y? represents the classification result of x; ; when the

segmentation scale parameter is described as g, and mod is a modular function which defines y; with

the most frequency category in [y?l, ey yZQ]

Algorithm 1. The proposed MSPCR method

Input: A hyperspectral image (HSI) image X, dictionary D, the testing pixel x; j, regularization parameter 4,
scale compensation parameter y.

Step 1: Reshape X into a color image by compositing the first three principal component analysis (PCA) bands.
Step 2: Obtain multiscale superpixel segmentation images SC = {Sq}qQ=1 of X according to SLIC in Equations (3)
to (5).

Step 3: Obtain the participation degree (PD) image of X according to Equation (7).

Step 4: Extract superpixel centered on the testing pixel x; ; from the PD image of X to get multiscale SPD image.
Step 5: Class-dependent normalization at each scale according to Equation (9).

Step 6: Calculate the united activity degree (UAD) according to Equation (11).

Step 7: Assign the class of x; ; at each scale according to Equation (12).

Step 8: Determine the final class label by the decision fusion according to Equation (13).

Output: The class labels y.

4. Experimental Results and Analysis

In this section, we investigated the effectiveness of the proposed SPCR and MSPCR models with
three hyperspectral datasets. The detailed description of the applied datasets is given in Section 4.1.
The parameter tuning related to the proposed models and other compared methods is presented in
Section 4.2. We evaluate the performance of two proposed methods in comparison with the methods
in the spectral domain and the spectral-spatial domain. The classic SR-based method, including
SRC as well as its simplified model CR, and the classic SVM are firstly selected in the comparative
experiments in the spectral domain. Then, the classic JR-based model JSRC, the typical model with
post-processing of spatial information SVM-MRE, and the previously proposed ACR are further tested
in the spectral-spatial domain. We randomly selected training samples 20 times in each experiment and
calculated the overall accuracy (OA) and class-dependent accuracy (CA). We analyzed the experimental
results of the two proposed methods and other related methods in Sections 4.3—4.5.

4.1. Experimental Data Description

4.1.1. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Indian Pines Scene

The first data are of the Indian Pines scene acquired by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensors in the Northwestern Indiana, with a spatial resolution of 20 m. The scene
covers 220 spectral bands ranging from 0.4 to 2.5 pm, and the size of the image is 145 x 145. In order to
satisfy the sparse thought, eight ground-truth classes with a total of 8624 labeled samples are extracted
from the original sixteen categories reference data. Figure 2a,b shows the false-color composite image
and the reference map of this scene, respectively.
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4.1.2. Reflective Optics Spectrographic Imaging System (ROSIS) University of Pavia Scene

The second data are of the University of Pavia scene collected by the Reflective Optics
Spectrographic Imaging System (ROSIS) over a downtown area near the University of Pavia in
Italy, with a spatial resolution of 1.3 m. After removing 12 bands with high noise and water absorption,
the scene has 103 spectral bands ranging from 0.43 to 0.86 um, with 610 x 340 pixels. Nine ground-truth
classes with a total of 42,776 labeled samples are contained in the reference data. Figure 3a,b shows the
false-color composite image and the reference map of this scene, respectively.

4.1.3. Hyperspectral Digital Image Collection Experiment (HYDICE) Washington, DC,
National Mall Scene

The third data are of the Washington, DC, National Mall scene captured by the Hyperspectral
Digital Image Collection Experiment (HYDICE) sensor over the Washington, DC, in USA, with a spatial
resolution of 3 m. The original scene contains 210 spectral bands ranging from 0.4 to 2.5 um, with
280 x 307 pixels. After removing the atmospheric absorption bands from 0.9 to 1.4 pm, 191 bands
were remaining. Six ground-truth classes with a total of 10190 labeled samples were included in
the reference data. Figure 4a,b shows the false-color composite image and the reference map of this
scene, respectively.

Class 1: Com-no till

Class 2: Corn-min till
Class 3: Grass/pasture
Class 4: Hay-windrowed
Class 5: Soybeans-no till
Class 6: Soybeans-min till
Class 7: Soybeans-clean till
Class 8: Woods

EEEEENEN

(@) (b)

Figure 2. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Indian Pines scene:
(a) false-color composite image and (b) reference map.

: Class 1: Alfalfa

. Class 2 Meadows
. Class 3: Gravel

. Class 4 Trees

. Class 5: Metal sheets
. Class 6: Bare soil

. Class 7: Bitumen

[:' Class 8: Bricks
\ | Class 9 Shadows

Figure 3. The Reflective Optics Spectrographic Imaging System (ROSIS) University of Pavia scene:
(a) false-color composite image and (b) reference map.
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Class 1: Roof
Class 2: Grass
Class 3: Road
Class 4: Trail
Class 5: Tree

| Class 6: Shadow

Figure 4. The Hyperspectral Digital Image Collection Experiment (HYDICE) Washington, DC, National
Mall scene: (a) false-color composite image; (b) reference map.

4.2. Parameter Tuning

In the experiment of this paper, the regularization parameter A for all SR-based models was
selected from 1073 to 10~!. For the scale compensation parameter 7 and y in ACR and SPCR-based
methods, we set them in a properly range according to the value of w and the number of superpixels
P. Due to the different value of w, the distributions of the ground objects in the WX w pixel-sized
window centered on the testing pixel are different. This fact produces a critical constraint based on
the assumption that the adjacent pixels inside the window belong to the same class. Referring to the
definition of w in [22], each scene usually has a proper w with a consideration of the spatial consistency,
and the exceeded size could influence the result. Therefore, in order to obtain a high classification
accuracy, we optimized the size of the window w in each experimental scene.

In addition, the number of superpixels P in SPCR and MSPCR classifier is decided by the
segmentation scale S and the number of the pixels N via P = VN/S. The corresponding experimental
analysis about P and the classification accuracy is illustrated in Figures 5 and 6. We can infer the
relationship between the segmentation scale S and the classification accuracy, which is equal to the
relationship of P and the classification results. Firstly, Figure 5 shows the impact of the number of
superpixels on the classification accuracy (50 samples per class). We mainly select five and four classes
to display from the AVIRIS Indian Pines dataset and HYDICE Washington, DC, National Mall dataset,
respectively. As illustrated in Figure 5a, the result indicates that the optimal segmentation scale is
various for different classes. For example, the optimal segmentation scale of the class 2 is distinct from
the other three classes in Figure 5b. In addition, the relationship of the number of superpixels, overall
accuracy and the number of the labeled samples is shown in Figure 6. Generally, the overall accuracy
increased with the number of labeled samples at each segmentation scale. It is notable that under
different number of labeled samples, the segmentation scale is various in order to achieve the highest
classification accuracy. Like the most OBIC frameworks, the proposed SPCR method also needs to
set the optimal segmentation scale, while the improved MSPCR method can overcome this drawback
through taking fusion the spatial-spectral characteristics of HSI at different segmentation scales.



Remote Sens. 2020, 12, 3342 11 of 21

Classification Accuracy

mCLASS1 = CLASS 3 m CLASS 5 m CLASS 6 m CLASS 7 CLASS1 mCLASS2 CLASS4 mCLASSS5
100.00% 100.00%
95.00% 98.00%
>
9
<
-
90.00% g 96.00%
9
<
85.00% § 94.00%
=
<
=
80.00% E 92.00%
n
=
75.00% | I I | | “ 90.00% I
70.00% 88.00%
5300 1300 580 260 150 9600 5400 3400 2400 1800
Number of Superpixels Number of Superpixels
(a) (b)

Figure 5. The sensitivity analysis of the number of superpixels on classification accuracy (50 samples
per class). (a) the AVIRIS Indian Pines dataset. (b) the HYDICE Washington, DC, National Mall dataset.
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Figure 6. The sensitivity analysis of the number of superpixels versus training size. (a) the AVIRIS
Indian Pines dataset. (b) the HYDICE Washington, DC, National Mall dataset.

4.3. Experiments with the AVIRIS Indian Pines Scene

In the first experiment with the AVIRIS Indian Pines hyperspectral scene, we randomly selected

90 labeled samples per class with a total of 720 samples to construct a dictionary and the training
model. The selected training samples constitutes the approximately 8.35% of the labeled samples in
the reference map, and the other remained samples are used in validation. As illustrated in Table 1,
the OAs and the CAs of different methods are calculated, and the corresponding classification maps
are presented in Figure 7. We analyzed the classification results as follows:

1

As a widely applied supervised classification framework, the SVM classifier has a feasible
performance in the classification of HSI. However, there are some isolated pixels appeared in
the result due to the noise and spectral variability, as shown in Figure 7. Compared with the
SVM, the classic SRC method gains a better classification result, which proves that the SR-based
classifier is suitable for the hyperspectral image classification tasks. Compared with the SRC,
the CR model obtains an approximate equivalent classification result with a lower computational
cost than that of SRC. The result not only underlines the CR model simplified the SRC model via
an improved procedure without the calculation of residual error, but also verifies the effectiveness
of the PD-driven decision mechanism in the process of HSIC.

In the spectral-spatial domain, as shown in Figure 7, SVM-MRF model outperforms the SVM
classifier, which demonstrates the exploration of the spatial information can bring a further
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3

improvement on the spectral classifiers. Similarly, since the JSRC conducts the classification
by sharing a common sparsity support among all neighborhood pixels, the improvement of
overall accuracy also appeared in JSRC compared to SRC. Compared with the CR model, the ACR
classifier obtains a significant improvement. It solves the spectral variability problem in CR
by setting a spatial constraint, and proves that the innovation of decision mechanism from
PD-driven to RAD-driven is effective for the HSIC tasks. As mentioned above, the improvements
of SVM-MRE, JSRC, and ACR models relative to their original counterparts SVM, SRC, and CR
confirm the effectiveness of introducing spatial information into the spectral domain classifiers.
From Figure 7, the JSRC has a better classification performance than the SVM-MREF in the AVIRIS
Indian Pines scene. As illustrated in Table 1, the ACR classifier achieves a better classification
result in comparison to JSRC and SVM-MREF, of which the overall accuracy is 2.38% higher
than that of JSRC and 6.11% higher than that of SVM-MREFE. On one hand, the RAD-driven
mechanism in ACR is more effective than the hybrid norm constraint in JSRC. On the other
hand, the post-processing of spatial information in SVM-MREF takes more emphasis on adjusting
the initial classification result generated from spectral features, lacking an effective strategy
integrating spatial information with spectral information.

SVM-MREF (85.13%) JSRC (88.86%) SPCR (92.90%) MSPCR (95.30%)

M Class 1: Corn-no till [ Class 2: Corn-min till M Class 3: Grass/pasture M Class 4: Hay-windrowed
M Class 5: Soybeans-no till M Class 6: Soybeans-min till B Class 7: Soybeans-clean till []Class 8: Woods

Figure 7. Classification maps obtained by the different tested methods with 90 samples per class for
the AVIRIS Indian Pines dataset (overall accuracy (OA) is in parentheses). SVM = support vector
machine; MRF = Markov Random Field; SRC = sparse-representation-based classifier; CR = constraint
representation; ACR = adjacent constraint representation; JSRC = joint sparse representational-based
classifier; SPCR = superpixel-level constraint representation.

Compared with the ACR, the proposed SPCR has a slightly higher OA. Table 1 demonstrates the
effectiveness of introducing the superpixel segmentation, which preserves the edge information
and fully considers the distribution of ground object. In addition, the practicability and reliability
of the sparse coefficient, which plays an important role in the PD-driven decision mechanism and
the UAD-driven decision mechanism. Thus, the combination of superpixel segmentation and
sparse coefficients is effective, the overall accuracy of SPCR reaches to 92.90%, which is 1.66%,
4.04%, and 7.77% higher than ACR, JSRC, and SVM-MRE, respectively.

Compared with the SPCR, the proposed MSPCR model brings an improvement. Firstly,
it verifies that the MSPCR performs better than the SPCR via alleviating the impact of superpixel
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segmentation scale on the classification results. Then, it also indicates that the decision fusion
takes a comprehensive consideration to the different spatial features and distributions of various
categories of objects, which elevates the final classification accuracy.

Table 1. Overall and classification accuracies (in percent) obtained by the different tested methods for
the AVIRIS Indian Pines scene. In all cases, 720 labeled samples in total (90 samples per class) were
used for training.

Class Samples SVM SRC CR SVM-MRF JSRC ACR SPCR  MSPCR
1 1460 55.60% 77.29% 77.00% 73.51% 82.29% 83.97% 87.53% 89.74%
2 834 57.82% 83.62% 84.36% 82.77% 91.92% 93.53% 94.24% 97.84%
3 497 88.99%  97.53%  97.38% 95.52% 98.79% 98.98% 96.38% 97 .44%
4 489 98.90%  99.84%  99.88% 99.34%  100.00%  100.00%  99.39% 99.82%
5 968 71.45% 81.94% 81.60% 89.00% 92.13% 94.41% 87.93% 94.12%
6 2468 56.22% 70.47% 70.19% 77.95% 78.76% 81.23% 91.75% 93.41%
7 614 68.72%  91.35%  91.68% 95.73% 96.06% 96.81% 93.55% 99.49%
8 1294 9441%  99.61%  99.62% 98.36% 99.66% 99.85% 99.91% 99.92%

OA 68.44% 83.27% 83.19% 85.13% 88.86% 91.24% 92.90% 95.30%

In general, the proposed MSPCR obtains an overall accuracy of 95.30%, which is 2.40% and
4.06% higher than SPCR and ACR, and also 12.11% higher than CR, respectively. For individual class
accuracy, it provides great results, especially for the classes 2, 6, and 7. The classification maps in
Figure 7 verify the improvement achieved by the MSPCR.

In the second test with the AVIRIS Indian Pines scene, we randomly selected 10 to 90 samples per
class as the training samples to measure the proposed SPCR and MSPCR. Figure 8 shows the overall
classification accuracies acquired by different methods with different number of labeled samples.
The results can be summarized as follows:

98.00%
91.00%
e SV
84.00% SRC
E” 77.00% ——CR
E SVM-MRF
2 7000%
= =t JSRC
éE 63.00% ACR
56.00% —+—SPCR
=t \SPCR
49.00%
42.00%

10 20 30 40 50 60 70 80 90
Labeled Samples per Class

Figure 8. Overall classification accuracy obtained by different tested methods with different numbers
of labeled samples for the AVIRIS Indian Pines scene.

1. The classification results demonstrate that the overall accuracy has a positive relationship with
the number of the labeled samples, the overall accuracy is increased by the number of labeled
samples. Besides, this phenomenon only be satisfied under a certain number of the labeled
samples, the growth trend would be stopped when the labeled samples reach a certain number.

2. The integration of the spatial and spectral information benefits precision classification than the
pixel-based classification method, which can be verified by the improvement of SVM-MRE, JSRC,
ACR, SPCR, and MSPCR relative to their original counterparts, i.e., SVM, SRC, and CR.
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3.  Compared to the traditional classifiers, the PD-driven classifiers provide a better classification
performance. This can be confirmed by the overall accuracies of ACR and SPCR toward JSRC
and SVM-MRE, as well as CR toward SVM. Moreover, the proposed MSPCR achieved the best
performance among these classifiers.

4.4. Experiments with the ROSIS University of Pavia Scene

In the first test of the experiment with the ROSIS University of Pavia scene, we select 90 labeled
samples per class with a total of 810 samples (which constitutes approximately 1.89% of the available
labeled samples in the reference map), and the remaining labeled samples are used for validation.
Table 2 and Figure 9 show the OAs and CAs for the classifiers, and the corresponding classification
maps. From the experimental results, we have similar results with those obtained under the AVIRIS
Indian Pines dataset: First, SRC and CR achieved similar classification results, with comparative result
in comparison with the SVM in the spectral domain. In the spatial domain, SVM-MRE, JSRC, and ACR
bring significant improvement to the SVM, SRC, and CR model by integrating the spatial information.
Moreover, SVM-MRF owns a better classification accuracy than JSRC, different from the performance
of these two methods in AVIRIS Indian Pines dataset. In comparison with the ACR, the introduction
of the superpixel segmentation algorithm contributes to a higher accuracy in SPCR. Last but not the
least, the proposed MSPCR achieves the best classification result with the overall accuracy of 96.90%,
which is 3.64% and 4.71% higher than SPCR and ACR, and also 16.7% higher than CR, respectively.
Additionally, it brings considerable improvements for individual class accuracy, especially for class 2
and class 4, which can be proved by the classification maps shown in Figure 9.

)

SVM-MREF (92.05%) JSRC (88.07%) SPCR (93.26%) MSPCR (96.90%)

Class 1: Asphalt M Class 2: Meadows M Class 3: Gravel M Class 4: Trees M Class 5: Metal sheets
M Class 6: Bare soil M Class 7: Bitumen Class 8: Bricks [ !Class 9: Shadows

Figure 9. Classification maps obtained by the different tested methods with 90 samples per class for
the ROSIS University of Pavia dataset (OAs are in parentheses).
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Table 2. Overall and classification accuracies (in percent) obtained by the different tested methods for
the ROSIS University of Pavia scene. In all cases, 810 labeled samples in total (90 samples per class)
were used for training.

Class Samples SVM SRC CR SVM-MRF JSRC ACR SPCR  MSPCR

6631 75.04%  7612%  75.76%  91.06%  65.12% = 93.94%  90.62% = 94.79%
18649 80.69%  7843%  78.83%  88.76%  92.35%  87.98%  93.37%  96.83%
2099 80.50%  78.04%  7891%  89.26%  9590%  92.09%  89.48%  93.67%
3064 94.31%  94.96%  95.47%  97.06% = 92.20%  97.03%  89.15%  98.18%
1345 99.21%  99.80%  99.82%  99.55%  100.00% 100.00%  97.62%  99.93%
5029 87.32%  80.06%  79.58% = 96.08%  84.91%  98.19%  98.71%  98.86%
1330 92.82%  89.28%  89.83%  96.37% = 99.85%  97.59% = 96.42%  99.83%
3682 83.07%  70.65%  68.66%  94.18%  9329%  91.47%  95.43%  96.96%
947 99.86%  98.27%  98.34% = 99.90% = 96.62%  99.68%  83.44%  96.96%

OA 83.10% 80.21% 80.20% 92.05% 88.07% 92.19% 93.26% 96.90%

=

O 00NN Ul WIN

Our second test of the ROSIS University of Pavia scene measured the proposed SPCR and
MSPCR with various sizes of labeled samples (from 10 to 90 samples per class). Figure 10 shows
the overall classification accuracies obtained by different testing methods, under different number
of training samples. With the number of the labeled sample increased, most of measured methods
have an increase trend in accuracy. In comparison to the overall classification accuracy of SVM,
the SRC and CR firstly have better performances, then perform worse as the number of the labeled
samples increased. Considering the correlation of ground object, the classification performance of
ACR and SVM-MREF, achieved significant improvements with the increase of the number of samples,
with a higher classification accuracy than the JSRC in most cases. In addition, the combination of
the PD-decision mechanism and the superpixel segmentation algorithm brings reliable and stable
improvement, which can be confirmed by the overall classification accuracies obtained by SPCR
method in all cases. From Figure 10, MSPCR method achieves the best classification result among
these compared methods, as a result of applying the decision fusion which alleviates the challenge of
adapting the fixed single segmentation scale to the spatial characteristic of all categories in the image.

98.00%

91.00% // —— VM
SRC
g 8400% -
-
g /—’/‘ SVMMRF
S 77.00%
- e JSE.C
g 7000% ACR
i SPCR.
63.00% ——MSPCR
56.00%

10 20 30 40 50 60 70 80 90
Labeled Samples per Class

Figure 10. Overall classification accuracy obtained by the different tested methods with different
numbers of labeled samples for the ROSIS University of Pavia scene.

4.5. Experiments with the HYDIC Washington, DC, National Mall Scene

In our first test with the HYDICE Washington, DC, National Mall scene, we first randomly select
50 labeled samples per class with a total of 300 samples for training and dictionary construction (which
constitutes approximately 2.94% of the available labeled samples), the remaining samples are applied
for validation. Table 3 shows the OAs and CAs obtained in different tested methods, and Figure 11
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shows the corresponding classification maps. In the spectral domain, the traditional SRC provides
an approximately equivalent result to CR, and both of them outperform the traditional SVM method,
once again proving that the sparse coefficient is powerful to represent the spectral characteristics.
In the spectral-spatial domain, the SVM-MRF, ACR, and SPCR perform well toward their original
counterparts, i.e., SVM and CR. In addition, it also can be seen from the overall accuracies of the SRC
method and the JSRC model that an improperly spatial constraint may have a negative impact on the
classification performance. Distinct from the classification results in the above two datasets, the ACR
gains a better classification performance than the proposed SPCR method in the HYDICE Washington,
DC, National Mall scene, indicating that the SPCR model is susceptible to the superpixel segmentation
scale. That is the original intention for us to propose MSPCR method, which eliminates the impact of
the number of superpixels on classification by fusing the classification results at different segmentation
scales. Furthermore, it can be found that the proposed MSPCR method achieves the highest accuracy
98.32%, which is similar with the results in the AVIRIS Indian Pines hyperspectral scene and the ROSIS
University of Pavia scene. In addition, the proposed MSPCR provides reliable individual classification
accuracy for each class, especially for class 1 and 2, which can be seen from the classification maps in
Figure 11.

4

SVM-MREF (95.85%) JSRC (92.58%) SPCR (97.11%) MSPCR (98.32%)
M Class 1: Roof MClass 2: Grass MClass 3: Road M Class 4: Trail MClass 5: Tree [[/Class 6: Shadow

Figure 11. Classification maps obtained by the different tested methods with 50 samples per class for
the HYDICE Washington, DC, National Mall dataset (OAs are in parentheses).

Table 3. Overall and classification accuracies (in percent) obtained by the different tested methods for
the HYDICE Washington, DC, National Mall scene. In all cases, 300 labeled samples in total (50 samples
per class) were used for training.

Class Samples SVM SRC CR SVM-MRF JSRC ACR SPCR  MSPCR
1 2916 85.56%  94.47%  93.54%  93.08%  85.08% = 92.77%  95.79%  98.36%
2 1819 88.47%  90.22%  91.32%  94.33%  94.48%  95.61%  94.22%  97.81%
3 1264 96.12%  98.72%  98.54%  97.00%  95.81%  97.24%  98.57%  97.50%
4 1790 96.96%  98.73%  98.89%  98.32%  9691%  99.22%  98.77%  98.32%
5 1120 98.38%  99.51%  99.49%  98.87%  9430%  92.35%  99.42%  98.13%
6 1281 96.22%  96.81%  96.74%  97.25%  96.24%  97.58%  98.43%  99.89%

OA 92.10% 95.83% 95.76% 95.85% 92.58%  97.18% 97.11% 98.32%

In our second test with the HYDICE Washington, DC, National Mall scene, we evaluated the
classification performance of our proposed methods from the spectral-spatial domain with different
numbers of training samples. As shown in Figure 12, the classification result shows a rising tendency
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with the increase of the number of training samples, and curve tends to be flat when the number of
training samples reaches to a certain amount. Firstly, the SRC and CR gain a better classification results
toward SVM with the increase of the number of the labeled samples in the spectral domain. Though
JSRC obtains relatively poor results than SRC, the SVM-MRF, ACR, and SPCR still provide competitive
classification performances toward the SVM and CR with the increase of the number of training
samples, which proves the integration of the spectral feature discrimination and spatial coherence
is a reliable processing framework for the HSIC in most cases. On the other hand, improvement
also appeared by the combination of the PD-driven and spatial constraint, which is indicated by the
performance of ACR and SPCR-based method versus SVM-MRF and JSRC. In the spectral-spatial
domain for all cases, the proposed MSPCR yields the best overall accuracy in comparison with the
other related methods, and makes a significant improvement in comparison to the proposed SPCR.

100.00%

97.00% VM

SRC
e R
94.00%
SVM-MRF

=t JSRC

91.00%
ACE

Overall Accuracy

e SPCR

o
88.00% MSPCR

85.00%

10 15 20 25 30 35 40 45 50
Labeled Samples per Class

Figure 12. Overall classification accuracy obtained by the different tested methods with different
numbers of labeled samples for the HYDICE Washington, DC, National Mall scene.

In addition, we compared the calculation cost of some spectral-spatial-based methods in the
above three hyperspectral datasets, and the setting of the labeled samples corresponds to the cases
in Tables 1-3. As shown in Figure 13, for the experiments on the above three datasets, the JSRC has
the fastest speed but with the lowest classification accuracy. The proposed MSPCR not only achieves
the best classification accuracy, which also has an increase in the time-consuming (about five times),
as compared to the SPCR, due to the decision fusion process. On the ROSIS University of Pavia dataset
and the AVIRIS Indian Pines dataset, the SPCR is the second best with an approximately equivalent
time-consuming to ACR. On the HYDIC Washington, DC, National Mall dataset, the ACR achieves the
second highest classification accuracy with a similar speed to SPCR.
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Figure 13. Calculation time-consuming comparison schematic diagram of different tested methods for
(a) the AVIRIS Indian Pines dataset, (b) the ROSIS University of Pavia dataset, and (c) the HYDICE
Washington, DC, National Mall dataset. The experiments are carried out using MATLAB on Intel(R)
Core (TM) i7-6700K CPU machine with 16 GB of RAM.
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Synthesizing the above experimental results and analysis, the firstly proposed SPCR method
obtains a considerable overall and individual classification accuracy. The improved MSPCR gets
better classification performance than the SPCR method. Moreover, the experimental results in
different datasets also show that MSPCR outperforms several other related methods. Furthermore,
the classification experimental results under different number of training samples also indicate the
superiority and practicability of the proposed SPCR and MSPCR methods.

It should also be noted that the computational cost of the proposed MSPCR is relatively high,
which is also the part of optimization in the future. Moreover, there are some potential points, for
instance, the sample selection mechanism with related to the adaptive capability of method could be
the follow-up research line.

5. Practical Application and Analysis

Different from the above three experimental datasets, we adopt the hyperspectral image data
collected by the GF-5 satellite, to measure the practicability of the proposed SPCR and MSPCR method.
GEF-5 is the first hyperspectral comprehensive observation satellite of China, with a spatial resolution
of 30 m. There are six payloads on GF-5, including two land imagers and four atmospheric sounders.
In this paper, we select a scene from the hyperspectral image data obtained by visible short wave
infrared hyperspectral camera.

First, we select the range of visible light to near infrared spectrum in the original data. After the
atmospheric correction and radiation correction processing, the scene covers 150 spectral bands ranging
from 0.4 to 2.5 pm, and the size of the image is 200 x 200. Six ground-truth classes with a total of 2216
labeled samples are contained in the reference data. Figure 14 shows the false-color composite image
and the reference map of this scene.

£
i

JSRC (87.27%) ACR (93.47%)
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6

3 ‘\E |

False-color image SVM-MREF (91.47%)

-

Figure 14. Classification maps obtained by the different tested methods with 5 samples per class for
the GF-5 satellite dataset (OAs are in parentheses).

In the experiment with the GF-5 satellite dataset, we randomly selected five labeled samples per
class with a total of 30 samples to construct a dictionary and the training model. The selected training
samples constitute the approximately 1.35% of the labeled samples in the reference map, and the
other remaining samples are used in validation. Figure 14 displays the classification maps of different
methods. We analyzed the classification results as follows:

Compared with the SVM-MRF and JSRC, the ACR has a better classification performance, of
which the overall accuracy is 6.20% higher than that of JSRC and 2.00% higher than that of SVM-MRE.
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It confirms that the PD-driven-based decision mechanism plays an important role in classification.
Compared with the ACR, the SPCR method obtains a better classification result, which verifies the
effectiveness of integrating the PD-driven mechanism with the superpixel segmentation algorithm.
The MSPCR outperforms the SPCR and yields the best accuracy in comparison to other related methods,
which not only proves the MSPCR alleviates the impact of superpixel segmentation scale on the
classification effect, but also indicates the decision fusion processing plays a decisive role in adapting
different spatial characteristics of various categories of objects.

6. Conclusions

In this paper, a novel classification framework based on sparse representation, called the
superpixel-level constraint representation (SPCR), was firstly proposed for hyperspectral imagery
classification. SPCR uses the characteristics of spectral consistency of pixels inside the superpixel
to determine the category of the testing pixel. Besides this, we proposed an improved multiscale
superpixel-level constraint representation (MSPCR) method, obtaining the final classification result
through fusing the classification maps of SPCR at different segmentation scales. The proposed
SPCR method exploits the latent property of sparse coefficient and improves the contextual
constraint, with consideration of spatial characterization. Moreover, the proposed MSPCR achieves
comprehensive utilization of various regional distribution, resulting in strong classification performance.
The experimental results with four real hyperspectral datasets including a GF-5 satellite data
demonstrated that the SPCR outperforms several other classification methods, and the MSPCR
yields a better classification accuracy than SPCR.
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