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Abstract: The International Space Station (ISS) offers a unique view from space that provides nighttime
light (NTL) images of many parts of the globe. Compared with other NTL remote sensing data, ISS
NTL multispectral images taken by astronauts with commercial digital single-lens reflex (DSLR)
cameras have the characteristics of free access, high spatial resolution, abundant data and no light
saturation, so it plays a unique advantage in the research of small-scale urban planning, optimization
of lighting resource allocation and blue light pollution. In order to improve the radiation consistency
of ISS NTL images, a relative radiation normalization method of ISS NTL images is proposed in
this paper. Pseudo invariant features (PIF) were identified in the cloud-free Defense Meteorological
Satellite Program/Operational Linescan System (DMSP/OLS) time series NTL remote sensing annual
composite product, and then they were used to derive the relative radiation normalization model
of ISS NTL images. The results show that the radiation brightness of ISS NTL images in different
regions is normalized to the same gray level with that of DMSP/OLS NTL remote sensing images in
the same year, which improves the radiation brightness comparability between different regions of
ISS NTL images. This method is universally applicable to all ISS NTL images, which is beneficial to
the NTL comparability of ISS NTL image in the regional horizontal and temporal vertical.

Keywords: International Space Station; nighttime light; pseudo invariant feature; radiation
normalization; DMSP/OLS

1. Introduction

Nighttime light (NTL) remote sensing is using airborne (or orbital) sensors to detect
upward-directed light from the night side of the earth, whether natural or artificial in nature [1,2],
such as aurorae, volcanic eruptions, marine bioluminescence, city lights, fishing boats, oil and gas well
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combustion, etc. In recent years, NTL remote sensing imagery has gradually come into people’s view
because of its unique charm and its high correlation with human activities. Compared with ordinary
remote sensing satellite images, NTL remote sensing images reflect more human activities from a
different perspective, so they have been widely used in social and economic parameter estimation [3–6],
urbanization monitoring and evaluation [7,8], major disasters (whether natural or human-caused)
evaluation [9,10], light pollution research [11–15], fishery information extraction [16–18], epidemic
disease research [15,19,20], extraction of street lights [21,22], and oil and gas field monitoring [23].

The development of NTL remote sensing has experienced an evolution from low spatial resolution
to high spatial resolution and from panchromatic to multispectral information. The Defense
Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) of the United States
is the first platform to provide long time-series global NTL remote sensing images with low spatial
resolution [1–4,6,7]. As the successor of DMSP/OLS, Visible Infrared Imaging Radiometer Suite
Day/Night Band (VIIRS/DNB) provides long time-series global NTL remote sensing images with higher
spatial and temporal resolution [8]. Astronauts of the International Space Station (ISS) have taken many
earth images with commercially available cameras since 2000, including NTL images of some areas [2].
The ISS is an important platform for earth observation, its images are widely distributed around the
world [24]. Many nighttime (including dawn and dusk images) images have been catalogued with
center points (Figure 1), and a large number of images have not been catalogued. These ISS NTL
images have mid-high spatial resolution of 5–200 m per pixel and three bands of color information
(red, green, and blue) [25–27].
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Figure 1. The spatial and temporal distribution of International Space Station (ISS) nighttime (including
dawn and dusk) images cataloged with center points (data as of 17 April 2020). The center points
of the images are freely accessible via the Gateway of Astronaut Photography of the Earth (https:
//eol.jsc.nasa.gov).

The ISS NTL images are the first multispectral images recording visible light wavelengths emitted
from the earth from a space perspective and constitute a unique and valuable dataset. They have
unique application value in epidemiology research [28,29], ecological environment effect [30], light
pollution analysis [26–30], economic analysis [31] and urban delineation [32–34]. However, due to the
lack of accurate location and geographical reference, and the inconsistency of camera tilt angle, focal
length and orbital height when photographing, these ISS NTL images not only have different imaging
ranges and spatial resolutions, but also have no radiation consistency between images. For these
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reasons, many studies based on the ISS NTL RGB images mainly focus on the application analysis of
single times and single areas. For example, by using the ISS NTL RGB image, Rybnikova and Portnov
concluded that exposure to short-wavelength light had a greater impact on the hormone-dependent
cancer incidence rate than exposure to green and red light [28]. Pauwels et al. found that light pollution
would have a negative impact on bat activity using the ISS NTL imagery and ground streetlight location
data, and that the variables based on the ISS NTL imagery better described this harmful impact than
streetlight location [30]. Mazor et al. examined the relationship between the long term spatial patterns
of sea turtle nests and the intensity of nighttime lights along Israel’s entire Mediterranean coastline,
and found that sea turtles nests are negatively related to NTL intensity and are concentrated in darker
sections along the coast by using high-resolution data derived from the SAC-C satellite and the ISS [35].

As mid-high spatial resolution multispectral NTL images without light saturation that can
be obtained free of charge, the ISS NTL images not only have historical value, but are still being
photographed. If the ISS NTL images of a region have time-series characteristics, they can be used
for comparative analysis of different time phases in this region. In addition, NTL images taken by
astronauts in different regions also have spatial comparability. In other words, these NTL images
have the conditions for the comparative analysis in the temporal vertical and regional horizontal.
Sánchez de Miguel et al. have made great contributions to proving that calibration of ISS NTL images
is possible [25–27]. They applied standard procedures of image decoding, photometric calibration,
and vignetting correction. However, the standard procedures are not only complicated, but also cannot
be completed without nighttime radiation values obtained by airborne spectroradiometers and standard
star fluxes, which greatly limits the application research of ISS NTL imagery. Therefore, from this
point of view, this paper proposes a new heuristic method to improve the radiation consistency of ISS
NTL images by using readily available global cloud-free time-series NTL remote sensing data [36–44].
We put these ISS NTL images on the same radiance level with other multisource NTL remote sensing
data to realize the relative radiation normalization. The ISS NTL images available overlapped with
DMSP/OLS and VIIRS/DNB time series respectively for a particular time span. The last year in which
DMSP/OLS products were generally available to the public was 2013. Thus, for ISS NTL images before
2013, the DMSP/OLS time-series annual composite product can be used as reference images for relative
radiation normalization, while for ISS NTL images after 2013, VIIRS/DNB time-series product can be
considered for relative radiation normalization.

In this paper, taking ISS NTL images before 2013 as an example, the DMSP/OLS images were
used as reference images, and the ISS NTL RGB images of Beijing of China, Dalian of China and Tel
Aviv-Yafo of Israel in 2011 were selected for relative radiation normalization, so as to make the radiance
of images in different regions comparable. The ISS RGB NTL image of Beijing of China in 2010 was
added to compare the radiation of two epochs in the same region. This method corrects the ISS RGB
NTL image to the same gray level as other multisource NTL remote sensing images, and improves the
radiation brightness comparability and image availability of ISS images.

2. Materials and Methods

2.1. Study Areas and the NTL Images

China is a coastal country with rapid economic development [45,46]. As the capital of China,
Beijing is one of the densely populated cities and its economic development is rapid. Dalian is an
important port city in northern China. Israel is a country in the Levant region of Western Asia, located
on the southeast coast of the Mediterranean Sea. Tel Aviv-Yafo is the second-largest city in Israel,
with a developed coastal economy and the country’s densest population. It is also the economic hub of
Israel. The NTL data of a region can directly reflect the characteristics of the light environment of the
region. Therefore, it is necessary to study the relative radiation normalization of ISS NTL images for
analyzing the nighttime radiance characteristics of cities, which is also the premise of using ISS NTL
images for research purposes.
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2.1.1. The ISS NTL Images

The ISS NTL images were taken by astronauts using commercial digital single-lens reflex cameras,
and the ISS NTL images used in this paper particularly were taken by astronauts using Nikon D3S
electronic still camera during Expedition 26. The ISS NTL raw images are in NEF format with 12 or
14-bit radiometric resolution that preserves linearity of the detector, that is, file values are proportional
to the exposure received by each pixel [25–27]. As shown in Figure 2a, the noise of the ISS image in raw
format is obvious. Due to the great difference of spatial resolution between DMSP/OLS and ISS, the ISS
NTL raw image has higher bytes, more details and obvious noise. In fact, these details are not conducive
to identifying pseudo-invariant feature (PIF) points. The high-frequency components of most images
are relatively small, JPEG compression algorithms such as Discrete Cosine Transform (DCT) can filter
out the high-frequency components, which to some extent removes noise. Therefore, ISS RGB NTL
images in JPEG format with 8 bits are used to relative radiation normalization in this paper.
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Figure 2. Comparison of ISS raw image (a) and JPEG image (b) in the same region.

In order to meet the needs of promoting the development of international intelligent lighting,
Beijing of China, Dalian of China and Tel Aviv-Yafo of Israel were selected as the study areas to carry
out the relative radiation normalization in different regions at the same time for the regional horizontal
comparison of nighttime lighting. At the same time, the temporal vertical comparison of nighttime
lighting is realized by the relative radiation normalization of ISS RGB NTL images in the same region at
different times. The detailed description of ISS RGB NTL images used in this paper is shown in Table 1.

Table 1. Data description of ISS RGB Nighttime Light (NTL) images used in this paper.

Image Attribute Image-1 Image-2 Image-3 Image-4

Photo ID ISS026-E-10155 ISS026-E-24048 ISS026-E-24057 ISS026-E-28917
Image Area Beijing-Tianjin Beijing Dalian Tel Aviv-Yafo

Date &Time (GMT) 2010.12.14 14:34:43 2011.02.01 19:08:29 2011.02.01 19:09:05 2011.02.22 23:24:47
Photo Center Point 39.4◦ N, 116.8◦ E 40.0◦ N, 116.5◦ E 48.9◦ N, 121.6◦ E 30.6◦ N, 35.2◦ E

Focal Length 180 mm 80 mm 145 mm 200 mm
Camera Tilt High Oblique 27 degrees 43 degrees 26 degrees

Spacecraft Altitude 343 km 348 km 348 km 350 km
Image Pixels 4256 × 2913 4256 × 2913 4256 × 2913 4256 × 2913

Image Coverage ≈45,000 km2
≈30,000 km2

≈19,000 km2
≈5000 km2

Spatial Resolution ≈60 m ≈50 m ≈40 m ≈20 m

Images
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The varying orbital height and camera tilt angle made the direction and distance of the ground
light source received by the camera different; the different focal length made the photographing
ranges and image spatial resolution different. They caused the radiance of different ISS NTL images to
be incomparable, and that is a hindrance to using them for research purposes. The purpose of the
relative radiation normalization in this paper is to normalize the incomparable ISS NTL images to the
comparable DMSP/OLS NTL data, reducing the difference between the ISS NTL images generated by
uncertain factors such as the camera tilt angle and orbital height, and make different ISS NTL images
comparable relatively.

2.1.2. The DMSP/OLS Time-Series NTL Remote Sensing Data

The DMSP/OLS NTL annual composite product is the earliest and most widely studied time-series
NTL remote sensing product [36–44]. Since DMSP/OLS NTL images were acquired by six sensors (F10,
F12, F14, F15, F16, and F18) spanning 21 years without on-board calibration, many researchers had
calibrated them to generate a consistent NTL time series [39,40]. At present, there are many mature
methods for the relative radiation correction of DMSP/OLS time-series NTL remote sensing data of
different sensors [39,40]. In this study, a consistent DMSP/OLS NTL time-series product generated
by Zhang et al. using a robust ridge sampling regression (RSR) method [39] was selected to assist
the relative radiation normalization of the ISS NTL images. The main considerations are: (1) the
DMSP/OLS time-series annual product with 1000m spatial resolution has been corrected; (2) the time
span of the data is 1992–2013, which has a large amount of overlap with the shooting time of ISS NTL
images; (3) the pixel depth of the data is stretched to 16 bits (digital numbers 0–65535), such that the
radiance brightness characteristics of the image are prominent compared with the original image.

Pseudo invariant features (PIFs) refer to some specific elements, whose reflection characteristics
change little with time and light, such as concrete, asphalt, and rooftops [47–49]. Elvidge et al. proposed
a PIF method that combines reference images to establish a long time series nighttime light model [23]
in 2009. The invariant areas are directly related to the performance of the model. The selection of
invariant areas has two conditions: (1) the social and economic development of the invariant area is
stable, which ensures the NTL brightness changes very little; (2) the invariant area should cover all of
the grayscale levels of NTL images to ensure model universality.

When the ISS RGB NTL image of 2010 in the Beijing study area is used as the target image, F182010
of the DMSP/OLS is used as the reference image. We selected the reference image and the DMSP/OLS
NTL images of the year before (F162009) and after (F182011) the reference image as the data basis for
pseudo-invariant feature points selection. Data selection methods for other years and other study areas
are the same as above.

2.2. The Nighttime Light Image Processing

The processing flow of NTL images is shown in Figure 3, which includes three steps: image
preprocessing, model establishment, and image post-processing.

2.2.1. NTL Image Preprocessing

The preprocessing of NTL images is the preparation of identifying pseudo-invariant features,
mainly including generating difference images and unifying grayscale levels. First, we clip the
DMSP/OLS NTL remote sensing images in the study areas as the reference images. The adjacent
images of DMSP/OLS before and after the target year are compared to get the difference image. The ISS
NTL images with geographical coordinates are clipped as the target images of the study areas after
georeferencing. The three single-band images of red, green and blue in study areas of the ISS are
extracted respectively (Figure 4).
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Second, the grayscale image can solve the band difference between the ISS NTL target image and
the DMSP/OLS NTL remote sensing image. The spectrum range of DMSP/OLS NTL remote sensing
image is 400–1100 nm, covering the visible spectrum range of the ISS NTL image. The multispectral ISS
NTL image and the single band DMSP/OLS NTL remote sensing image are analyzed and compared on
the grayscale level. The pixel digital number (DN) value of the NTL remote sensing image is the mean
value of the radiant brightness of the NTL in the range of the ground pixel recorded by the sensor.
To quantify the total radiation of the three bands, we transform the ISS NTL multispectral image of the
study area into a grayscale image (Figure 4d). The formula is as follows [21,50,51]:

DNISS = 0.299R + 0.587G + 0.114B (1)

where DNISS is the DN value of the converted ISS NTL grayscale image. R, G, and B correspond to the
DN value of red, green and blue band of the ISS original image respectively.

In order to resolve the pixel scale difference between different NTL remote sensing images, we
calculate the mean DN value of all ISS pixels contained in each DMSP/OLS pixel. The calculation
formula is:

DNmean =

∑n
i=1 DNi

n
(2)

where DNmean represents the mean DN value of all ISS pixels in the DMSP/OLS pixel, DNi represents
the DN value of the ith ISS pixel in the DMSP/OLS pixel, and n represents the number of ISS pixels in
the DMSP/OLS pixel.

2.2.2. Building the Radiation Normalization Model: Pseudo Invariant Feature and Regression Method

As there is no time continuity in the ISS NTL images, these images are inconsistent in DN
values and cannot be applied to perform comparative analyses directly. Therefore, it is necessary to
build a model to improve image comparability with other time series NTL remote sensing images.
The pseudo-invariant feature method is a common method to study the relative radiation normalization
of multisource and multitemporal remote sensing data. Many scholars have studied the relative
radiation normalization method based on PIF, such as automatic scatter control regression (ASCR) [52],
multivariate change detection transformation method [53,54], and iterative weighted least square
regression method [55]. In this paper, the change detection method is used to identify the PIFs, then the
difference images are obtained, and finally, the pseudo-invariant feature areas are identified artificially.

Image change detection is the basic method to identify PIFs. To identify the PIFs, the change of
image should be detected at the pixel level. The image difference method is the simplest and most
widely used pixel-level image change detection method. The basic principle of the image difference
method is to subtract the grayscale value of multitemporal corresponding pixels. That is to say,
the corresponding pixels of two registered images are subtracted to generate a difference image.

We selected the pixels whose DN values do not change significantly in the 3-year time-series
when using the difference images to identify the PIFs. In order to exclude the area without nighttime
lights where the pixel value is always 0, it is necessary to combine the DN value of the light brightness
of the reference image for secondary screening. For example, because the epoch of observation of
the ISS target image in Beijing is 2010, F182010 image of DMSP/OLS was selected as the reference
image, and then the difference was calculated between the F182010 image and the F162009 and F182011
images, respectively (Figure 5). Finally, a new composite image is obtained by band synthesis (Figure 6).
In this example of the band synthesis process, F182010 image is the red channel, F182010 and F162009
difference image is the green channel, and F182010 and F182011 difference image is the blue channel.
According to the DN value range of DMSP/OLS NTL images, the dark red areas in the composite
image and the black areas at the edge of the city in the difference images represent the areas where
the DN value varies little over time. In addition, the large area of the same color in the center of the
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city should be excluded, and the selected PIFs should cover the DN range of the DMSP/OLS images.
Dalian and Tel Aviv-Yafo are coastal cities, so PIFs selection does not consider the sea surface areas.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 22 
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Pseudo invariant feature points were identified by using difference images, and then we use these
data points to build the regression model between the ISS NTL target image and DMSP/OLS reference
image. Many researchers have studied the consistent calibration of NTL remote sensing data by using
the pseudo-invariant feature method, and the results show that they all have good linear relationships
or quadratic polynomial relationships [56]. Based on the scatter plot distribution of these data points,
the linear regression function and the quadratic polynomial regression function are used to fit the
target image and the reference image. In order to ensure that the brightness of the dark target area
does not change when the pixel DN value is 0 and the normalized image pixel value does not show a
negative value, the linear equation and quadratic equation with intercept 0 are used for regression in
this paper:

y = ax (3)

y = bx2 + cx (4)

where y represents the DN value of the reference image, x represents the DN value of the target
grayscale image, a, b, and c are coefficients of the regression model.

The radiation normalization model obtained by this method is applied to the red, green, and blue
bands of the ISS NTL image in the study area. In this way, the radiation grayscale level of the image
is normalized horizontally on the basis of maintaining the internal differences of the original red,
green and blue bands, and then the three bands are synthesized to obtain the normalized ISS NTL
multispectral image.

2.2.3. Image Post Processing

Due to the difference of spatial resolution, land and sea location and research scope in different
research areas, the total nighttime light (TNL) or nighttime light mean (NTM) of normalized ISS
NTL images cannot be directly used for regional comparison in subsequent research and application.
To make the nighttime lights of different research areas have radiation comparability, we need to carry
out image post-processing. The areas that do not participate in the comparison and have low radiance
are defined as the image background that affects the inter-regional comparison of ISS NTL images, and
then the influence of background values is removed.

In this paper, the method of removing the influence of background value is the natural breaks
(Jenks) method. Its basic principle is to identify the classification interval based on the natural grouping
inherent in the data, and to minimize the difference within the class and maximize the difference
between each class. The DN values of NTL images in each study area are divided into five categories
by the natural breaks (Jenks) method, and the one with the lowest value is used as the background
value to remove.

In this paper, the classification results of the DN value of ISS NTL grayscale images were used to
select the background threshold. Based on this method, the background thresholds of ISS026-E-10155,
ISS026-E-24048, ISS026-E-24057, and ISS026-E-28917 images are 27, 20, 9.95, and 23 respectively
(Figure 7). The background values of red, green and blue band images and DMSP/OLS NTL images
are also removed according to the natural breaks (Jenks) method. The radiation normalization results
after removing the background value will not be affected by the size of the study area, but they will
also reduce the influence of land and ocean conditions in different study areas (Figure 8).



Remote Sens. 2020, 12, 3349 10 of 21
Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 22 

 

 
Figure 7. The ISS NTL grayscale images in each study area are divided into five categories by using 
the natural breaks (Jenks) method, and the classification threshold is obtained. (a) Beijing in 2010. (b) 
Beijing in 2011. (c) Dalian in 2011. (d) Tel Aviv-Yafo in 2011. 

 
Figure 8. Removing the background values of NTL images in each study area based on the natural 
breaks (Jenks) method. The blue areas represent the background areas. (a) The ISS grayscale image of 
Beijing in 2010 after removing the background value. (b) The ISS grayscale image of Beijing in 2011 
after removing the background value. (c) The ISS grayscale image of Dalian in 2011 after removing 
the background value. (d) The ISS grayscale image of Tel Aviv-Yafo in 2011 after removing the 
background value. (This image is rotated to keep each image aligned with north up and east at right.). 

2.2.4. Test and Verification Methods 

Figure 7. The ISS NTL grayscale images in each study area are divided into five categories by using
the natural breaks (Jenks) method, and the classification threshold is obtained. (a) Beijing in 2010.
(b) Beijing in 2011. (c) Dalian in 2011. (d) Tel Aviv-Yafo in 2011.

Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 22 

 

 
Figure 7. The ISS NTL grayscale images in each study area are divided into five categories by using 
the natural breaks (Jenks) method, and the classification threshold is obtained. (a) Beijing in 2010. (b) 
Beijing in 2011. (c) Dalian in 2011. (d) Tel Aviv-Yafo in 2011. 

 
Figure 8. Removing the background values of NTL images in each study area based on the natural 
breaks (Jenks) method. The blue areas represent the background areas. (a) The ISS grayscale image of 
Beijing in 2010 after removing the background value. (b) The ISS grayscale image of Beijing in 2011 
after removing the background value. (c) The ISS grayscale image of Dalian in 2011 after removing 
the background value. (d) The ISS grayscale image of Tel Aviv-Yafo in 2011 after removing the 
background value. (This image is rotated to keep each image aligned with north up and east at right.). 
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Figure 8. Removing the background values of NTL images in each study area based on the natural
breaks (Jenks) method. The blue areas represent the background areas. (a) The ISS grayscale image of
Beijing in 2010 after removing the background value. (b) The ISS grayscale image of Beijing in 2011
after removing the background value. (c) The ISS grayscale image of Dalian in 2011 after removing the
background value. (d) The ISS grayscale image of Tel Aviv-Yafo in 2011 after removing the background
value. (This image is rotated to keep each image aligned with north up and east at right.).
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2.2.4. Test and Verification Methods

In this paper, the correlation coefficient (R2) and root mean square error (RMSE) of four linear
regression models are calculated, and then the R2, RMSE and regression coefficient (a and b) of the
regression model are tested. R2 and RMSE of each regression model in each study area were calculated
respectively, which are defined as:

R2 =

∑(
y′t − yt

)2∑
(yt − yt)

2 (5)

RMSE =

√∑N
i=1

(
y′t − yt

)2

N
(6)

where y′t is the DN value of ISS target grayscale image after radiation normalization, yt is the DN value
of reference DMSP/OLS image, yt is the mean DN value of reference DMSP/OLS image, and N is the
number of pseudo-invariant feature points.

The feasibility and correctness of the normalization method are verified by the combination of
qualitative analysis and quantitative test. In addition to the visual effect comparison, the DN value
of the normalized ISS grayscale image is compared with that of the DMSP/OLS NTL remote sensing
panchromatic image quantitatively. The spatial resolution of the ISS image is quite different from
that of the DMSP/OLS image, so the average nighttime light index (ANLI) in the study area is used
instead of the total nighttime light index (TNLI) to test the normalization result. In order to improve
the comparability of radiance between different study areas, the background value is removed when
the mean DN value of the study area is calculated.

TNLI =
n∑

i=1

DNi (7)

ANLI =
TNLI

n
(8)

where DNi is the pixel radiation value of each grid unit in the region; n is the number of pixels in the
region; TNLI is the total nighttime light index in the region; ANLI is the average nighttime light index
in a region.

3. Results

3.1. Analysis of Linear Regression Results

30 pseudo-invariant feature points of each study area were selected to build the regression model
between the pixel DN value of ISS NTL target image and DMSP/OLS NTL reference image (Figure 9).
Figure 9a,b show the scatter distribution of PIF points on the target image and reference image of
Beijing in 2010 and 2011. Figure 9c shows the scatter distribution of PIF points on the target image
and reference image of Dalian in 2011. Figure 9d shows the scatter distribution of PIF points on the
target image and reference image of Tel Aviv-Yafo in 2011. Table 2 shows the correlation coefficient (R2)
and root mean square error (RMSE) of each regression model. The significance of the four regression
models is less than 0.05, indicating that all the four models have passed the F-statistic test, and the
models have statistical significance. The correlation coefficients are all greater than 0.7, it indicates that
the regression models are reasonable.

From the fitting coefficients of linear regression models, the correlation coefficient of Dalian NTL
images in 2011 is the highest, followed by Beijing NTL images in 2011 and Tel Aviv-Yafo in 2011,
and finally Beijing NTL images in 2010. From the fitting coefficients of univariate quadratic polynomial
regression models, the correlation coefficient of Dalian NTL images in 2011 is the highest, followed by
Beijing NTL images in 2010 and in 2011, and finally Tel Aviv-Yafo NTL images in 2011.
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Figure 9. The regression model between the pixel DN values of ISS RGB NTL target image and
DMSP/OLS NTL reference image. (a) The ISS grayscale image and reference image of Beijing in 2010.
(b) The ISS grayscale image and reference image of Beijing in 2011. (c) The ISS grayscale image and
reference image of Dalian in 2011. (d) The ISS grayscale image and reference image of Tel Aviv-Yafo
in 2011.

Table 2. Regression model coefficients of the target image and reference image.

Target Image Reference Image
a 1

R2 RMSE
b 1 c 1

ISS026-E-10155 F182010
170.3500 0.7043 631.7638

−2.4818 242.5000 0.8954 375.7838

ISS026-E-24048 F182011
276.1700 0.8828 629.6123

−2.0814 313.5300 0.8903 609.0904

ISS026-E-24057 F182011
297.7400 0.9009 535.5537

−5.0822 386.7600 0.9426 416.7660

ISS026-E-28917 F182011
160.2400 0.7722 749.2941

−2.0770 226.0600 0.8682 569.9038
1 a represents the coefficient of linear regression model with 0 intercept, and b and c represent the coefficient of
univariate quadratic polynomial regression model with 0 intercept.

It can be seen from Table 2 that the quadratic polynomial fitting results between the four target
images and their corresponding reference images are better than the linear fitting results. However,
the quadratic polynomial is subject to over-fitting, which will increase the uncertainty of the fitting
results. This is because the DMSP/OLS NTL image pixels are subject to saturation, whereas the ISS
NTL image pixels are rarely saturated. Further explanation is provided in Section 3.2.

There are obvious linear and quadratic polynomial relationships between the target image and
the reference image. Beijing and Tel Aviv-Yafo have a similar range of DN values at pseudo-invariant
feature points on ISS RGB NTL images in 2011 and the regression model coefficients of NTL image of
Beijing and Tel Aviv-Yafo in the same year are also similar, which may be due to the similar degree of
economic development and population density between the two cities. Dalian and Tel Aviv-Yafo are
both coastal cities, but their urban built-up area proportion and development mode are different, so the
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regression coefficient of their regression model is obviously different. The nighttime lights of Beijing
and Tel Aviv-Yafo are significantly brighter than those of Dalian in the evening peak, which may be the
reason for the difference of proportion and population density of urban built-up areas. In addition
to the reason for different years, the local time of the two ISS NTL images in Beijing is also different.
ISS026-E-10155 was photographed at 10 p.m. Beijing time, whereas ISS026-E-24048 was filmed at 3 a.m.
Beijing time during the Spring Festival in China. The reason for the difference of image regression
between 2010 and 2011 in the Beijing area is the camera shooting difference of ISS RGB NTL images
and the change of nighttime light with time.

Generally speaking, the fit of the regression model of Chinese cities with large urban areas is
better than that of Tel Aviv-Yafo with its small urban area. A city with a large area has the advantage of
a large fault tolerance rate, which can offset some errors.

3.2. Visual Effect of Radiation Normalization Results

In order to evaluate the radiation normalization effect of ISS NTL images, we evaluate them from
two aspects: visual qualitative analysis and DN values quantitative analysis. Although the correlation
coefficient of the quadratic polynomial model in the above experimental results is higher, because
the DN value range (0–255) of the ISS image is not fully covered, the over-fitting phenomenon of the
quadratic polynomial is obvious. That is to say, at higher DN values, the normalized DN values may
decrease or even appear negative, which does not conform to the actual situation, so we choose the
linear regression model as the relative radiation normalization model. The linear model, which is the
best relative radiation normalization model obtained from the above experimental results, is used to
normalize the ISS NTL images of red, green, and blue bands in each study area, and then these three
stretched band images are synthesized into a new normalized image. From the qualitative comparison
of the visual effect of Figure 10, the relative radiation normalized ISS NTL image has a clearer color,
higher contrast and better visual effect.
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Figure 10. Relative radiation normalization results. In each panel, the upper half represents the
image before normalization, while the lower half represents the result after normalization. (a) The ISS
nighttime light image of Beijing in 2010. (b) The ISS nighttime light image of Beijing in 2011. (c) The
ISS nighttime light image of Dalian in 2011. (d) The ISS nighttime light image of Tel Aviv-Yafo in 2011.
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Although the time gap is very short, it still can be observed that the brightness of some roads
changed in these two ISS NTL images of the Beijing study area. We observed that the nighttime lights
in the Beijing area and Dalian area are mainly white, and the nighttime lights in Tel Aviv-Yafo are
mainly yellow, which may be due to the different types of lighting lamps in these three cities.

3.3. Quantitative Analysis of Radiation Normalization Results

The ISS NTL grayscale image of the study area is normalized according to the relative radiation
normalization model obtained in this paper, and then compared with the DMSP/OLS NTL remote
sensing panchromatic image of the same area in the same year. Figure 11 shows the comparison of the
pixel DN value at the same location between the normalized ISS NTL grayscale image and the same
year DMSP/OLS NTL remote sensing image. The results show that the trend of DN values of the ISS
NTL image and DMSP/OLS NTL remote sensing image in the same position are basically the same.
The peak position of DN value of two images is the same, and the valley position is the same. The pixel
DN value of radiation normalized ISS NTL grayscale image fits well with DMSP/OLS at the low value
and shows the difference of DN value of different pixels at the high value. The high-resolution ISS
NTL image without the phenomenon of pixel saturation can also reflect the details of NTL brightness
that DMSP/OLS NTL remote sensing image cannot express.
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NTL remote sensing panchromatic image at the same location after relative radiation normalization.
(a) North of Beijing in 2010. (b) North of Beijing in 2011. (c) Midland of Dalian in 2011. (d) North of Tel
Aviv-Yafo in 2011.

Since the background value will reduce the average DN values of nighttime lights in the study
areas, we remove the background influence, and then calculate the average nighttime light index
(ANTL). The average DN values of radiation normalized ISS NTL grayscale image and three single-band
images still maintain the relative size of the original image in different study areas (Table 3). The DN
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values of ISS NTL images are normalized to the same level as DMSP/OLS NTL images. Therefore, this
relative radiation normalization method keeps the difference between different spectral of the original
ISS NTL images, and reduces the radiation difference between the original ISS NTL images and the
DMSP/OLS time series NTL remote sensing images in the same year.

Table 3. The Average Nighttime Light Index (ANLI) of the ISS NTL images before and after linear
radiation normalization in each study area.

Study Area
& Time

DMSP/OLS
Image

Before Radiation Normalization 1 After Radiation Normalization

Gray Red Green Blue Gray Red Green Blue

Beijing in
2010 5140.80 71.39 78.90 70.55 56.03 12161.30 13440.73 12017.90 9544.06

Beijing in
2011 5402.96 49.97 61.41 47.49 26.67 13799.28 16958.69 13116.31 7365.56

Dalian in
2011 3970.84 32.98 39.92 31.59 21.94 9819.08 11886.41 9404.56 6531.31

Tel
Aviv-Yafo

in 2011
4858.11 71.38 93.45 68.61 27.81 11438.68 14974.28 10994.42 4456.26

1 The data values are kept to two decimal places in this table.

According to the relative radiation normalization results in Table 3, the mean DN value of each
normalized ISS image is significantly higher than that of DMSP/OLS. This is due to the phenomenon of
pixel saturation in DMSP/OLS, and the brightness details of high brightness areas in the city centers
cannot be displayed in DMSP. The blue curves in Figure 11 illustrate the saturation of the DMSP/OLS
images. It also can be seen that the radiation brightness trend of ISS NTL grayscale images after relative
radiation normalization is relatively consistent with that of the DMSP/OLS NTL images. The nighttime
radiance of Beijing is the strongest, followed by Tel Aviv-Yafo, and Dalian is the weakest in the same
year, which is related to the relative prosperities of different cities. However, the blue light radiation
brightness of Dalian is much higher than that of Tel Aviv-Yafo, which shows that in the case of similar
red and green wavelengths. The main reason may be because of the different lighting facilities in the
two cities. Not only that, the nighttime light radiation brightness of Beijing in 2011 is higher than that
in 2010, especially in the red band and green band. This may be due to the fact that the ISS NTL image
of Beijing in 2011 was taken during the Spring Festival, and the use of decorative lights made its red
band and green band much higher than that in 2010.

3.4. Comparison of Nighttime Lighting in Typical Public Space Lighting Areas between Different Cities

The upward-directed radiance has spatial heterogeneity among different objects. The purpose
of relative radiation normalization of the ISS NTL image is to be able to directly compare the
radiance values of light sources in different parts of the world through the relative means of the
normalization procedure.

In this paper, we choose four kinds of public space lighting areas among different cities in 2011:
roads, residential areas, landscape areas and commercial areas to compare the nighttime lighting [57].
According to Google maps, a section of the main road at the edge of each city that is less affected
by other lighting radiation was selected (Figure 12). We selected a section of S214 road in Beijing,
G202 road in Dalian, and Ayalon Darom road in Tel Aviv-Yafo. The typical residential areas in the
city center were Hepingli Community in Beijing, Chunliu Street Community in Dalian, Jabot insky
Street Community in Tel Aviv-Yafo. The Olympic Forest Park in Beijing, Xinghai Square in Dalian
and Hayarkon Park in Tel Aviv-Yafo were selected as landscape areas. The Financial Street in Beijing,
Xinghai Exhibition Center in Dalian, and Midtown Commerce in Tel Aviv-Yafo were selected as
commercial areas.



Remote Sens. 2020, 12, 3349 16 of 21
Remote Sens. 2020, 12, x FOR PEER REVIEW 17 of 22 

 

 
Figure 12. Comparison of nighttime light radiation brightness after relative radiation normalization 
of different light sources in different study areas. (a) Roads. (b) Residential areas. (c) Landscape areas. 
(d) Commercial areas. 

The nighttime light radiation brightness of road, residential area, landscape, and commercial 
area after relative radiation normalization in different research areas were analyzed based on the 
multispectral ISS NTL images. We can see that the nighttime light spectrum curve of the typical 
objects of the three study areas after radiation normalization is close. The nighttime light radiation 
brightness of the typical objects in Beijing is higher than that of the other two study areas after 
radiation normalization, which is the same as shown in Table 3. The nighttime light radiation of 
residential areas and commercial areas in three study areas is similar in the visible light band in 2011. 
The nighttime road radiation in Beijing is significantly higher than that in the other two study areas. 
It may be the roads in Beijing lit more brightly than in the other cities, or it may also be related to the 
lamp spacing and traffic flow. The nighttime landscape radiation in Tel Aviv-Yafo is significantly 
lower than that in the other two study areas, which may be due to landscape lighting differences in 
different countries. The relative radiation normalization makes the ground objects in different study 
areas have radiation comparability. 

4. Discussion 

Compared with the DMSP/OLS NTL remote sensing data, as a multispectral NTL image with 
mid-high spatial resolution, ISS NTL imagery plays a unique role in the research of small-scale urban 
planning, allocation of lighting resources and blue light pollution. ISS NTL imagery can also clearly 
show the distribution of the urban road traffic network and effectively highlight the location of 
important urban transport hubs. 

As an important part of urban life, night lighting is closely related to human activities. The rapid 
development of NTL remote sensing technology provides an important new idea and way for the 
planning of smart cities. High spatial resolution NTL remote sensing products can be used to 
objectively and efficiently analyze urban lighting conditions and urban–rural development 
differences, and reflect its unique social and economic value in the process of developing people-

Figure 12. Comparison of nighttime light radiation brightness after relative radiation normalization of
different light sources in different study areas. (a) Roads. (b) Residential areas. (c) Landscape areas.
(d) Commercial areas.

The nighttime light radiation brightness of road, residential area, landscape, and commercial
area after relative radiation normalization in different research areas were analyzed based on the
multispectral ISS NTL images. We can see that the nighttime light spectrum curve of the typical
objects of the three study areas after radiation normalization is close. The nighttime light radiation
brightness of the typical objects in Beijing is higher than that of the other two study areas after radiation
normalization, which is the same as shown in Table 3. The nighttime light radiation of residential areas
and commercial areas in three study areas is similar in the visible light band in 2011. The nighttime
road radiation in Beijing is significantly higher than that in the other two study areas. It may be
the roads in Beijing lit more brightly than in the other cities, or it may also be related to the lamp
spacing and traffic flow. The nighttime landscape radiation in Tel Aviv-Yafo is significantly lower
than that in the other two study areas, which may be due to landscape lighting differences in different
countries. The relative radiation normalization makes the ground objects in different study areas have
radiation comparability.

4. Discussion

Compared with the DMSP/OLS NTL remote sensing data, as a multispectral NTL image with
mid-high spatial resolution, ISS NTL imagery plays a unique role in the research of small-scale urban
planning, allocation of lighting resources and blue light pollution. ISS NTL imagery can also clearly
show the distribution of the urban road traffic network and effectively highlight the location of
important urban transport hubs.

As an important part of urban life, night lighting is closely related to human activities. The rapid
development of NTL remote sensing technology provides an important new idea and way for the
planning of smart cities. High spatial resolution NTL remote sensing products can be used to objectively
and efficiently analyze urban lighting conditions and urban–rural development differences, and reflect
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its unique social and economic value in the process of developing people-oriented intelligent lighting
systems and intelligent urban–rural resource allocation systems. It is a trend to study light pollution
and urban intelligent lighting by using medium and high spatial resolution multispectral NTL images
from platforms such as the International Space Station.

The relative radiation normalization of ISS NTL images makes the radiance of different cities
comparable, which is conducive to the use and comparative analysis of cross-regional images, and
improves the utility of ISS NTL images. At the same time, relative radiation normalization plays a
positive role in the radiance contrast between discontinuous time-series ISS NTL images in the same
region. The radiation-normalized ISS NTL images still have the characteristics of multispectral and
high spatial resolution, which is conducive to the analysis of urban lighting attributes and impact on
people’s lives.

In this paper, the relative radiation normalization results of ISS NTL images based on the readily
available global DMSP/OLS time series NTL remote sensing annual composite product still have some
problems and uncertainties:

1. The DMSP/OLS images are calibrated images, and ISS RGB NTL imagery attempts to reproduce
the sensitivity of the human eye with logarithmic response, which has the loss of linearity,
and both data have tilt angle problem. Thus, they bring uncertainty to the relative radiation
normalization of ISS NTL images.

2. The spatial resolution difference between ISS and DMSP/OLS NTL images is large, which also
affects the accuracy of relative radiation normalization.

3. The DMSP/OLS images have pixel saturation, whereas ISS images have almost none, and this
method uses artificial recognition of pseudo-invariant feature points, and the selection of data
points has certain subjectivity.

4. There must be some residual flux stemming from the fact that the gray conversion formula doesn’t
perfectly match the DMSP-OLS sensitivity curve, which will introduce uncertainty to the relative
radiation normalization.

5. VIIRS/DNB time series NTL data is the successor of DMSP/OLS, and its spatial and temporal
resolution are better than that of DMSP/OLS. Thus, it can be considered for the relative radiation
correction of ISS NTL images after 2013.

6. The ISS NTL photos are essentially instantaneous images, whereas the cloud-free composite
images may be composed of individual frames taken over longer timescales of days to years,
which will reduce the accuracy of relative radiation normalization.

The method proposed in this paper is universal to the relative radiation normalization of all ISS
RGB NTL images. However, due to the above problems, the relative radiation normalization model
obtained by this method has limitations, which affects the relative radiation normalization accuracy of
ISS NTL images. In the future research, the relative radiation normalization of the ISS NTL images will
be realized by combining the multispectral image with higher temporal and spatial resolution and the
ground optical measurement data, so as to improve the radiation correction accuracy.

5. Conclusions

In this paper, a radiation normalization method of the ISS RGB NTL image is proposed.
The DMSP/OLS time series NTL annual composite product was used to study the relative radiation
normalization of the ISS NTL image. The relative radiation normalization model is established
by identifying the pseudo-invariant feature points. The results show that there is a good linear
and quadratic polynomial relationship between the ISS NTL image and DMSP/OLS NTL image.
The correlation coefficients of pseudo-invariant feature points are more than 0.86, which shows that
it is feasible to relative radiation normalize the ISS NTL image by the pseudo-invariant feature and
regression method. The radiation normalization results are evaluated from the visual appearance
and the DN value of study areas, and the ideal results are obtained, which provides a solution for
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improving the utility and comparability of the ISS NTL image. The radiation brightness of the relative
radiation normalized ISS NTL image has the same trend as that of the DMSP/OLS NTL image. The ISS
NTL image not only retains the multispectral and high-resolution characteristics of the study area, but
also shows clear radiant brightness details in the light saturation position of the DMSP/OLS image.
The ISS NTL multispectral photos without time continuity and geographical coordinates are placed on
the same radiation level. It can effectively improve the radiation consistency of the ISS NTL image
and realize the radiation brightness comparability between ISS NTL images in different regions and at
different times.
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