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Abstract: Hyperspectral imaging (HSI) has been gaining recognition as a promising proximal and
remote sensing technique for crop drought stress detection. A modelling approach accounting
for the treatment effects on the stress indicators’ standard deviations was applied to proximal
images of oilseed rape—a crop subjected to various HSI studies, with the exception of drought.
The aim of the present study was to determine the spectral responses of two cultivars, ‘Cadeli‘ and
‘Viking’, representing distinctive water management strategies, to three types of watering regimes.
Hyperspectral data cubes were acquired at the leaf level using a 2D frame camera. The influence of
the experimental factors on the extent of leaf discolorations, vegetation index values, and principal
component scores was investigated using Bayesian linear models. Clear treatment effects were
obtained primarily for the vegetation indexes with respect to the watering regimes. The mean
values of RGI, MTCI, RNDVI, and GI responded to the difference between the well-watered
and water-deprived plants. The RGI index excelled among them in terms of effect strengths,
which amounted to −0.96 [−2.21, 0.21] and −0.71 [−1.97, 0.49] units for each cultivar. A consistent
increase in the multiple index standard deviations, especially RGI, PSRI, TCARI, and TCARI/OSAVI,
was associated with worsening of the hydric regime. These increases were captured not only for the
dry treatment but also for the plants subjected to regeneration after a drought episode, particularly by
PSRI (a multiplicative effect of 0.33 [0.16, 0.68] for ‘Cadeli’). This result suggests a higher sensitivity
of the vegetation index variability measures relative to the means in the context of the oilseed rape
drought stress diagnosis and justifies the application of HSI to capture these effects. RGI is an index
deserving additional scrutiny in future studies, as both its mean and standard deviation were affected
by the watering regimes.
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1. Introduction

Given the continuing increases in average temperatures [1] and projections of more frequent and
severe droughts in agricultural regions [2,3], water deficiency has been among the most extensively
studied crop stress factors [4]. In pot experiments, crop responses to drought can be investigated by
varying the watering regime and comparing the obtained plant reactions across the treatments [5–8].
An alternative approach is to exploit the variability of water management strategies exhibited by
individual genotypes [9,10].

Several dehydration avoidance mechanisms have been described in crops [11,12]. Plants can
rapidly respond to a water deficit by closing their stomata, which reduces the leaf transpiration. As a
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trade-off, this reduction leads to a simultaneous decrease in the photosynthesis rate, related to limited
CO2 assimilation [13,14]. Differentiation of crop cultivars with respect to their stomatal conductance
regulation has been proposed. Plants that manage their water resources in a conservative way and
maintain a steady CO2 fixation rate, affected by moisture availability to a limited extent, have been
termed as water-savers. Water-spenders, on the other hand, maximise their CO2 assimilation, depleting
the available water resources at the onset of a drought due to a delayed closure of the stomata [15,16].
Cultivars with a high baseline stomatal conductance tend to not exhibit a mid-day depression in
photosynthetic rates. They are capable of sustaining a high photosynthesis rate and can avoid heat
stress due to the cooling action of the transpiration, provided that water is available [17].

Stressed and healthy vegetation differ with respect to their spectral reflectances, with the effects
of stress detectable before they become apparent to the naked eye [18–20]. The visible spectral
region is affected by stress-induced changes in pigment concentrations and activities. These changes
include anthocyanin and (relative) carotenoid accumulation aimed at protecting the photosynthetic
apparatus and pigment breakdown, which accompanies chloroplast deterioration caused by oxidative
stress [13,21–23]. As leaf mesophyll cells lose their turgor and shrink, there can be a temporary
increase in the near-infrared reflectance, eventually followed by a decrease below the normal level [19].
The red-edge shifts towards shorter wavelengths and becomes less steep [20,24,25].

Among the spectral methods, imaging spectrometry (hyperspectral imaging) has been gaining
recognition as a promising proximal and remote sensing technique for crop status assessment [26–28].
Its important advantage over the more traditional point spectrometry is the availability of precise
spatial information [26], which can address the mixed spectra problem in close-range applications.
This advantage is accomplished by using spectral segmentation methods [29], which enable the
separation of the object and background pixels [30], or the identification of pixels affected by
unfavourable illumination effects [6]. Furthermore, the presence and distribution of geometric features
can be analysed in the image [29,31].

Studies devoted to drought effects on crop hyperspectra have been primarily focused on
the species that dominate the global commodity market. Those species include maize [6,30] and
other staple cereals [7,32,33]. A relatively large amount of attention has also been given to fruit
crops [18,34,35]. On the other hand, numerous other species have so far been largely neglected by the
studies, including those of regional importance.

Due to its nutritional [22,36,37] and technical [37,38] value, oilseed rape (Brassica napus L.; hereafter,
OSR) is an important crop in many parts of the world. It is widespread in North America [39,40],
China [40], Europe [39], and India [41]. OSR is susceptible to drought [12,22] and, along with other
brassicas, the future cultivation of this species is endangered by dry spells [39,42].

The reproductive phase of OSR has been associated with an especially high sensitivity [22,43],
but it can also be permanently affected by water deprivation earlier in its development. This possibility
justifies extending studies to juvenile plants and to crop recovery after conclusion of the drought
period, which is an underexplored research area [5]. Müller et al. [44] compared the physiological
status of OSR plants that had been water-deprived at the shooting developmental stage and then
rewatered with specimens receiving irrigation for the entire duration of the experiment. The treated
plants exhibited reduced productivity and their physiological profiles were affected. The physiological
changes in even younger plants were studied by Kosová et al. [45] and Urban et al. [15].

In addition to the physiological parameters, a trace of a drought episode can be detectable in
a spectral signature of the affected crop. Such a possibility was demonstrated by Linke et al. [8] for
wheat and by Sun et al. [5] for maize. The authors tested the changes of several vegetation indexes in
plants exposed to repeated drought and recovery cycles. They observed a full recovery after the first
cycle, but the second recovery was incomplete. As a possible cause, the authors suspected progressing
cell deterioration due to oxygen radicals, which could not be neutralised in the absence of carotenoids
due to their removal in the course of the preceding stress episode.
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OSR has been the subject of various hyperspectral imaging studies. Based on field experiments,
Piekarczyk et al. [46] and Zhang and He [47] attempted to predict its yield using vegetation indexes
and partial least squares regression, respectively. Kumar et al. [41] cite several publications devoted
to OSR pests and diseases. Xia et al. [37] analysed the imagery of water-logged plants. The effects of
herbicide exposure were studied by Kong et al. [48]. In contrast to these stress factors, the possibilities
of capturing the OSR response to drought using a hyperspectral camera remain unaddressed.

As highlighted by Kruschke and Liddell [49], “stressors [. . . ] can increase the variance of a group
because not everyone responds the same way to the stressor”. In the context of close-range crop
hyperspectral imaging, the “group” can refer to plant foliage or leaf tissue composed of individual
leaves and cells, respectively, each responding to the change in the environment in a distinct way.
Especially characteristic for stress-induced leaf senescence is the source–sink differentiation between
the older and younger leaves [23]. The potential of imaging spectrometry to provide an insight into
the spatial variation of stress symptoms across crop foliage was demonstrated for drought [7,32,33,50],
nitrogen deficiency [51], pest infestation [50], and herbicide exposure [48]. OSR is characterised by
relatively large leaves, even in early developmental phases. Hyperspectral imaging that captures
leaf-level spectral variation may, therefore, prove to be a suitable approach for water deficiency
detection in this crop [32].

Studies on crop responses to stress conditions frequently employ traditional experimental designs,
such as a randomised block design, coupled with linear modelling for statistical inference [42,43,52].
The frequentist approach prevails in the fitting and evaluation of these models. Various authors
noted the shortcomings of the frequentist statistics, and have advocated Bayesian methods as an
alternative [49,53,54]. Historically, first the lack and then the high computational demands of
suitable numerical methods posed obstacles towards a wider adoption of the Bayesian paradigm [55].
These hindrances have been largely removed by an increase in computer speeds [55,56], followed by
improved accessibility of parallel computing [57], and the availability of software with capabilities
suited to the needs of the scientific community [55,58–60].

One major appeal of Bayesian statistics is the ease with which interval estimates of model
parameters can be quantified, even for complex models. Notably, it is possible to obtain estimates
with respect to not only the mean values but also standard deviations, shape factors, or hurdle
values—again, also for complex models [49]. In the context of stress detection with imaging
spectroscopy, this capability can be readily exploited to assess the influence of the stressor on the
spectral variation across the foliage of the affected plant.

The aim of the present study is to determine the spectral response of juvenile OSR representing
two water management strategies to three types of watering regimes. The study is performed at the
leaf level by employing a high-resolution hyperspectral camera. The influence of the OSR cultivars and
watering regimes on the extent of leaf discolourations, vegetation indexes, and principal component
scores are investigated. Bayesian statistics are used to obtain the interval estimates of the treatment
effects with respect to the mean value and standard deviation differences.

2. Material and Methods

2.1. Plant Material and Experimental Factors

The experiment was based on winter OSR plants of the ‘Cadeli’ and ‘Viking’ cultivars.
The two genotypes differ in terms of their drought-coping strategies, with ‘Cadeli’ representing
the “water-saver strategy” and ‘Viking’ exhibiting the “water-spender strategy”, as revealed by their
physiological [15,45] and proteomic [15] profiles. This difference is related to the origin of the cultivars,
which is France for ‘Cadeli’ and Germany for ‘Viking’ [15].

The study was conducted on the premises of the Crop Research Institute in Prague-Ruzyně
(Czech Republic). The seeds of both cultivars were obtained from OSEVA PRO s.r.o. (Opava,
Czech Republic). Each seed was started on 11th May 2018 by placing it in a thermostat (Biological
thermostat BT-120, Laboratorní přístroje Praha, Prague, Czechoslovakia) for two days set to 20 ◦C.
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The obtained seedlings were transplanted three days later to 14-cm diameter pots filled with 1.01 kg of
potting mixture produced at the site. The seeds were topped with an additional 0.25 kg of the mixture.
Each pot contained five seedlings of either of the cultivars. The potted plants were grown in a growth
chamber (T-64, Tyler, Budapest, Hungary) in 18 ◦C to 20 ◦C, under a 16-h photo period, exposed to
400 µmol m−2 s−1 irradiance up to the second leaf (BBCH 12) developmental stage. At that point,
the watering regime experimental factor was introduced.

The watering of the pots followed one of the three treatments: The control pots were watered
daily to 70% of the substrate water capacity (SWC). For the pots in the dry treatment, the watering was
reduced to 45% of the SWC, starting 14 days after the sowing, and 10 more days later the watering was
stopped completely. The pots in the rewatered treatment were treated according to the same plan as
the water-deprived plants, but after 5 days of suspended watering they were watered to 100% of the
SWC to induct regeneration. The pots were grouped in the growth chamber according to the watering
regime, which resulted in a lack of true replication of this factor.

A total of n = 26 pots were used in the study. Table 1 depicts the pot numbers according to the
two experimental factors. The uneven numbers across the treatment combinations stem from the fact
that the material was used in another experiment, which involved destructive sampling.

Table 1. Oilseed rape pot counts used in the experiment according to the experimental treatments.
The parenthesised values refer to the counts after excluding a low-quality image.

Watering Regime Cultivar

Cadeli Viking

dry 6 6
rewatered 3 (2) 3 (2)
watered 5 3

2.2. Image Acquisition and Pre-processing

The imaging took place on 27 June 2018. By that time, the plants had attained the phase of
3 to 4 leaves (BBCH 13, 14), and pigmentation changes due to water deprivation were apparent
(Figure 1a). The images were collected between 14:45 and 15:45, outdoors, in natural light
conditions. The illumination was variable, as illustrated by the radiant exposure measurements
from a meteorological station located at the site (Figure 2), and there were periods of no direct sunlight.
A photo tent was used to obtain diffuse illumination and create a wind barrier.

The imager was a 2D frame hyperspectral camera (Rikola, Senop, Oulu, Finland), mounted on a
tripod at the tent entrance (Figure 1b). An irradiance sensor was placed inside the tent to account for
the variation in the illumination conditions. Its readings, expressed in relative units, varied between
82 and 181 (Figure 2), reflecting the unstable light conditions during the campaign. A dark reference
was obtained prior to the acquisition of the OSR images with the aid of a 50-mm black masking tape
(T743-2.0, Thorlabs Inc., Newton, NJ, USA). Four pots—two per cultivar and placed at the tent bottom
in an alternated manner against a background of black non-woven textile—were captured in each
image. Since the number of pots in the rewatered treatment was not divisible by four, some of the pots
were captured for a second time. Those extra pot images were not included in the analysed dataset.
First, the dry plants were imaged, followed by the watered plants, and then followed by the rewatered
plants. This ordering reflected the pot grouping in the growth chamber. The images of the plants were
interleaved with images of Spectralon tiles with 2, 9, 23, 44, and 75% reflectance factors. The internal
camera temperature was stable, in the 32.56 ◦C to 33.81 ◦C range.
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Figure 1. Material used in the experiment. (a) Oilseed rape in pots 16 days before the spectral
data collection. (b) Imaging setup with the photo tent and the hyperspectral camera on the
tripod. (c) False-colour composite rendering of one of the hyperspectral data cubes employed in
the pixel labelling.
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Figure 2. Radiometric measurements of ambient illumination during the acquisition of the
hyperspectral imagery. The black line represents radiant exposure values integrated over 10-s intervals.
The red dots represent readings from a relative irradiance sensor associated with the individual images.

The hyperspectral data cubes comprised 41 evenly spaced bands ranging from 503 to
903 nm. The spatial resolution was 1010 × 1010 pixels and the radiometric resolution was 12 bits.
The integration time was set to 30 ms. The pot rims were approximately 0.70 m away from the camera
lens, resulting in a GSD of approximately 0.43 mm per image pixel.
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Figure 3 depicts the imagery pre-processing and processing workflow. After the conversion from
the digital numbers, Spectralon radiance values were sampled on a 20 × 20 pixel grid. The grid
sampling was intended to reduce the effect of spatial autocorrelation and the computation time.
For every band, a mixed-effect empirical line model [61] was fitted with a reflectance logit as the
dependent variable, radiance as the independent variable, and pixel as the grouping variable (fit ELM
in Figure 3). The logit transformation accounted for the reflectance values being constrained between 0
and 100% [62], and the grouping variable was introduced for the possibility of an uneven illumination
of the scene during the acquisition process. A transformation of the radiance values to the reflectance
values was performed by applying the obtained models to the individual spectral bands (pred ELM).

In the next pre-processing step, the reflectance images were subjected to band registration (reg)
to remove the effect of camera sensor misalignment [63]. The ORB algorithm was used for feature
detection and description and was coupled with brute-force descriptor matching [64]. The band
registration failed for one of the images of the rewatered plants, probably because of leaf movements
from the wind. That image was excluded from the subsequent analyses (Table 1).

In each of the plant images, the coordinates of three points along each pot circumference were
identified by hand. From these, the pot centre coordinates and radii were derived. The radii lengths
were then reduced by a factor of 0.95 to exclude the pot rims from the regions of interest, which were
delimited as inscribed squares (crop).

2.3. Pixel Classification and Evaluation of Class Size Proportions

A random sample of 200 pixels was drawn from across all regions of interest to train and validate
a classification model aimed at distinguishing between healthy (fresh) leaf zones and those exhibiting
discolouration, which was attributed to drought. Due to an uneven number of pixels across the pot
images, stratified sampling was employed. First, a pot was sampled, followed by a pixel within.
The sampled pixels were subsequently hand-classified as either background, fresh-leaf, dry-leaf,
or edge pixel, based on pseudo-RGB (R: 647 nm, G: 563 nm, B: 503 nm) rendering of the pot images
(Figure 1c).

The pixels at the leaf edges or zone boundaries were treated as missing data and dropped.
The reflectance spectra of the remaining pixels (n = 181) were randomly partitioned into the training
and test dataset at a 3:1 proportion. The partitioning was stratified with respect to the pixel class.
Using the training dataset, a Support Vector Machine (SVM) classification model with the radial
basis function kernel [65] was fitted to the pixel hyperspectra (fit SVM). The cost hyperparameter of
the model was tuned to maximise the classification accuracy using 10-fold cross-validation and the
Bayesian model-based optimisation search algorithm [66]. The performance of the obtained model
was then assessed using the test dataset. Finally, the model was applied to classify every pixel in the
pot images (pred SVM).

The dry-leaf and fresh-leaf classes were merged to create plant masks [67], which were
subsequently subjected to 3-pixel erosion [63] to remove leaf pedicels and artefacts resulting from
imperfect band registration. The eroded masks were then applied to the pot images (mask).

Dry-leaf pixels were counted in each masked pot image, and the effects of the experimental
treatments on the dry-leaf pixel proportion were assessed using a Bayesian linear mixed-effect model
(fit LM1). The model assumed a zero-inflated binomial data generating distribution of the response
variable (with a logit link) and accounted for the grouping of the leaf pixels within the pots and of the
pots within the individual images. In addition to reflecting the dataset structure, the inclusion of the
grouping variables was intended to address the problem of variable illumination conditions during the
hyperspectral data acquisition campaign. Conservative, yet meaningful priors [54,68] were assumed.
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ELM SVM

LM1

PCA

fit ELM

pred ELM

reg crop

fit SVM

pred SVM

mask fit LM1

vegind

trans

fit LM2

fit LM3

LM2

LM3

Figure 3. Pre-processing and processing workflow of the hyperspectral images. fit ELM = fitting of an empirical line model, pred ELM = application of the empirical
line model to the spectra, reg = band registration, crop = cropping of the images to the regions of interest, fit SVM = fitting of a Support Vector Machine model,
pred SVM = pixel classification using the Support Vector Machine model, mask = background masking, fit LM1 = linear modelling of dry-leaf pixel proportions,
vegind = deriving of vegetation indexes, fit LM2 = linear modelling of the vegetation index values, trans = spectra pre-processing, fit LM3 = linear modelling of the
principal component scores of the pre-processed spectra.
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2.4. Vegetation Index and Full-Spectrum Analyses

Twenty vegetation-index values (Table 2) were calculated for each pixel of the masked pot images
(vegind). In cases where the wavelengths present in an index definition did not match the available
image wavelengths, the closest wavelength was used, instead.

Table 2. Vegetation indexes used in the study, and their reported sensitivities to biochemical,
physiological, and structural plant properties.

Vegetation Index Formula Sensitivity Reference

SR r900
r680

Chl, fIPAR, LAI [69]

GI r554
r677

Chl [70]

RGI r690
r550

Chl [70]

DVI r900 − r680 LWC [71]

NDVI r900−r680
r900+r680

Chl, fIPAR, LAI [69]

RDVI
√

NDVI×DVI fAPAR [72]

PSRI r678−r500
r750

Chl, Car [73]

PSSRa
r800
r680

Chl, Car [74]

PSNDa
r800−r680
r800+r680

Chl, Car [74]

RNDVI r750−r705
r750+r705

Chl [75]

PRI570
r570−r531
r570+r531

ΔF/Fm’ [76]

PRI512
r512−r531
r512+r531

Gs, Ψ, EPS [77]

PRInorm
PRI570

RDVI× r700
r670

Gs, Ψ [78]

MTCI r753.75−r708.75
r708.75−r681.25

Chl [79]

MCARI [(r700 − r670)− 0.2(r700 − r550)]× (r700 − r670) Chl [80]

TCARI 3
[
(r700 − r670)− 0.2(r700 − r550)

r700
r670

]
Chl [81]

OSAVI r800−r670
r800+r670

LAI [82]

TCARI/OSAVI TCARI
OSAVI Chl [81]

CIgreen
r750
r550
− 1 Chl [83]

CIre
r750
r710
− 1 Chl [83]

Car = carotenoids, Chl = chlorophyll, EPS = violaxanthin:antheraxanthin:zeaxanthin
balance, ΔF/Fm’ = fluorescence-based PSII light use efficiency, fAPAR = fractional
absorbed PAR, fIPAR = fractional intercepted PAR, Gs = stomatal conductance, LAI = leaf
area index, LWC = leaf water content, Ψ = leaf water potential.

From each vegetation index pot image, 36 pixels were sampled on a regular grid to reduce
the effect of spatial correlation while retaining information on the within-pot index value variation.
Pixels located in the masked-out areas were discarded. To assess the effect of the experimental
treatments on the index values, an ensemble of univariate Bayesian linear mixed-effect models was
fitted (fitL̃M2). The individual model formulations took the sample–pot–image grouping hierarchy of
the observations into account and relaxed the assumption of index value homoscedasticity across the
treatment combinations. Because of the variety of the indexes, the modelling assumed uninformative
priors [55,84].

In addition to the vegetation-index approach, an analysis based on the full-spectrum information
from raw and pre-processed spectra was attempted. The pre-processing scenarios (trans) comprised
the Savitzky–Golay filter (SGF), multiplicative scatter correction (MSC), finite differences derivation,
and second derivation [85]. In the next step, the spectra were subjected to dimensionality reduction
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using PCA to remove redundant radiometric information. The influence of the experimental treatments
on the first four PCA loading values was then assessed using multivariate linear modelling (fit LM3),
readily available in the Bayesian paradigm [55], to take the correlations between the loadings into
account. The predictor part of the model was formulated in the same way as for the vegetation indexes.

2.5. Statistical Inference and Model Diagnostics

Accuracy of the SVM classification was determined using a confusion matrix. For the linear
models, the posterior distributions of parameters were derived and visualised to assess the directions,
magnitudes, and uncertainties of treatment effect estimates. Numerical summaries: posterior mode
and a 95% credibility interval [49,54] were also computed. The estimated differences among the
vegetation index means were additionally converted to Cohen’s d relative effect sizes, with the watered
treatment index standard deviations pooled across the cultivars as the standardiser [86]. The fits of
the linear models were assessed using the R-hat statistics [59], by inspecting posterior trace plots [55],
and performing predictive posterior checks [54].

2.6. Reproducing the Study

Pre-processed hyperspectral data cubes are available from a Zenodo repository along with
the scripts that were employed for their analysis (doi:10.5281/zenodo.3975431). A GNU Guix [87]
manifest file and definitions of extra software packages are also included to recreate the computational
environment. A Makefile [88] describes and facilitates the execution of individual steps of
data processing.

A major part of the analysis was programmed in the R language, and run in the 3.6.1 version of the
interpreter [89]. The e1071 package (version 1.7.2) [90] was employed to fit the SVM model, and mlr
(2.15.0) [91] was used in combination with mlrMBO (1.1.2) [66] for its tuning. The Bayesian linear models
were fitted with the aid of the brms (2.10.0) [58] interface to Stan (2.19.1) [59]. Tools available in SAGA
GIS (6.3.0) [92], accessed from the RSAGA package (1.3.0) [93], enabled image masking and erosion.
Band registration was performed using Python bindings to the OpenCV library (3.4.3) [94].

3. Results

3.1. Image Segmentation and Dry Pixel Occurrence

Accurate classification of the reflectance spectra was obtained with SVM, with all but 2 of the
47 pixels in the test set correctly assigned (Table 3). The spectra of ten randomly sampled pixels in each
pot data cube are shown in Figure 4. As expected, the spectra of the pixels identified as dry exhibit a
decreased red-edge slope and absent chlorophyll absorption features [24,25]. Their spectral variability
for wavelengths below 700 nm appears higher relative to the fresh pixels. The background spectra
form a slightly curved pattern, which is typically encountered for soil. Some pixels in this class are
characterised by an increase in the near infrared reflectance, which can be attributed to organic debris
and sub-pixel effects (spectral mixing).

Table 3. Validation results of the Support Vector Machine (SVM) pixel classification model.

Observed Classes Predicted Classes

b d f

background 26 0 1
dry 0 8 1
fresh 0 0 11
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Figure 4. Representative hyperspectra of the pixel classes obtained from SVM segmentation of pot
images. The blue areas delimit the interquartile reflectance ranges.

Figure 5 depicts the relationship between the experimental factors and the proportion of pixels
identified by the SVM model as dry in a hyperspectral image. The narrowest posterior distribution
was obtained for the cultivar contrast under the dry regime, meaning that the cultivar effect was
estimated with the highest certainty in this analysis [49]. However, since the distribution is centred
close to the value of 1, it fails to provide information on the sign of the difference. Wide posterior
distributions were obtained for the two remaining comparisons in this group. The multiplicative effect
size along with the 95% credibility interval is ESViking/Cadeli = 1.06 [0.23, 5.12]. The contrasts involving
the watering regime suggest the dry pixel occurrence having been affected by a restricted water supply,
albeit with a high uncertainty. As expected, all but two comparisons indicate a lower dry leaf surface
area with improved water availability, especially for ‘Viking’ (ESwatered/dry = 0.009 [0.00005, 1.6]).
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Figure 5. Posterior distributions of the mean dry pixel frequency differences between the experimental
factors. Each curve represents one contrast. The differences are assumed to be multiplicative. The top
subplot depicts comparisons between the cultivars and the bottom plot comparisons between watering
regimes. The effect sizes are on a logarithmic scale centred at the value of 1 (lack of effect).

3.2. Vegetation Indexes

The influence of the experimental factors on the vegetation index values is shown in Figure 6.
Because of the different numeric scales associated with individual formulations, the x-axis ranges
pertaining to the index means are proportional to their standard deviations in the watered treatment,
and the y-axis ranges are inversely proportional. In this way, not only can treatment effect directions
and the strength of evidence be assessed for single indexes, but it is also possible to quantify the
relative effect sizes [86] and to compare them across the formulations. Treatment effects with respect to
index standard deviations were measured on a multiplicative scale. For this reason, fixed axis ranges
were employed for the remaining subplots.
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Figure 6. Posterior distributions of the mean (µ) and standard deviation (σ) differences between experimental factors for each vegetation index. The mean and
standard deviation differences are assumed to be additive and multiplicative, respectively. The left-hand and right-hand side subplot columns depict comparisons
between the cultivars and watering regimes, respectively. The latter are on a semi-logarithmic scale.
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Regarding the cultivar effect (odd column pairs), ‘Viking’ and ‘Cadeli’ maintained under
the watered treatment clearly differed with respect to the MCARI and MTCI mean index values
(left-hand column in each odd column pair), as indicated by the value of zero being in the tail of
the posterior density distribution. For MCARI, the relevant curve extends over the positive values
of the estimated difference, which indicates that ‘Viking’ had, on average, higher values of this
index. The raw effect size is ESViking−Cadeli = 0.06 [0.01, 0.11], and Cohen’s d is dViking−Cadeli =

1.16 [0.22, 2.08]. To a limited extent, the cultivars in the control treatment differed in terms of
TCARI (ESViking−Cadeli = 0.04 [−0.02, 0.10], dViking−Cadeli = 0.84 [−0.33, 1.99]) and TCARI/OSAVI
(ESViking−Cadeli = 0.10 [−0.02, 0.21], dViking−Cadeli = 1.20 [−0.24, 2.67]) PRInorm appears to be
insensitive to the cultivar differences, as indicated by the compressed mass of the posterior density
centred around the value of zero (ESViking−Cadeli = 0.00 [−0.03, 0.03]). On the other hand, the Cohen’s d
credibility interval is wide (dViking−Cadeli = 0.02 [−0.99, 1.04]).

In addition to the vegetation index mean values, their standard deviations differed across
the two cultivars (right-hand columns). Discernible differences occurred in a larger number of
indexes, primarily for the control treatment. The density distributions of SR, DVI, NDVI, RDVI,
PSSRa, and TCARI/OSAVI extended below a ratio of one, indicating lower index value variations
in watered ‘Viking’ than in ‘Cadeli’. An opposite effect occurred for RGI, MCARI, and CIgreen.
Similar differentiation is not so apparent for the remaining treatments.

The influence of the watering regimes (even column pairs in Figure 6) on the leaf spectra
was captured by the mean values of several vegetation indexes. Unsurprisingly, particularly large
differences were obtained for the watered:dry contrast. The RGI index exhibited a high sensitivity in
the ‘Cadeli’ cultivar, with its values lower in the control plants (ESwatered−dry = −0.96 [−2.21, 0.21],
dwatered−dry = −6.94 [−18.01, 1.48]). Moreover, the water availability had a positive influence on
the MTCI, RNDVI, and GI indexes in the ‘Cadeli’ cultivar, with the effect not as strong as for
RGI, but more precisely estimated, as indicated by the concentrated mass of the posterior density
curve. Similarly to the cultivar effect, the PRInorm mean appears to have been insensitive to the leaf
spectra differences across the individual watering regimes (e.g., ESwatered−dry = −0.03 [−0.06, 0.01],
dwatered−dry = −0.89 [−2.10, 0.25] for ‘Cadeli’). The PRI index that appears to respond to the
watering treatments is PRI512, but this pattern is uncertain (e.g., ESwatered−dry = −0.04 [−0.09, 0.01],
dwatered−dry = −1.06 [−2.42, 0.22] for ‘Cadeli’).

The variation in RGI and PSRI vegetation indexes exhibited sensitivity to the difference between
the dry and control leaf spectra in ‘Cadeli’. Not only is the observed treatment effect strong, but its
estimate is fairly precise (ESwatered/dry,σ = 0.10 [0.07, 0.16] for RGI and 0.10 [0.06, 0.17] for PSRI;
note that the effects are multiplicative). The same indexes revealed an effect of drought on the ‘Viking’
spectra, albeit to a lesser degree (ESwatered/dry,σ = 0.36 [0.21, 0.64] and 0.14 [0.07, 0.29]). The variations
in the majority of the remaining indexes were affected by the discussed treatment contrast for at
least one of the cultivars. Several indexes revealed the difference between the rewatered and dry
treatment, particularly PSRI (ESrewatered/dry,σ = 0.33 [0.16, 0.68] for ‘Cadeli’). Even more interestingly,
the variations in TCARI and TCARI/OSAVI responded to the watered:rewatered contrast in both
cultivars, with the latter index associated with a stronger effect (ESwatered/rewatered,σ = 0.40 [0.28, 0.55]
for ‘Cadeli’). What is striking it that all of the affected indexes exhibited the same direction of the water
regime effect, namely, a variation decrease with an improving water availability (posterior distributions
extending over values below one).

3.3. Full Spectrum Information

The distribution of the leaf pixel spectra in the principal component space did not reveal
any differences between the investigated cultivars Figure 7. Regarding the watering regime,
the observations representing the rewatered treatment occur in clusters. For the raw spectra, they form
a line corresponding to positive PC1 or negative PC2 coordinates, and the values in-between.
According to the loadings plot, both of these directions can be associated with a decreased NIR
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reflectance. A similar pattern, with the PC2 axis reversed, was obtained for SGF. As a matter of fact,
this pre-processing altered the spectra to a minimal degree. After MSC pre-processing, the rewatered
pixel spectra become associated with high PC1 values, indicative of increased green and decreased
red and red-edge reflectance, suggesting a red-edge shift towards longer wavelengths. The derivated
spectra of the rewatered regime are associated with positive PC2 values, indicating a more descending
slope to the left of the red absorption feature and a more ascending slope towards the longer
wavelengths; thus more pronounced red light absorption. The double derivation did not result
in any clustering; however, the pixels representing the dry watering regime appear to extend over a
larger area of the principal component space, suggesting a higher spectral variation. An interesting
pattern, though unrelated to any of the experimental treatments, can be discerned in the MSC PCA
plot, in which the spectra are separated into two large clusters.

By using the obtained PCA coordinates of individual pixels as input data for linear modelling,
the information on grouping of the observations could be incorporated into the analysis. With this
additional step, patterns suggested by the PCA plots turned out to be largely spurious, but some
new ones emerged (Figure 8). Regardless of the spectra pre-processing, no separation of the cultivars
was obtained with respect to the means of the first principal component scores (first subplot column).
However, the comparison of the PC1 score standard deviations (second column) revealed less varied
values for the watered ‘Viking’ plants relative to the ‘Cadeli’ cultivar for MSC (ESViking/Cadeli,σ =

0.53 [0.32, 0.96]), indicating a higher variation of green, red, and red-edge reflectances in the latter
(Figure 7).

Regarding the treatment contrasts, the raw and SGF-filtered spectra exhibit somewhat lower
PC1 mean values of the leaf pixels in the control watering regime compared to the regeneration
treatment (ESwatered−rewatered = −0.33 [−0.81, 0.15] and −0.33 [−0.84, 0.12], respectively for ‘Cadeli’;
third column in Figure 8). This outcome is in agreement with the clustering of the rewatered pixels
in the right-hand part of the respective PCA plots (Figure 7), but the evidence is too weak to draw
any conclusions.

A consistent pattern of treatment effect posterior distributions is apparent for the remaining
pre-processing approaches. The variability of the PC1 scores was found to be higher in the watered
regime than in both dry (‘Cadeli’) and rewatered plants (both cultivars). When the latter two treatments
are compared, the dry spectra appear to be more variable. The treatments can, thus, be ordered as
watered > dry > rewatered. The patterns are especially pronounced in the case of derivative spectra
and spectra subjected to MSC.
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Figure 7. Principal component scores (left-hand column) and loadings (right-hand column) of the pixel
reflectance values according to image pretreatment. Colour and shape differentiate observations with
respect to the experimental treatments.
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Figure 8. Posterior distributions of the mean (µ) and standard deviation (σ) differences between
experimental factors for first principal component loading values according to spectra pre-processing.
The mean and standard deviation differences are assumed to be additive and multiplicative,
respectively. The left-hand and right-hand side subplot columns depict comparisons between the
cultivars and watering regimes, respectively. The latter are on a semi-logarithmic scale.

4. Discussion

4.1. Image Quality and Patterns Related to Segmentation

The inconsistency in the irradiance sensor readings with regard to the radiant exposure
measurements suggest that artefacts were introduced during the conversion of digital numbers
to radiance values. This problem most likely stems from the directional sensitivity of the sensor,
which was placed on the flexible photo tent construction. Directional sensitivity of the device delivered
with a Rikola camera has been reported also by other authors [95]. Other potential nuisance factors
include the distance from the meteorological station to the spot where the imagery was captured and
the presence of a building and the camera operators in the proximity of the photo tent. Although the
formulations of the linear models, employed at later stages of the image analysis, accounted for
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radiometric differences between the individual data cubes, it is still preferable to acquire data of
maximum quality in the first place. Therefore, for similar studies, rigid installation of a Rikola
irradiance sensor is recommended.

SVMs are a versatile multivariate classification tool due to their non-parametric nature,
robustness against outliers, reduced risk of training data over-fitting, quick and reliable convergence
to a global optimum, and the availability of the kernel trick, which can yield non-linear
hyperplanes [65,96]. The applicability of SVMs to assigning leaf pixels into drought stress classes
was demonstrated by Asaari et al. [6] and Behmann et al. [7] for cereals. The high pixel classification
accuracy and plausible spectral patterns that can be discerned in the obtained classes highlight
the potential of SVMs to segment OSR images, a crop from a different agronomic group and a
botanical family.

An obvious disadvantage of the adopted approach is the laborious pixel labelling. SVMs and
their extensions give satisfactory predictions even when trained with small datasets. On the other
hand, the modelling can fail when errors are present in the reference data [96]. Rather than reducing
the size of the training pool, it would be more desirable to employ a solution that allows for dispensing
of pixel labelling, especially considering the fact that it is challenging before stress symptoms are
visible. In a maize drought phenotyping study, Asaari et al. [6] avoided this step by performing
unsupervised classification on a reduced dataset and labelling the obtained clusters, rather than
individual pixels, prior to SVM classification. Behmann et al. [7] devised a workflow based on ordinal
clustering, which further facilitated the process, as only the extreme clusters needed to be labelled.

Scarce evidence of treatment effects was obtained from pixel counts representing fresh and dry
pixel classes. The estimation uncertainty can, in part, be attributed to low pot counts in the control and
regeneration treatments. The stronger reduction of the dry-pixel proportion in well-watered conditions
estimated for ‘Viking’ relative to ‘Cadeli’ would be in agreement with the high drought sensitivity of
this cultivar [15]. However, additional data are needed to confirm this pattern.

4.2. Vegetation Indexes

In a spring wheat experiment by Peteinatos et al. [52], water-stressed plants exhibited decreased
MCARI values. One of the components on this index is the green reflectance. Consequently, the authors
linked the observed effect to a reduced chlorophyll content, which is a common stress symptom in
plants [24,97]. Similarly, in the present study, a higher MCARI in well-watered ‘Viking’ can be
explained in terms of increased photosynthetic activity fostered by the favourable hydric conditions.
The tendency towards minimising the periods of stomatal closure allows this water-spender to thrive
in the control watering regime.

However, this interpretation can be questioned in light of the results obtained
by Haboudane et al. [98] for maize. The authors reported a negative, rather than positive,
relationship between the chlorophyll content and MCARI. At the same time, the relation was
positive for MTCI, an index that employs reflectances around the red-edge [79]. The latter result
was corroborated by Gitelson [99] for maize and soybean. The discrepancy pattern between MCARI
and MTCI is in agreement with the present study findings. While watered ‘Viking’ exhibited higher
MCARI than ‘Cadeli’ maintained under the same regime, the MTCI values were found to be lower
(ESViking−Cadeli = −0.53 [−0.93,−0.12], dViking−Cadeli = −1.18 [−2.09,−0.26]).

Contradictions of this kind reveal the problematic nature of relying on single vegetation indexes,
at least as far as index means are concerned. In addition to the property of interest, the index
value can be affected by additional confounding variables; in particular, the relationships tend to be
crop-specific [98]. Interpretation of MCARI is especially challenging, given the erratic behaviour of
this index for samples with a low chlorophyll content. It was shown that below a certain threshold,
the relationship between MCARI and the pigment becomes reversed [81]. Such reports highlight
the need for joint interpretation of multiple indexes, either in an informal fashion or by their further
statistical processing [7,98].
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The TCARI and TCARI/OSAVI indexes were originally developed in the context of chlorophyll
content estimation [81], and their suitability to crop water status diagnosis can be linked to
pigmentation changes in drought-affected tissues. Both were tested by Perry and Roberts [100]
in a maize experiment, in which they discriminated between irrigated and unirrigated parts of the
field. Just as for MCARI, the increased values of these indexes associated with the ‘Viking’ cultivar can
be linked to its water-spender management strategy, but more data are needed to verify this finding.

Some of the index values varied more in values for well-watered ‘Viking’ than for well-watered
‘Cadeli’, while for certain others, the relationship was the opposite. An explanation linking these
patterns to the differing water management strategies (a water-saver and a water-spender) seems
dubious. More plausibly, the observed effects were determined by additional cultivar properties,
particularly those related to the leaf surface and structure of the forming canopy [29]. Due to the dearth
of studies comparing crop cultivars with respect to the variability of their spectral characteristics,
the discussed results cannot be confronted with the findings of other authors. With regard to the
lack of similar differences under the remaining watering regimes, it can be argued that the severity
of pigmentation and structural (e.g., leaf shrinkage) changes caused by a drought episode [13,21,22]
occluded the differences between the genotypes. An alternative explanation is the lower number of
plant samples in the drought and regeneration treatments, making the effect estimates less precise,
and treatment differences less likely detectable, as a further consequence.

RGI excelled among the vegetation indexes when evaluating their strength of response to restricted
water availability. In their maize study, Sun et al. [5] associated the occurrence of a drought with
an RGI increase of approximately 0.05 units on the index scale (point estimate inferred from the
marginal estimates given in the paper), a value captured by the ESwatered−dry = −0.96 [−2.21, 0.21] and
−0.71 [−1.97, 0.49] raw intervals obtained in the present study for ‘Cadeli’ and ‘Viking’, respectively.
The potential usefulness of this index is further illustrated by its strong negative correlation to
leaf water status indicators investigated by Rodríguez-Pérez et al. [101] in a commercial vineyard.
Water availability revealed a positive influence on MTCI, RNDVI, and GI. The RNDVI difference
(ESwatered−dry = 0.19 [−0.01, 0.41], dwatered−dry = 2.10 [−0.05, 4.47]) is similar in magnitude to
the spring wheat cultivars responses reported by Gutierrez et al. [102]. Depending on the crop
developmental stage and the trial, RNDVI of the control plants exceeded the water-stressed treatment
by 0.03 to 0.18 units (point estimates based on the marginal estimates mentioned in the paper).
RNDVI is an NDVI-like index originally developed for woody species [75], and then employed
to monitor cereal crops grown in areas with drought occurrence [102]. In light of the above
findings, it seems to also be suited to OSR cultivation. The raw effect estimate obtained for GI,
ESwatered−dry = 0.44 [−0.08, 0.95] (dwatered−dry = 1.58 [−0.29, 3.48]), is in agreement with the difference
between treatment means reported by Peteinatos et al. [52] for spring wheat (0.17 units). GI is a
simple index combining green reflectance with the reflectance near the lower end of the red-edge.
Despite its name (“greenness index”), in the present study its value seems to have been affected by the
red-edge shift and flattening, rather than by changes in the green region, which appeared to be limited.
Main et al. [103] published an extensive comparison of vegetation index performances with respect to
the chlorophyll content prediction, which provides additional evidence of a weak GI response to the
pigment signal.

One of the strengths of Bayesian statistics is the possibility of inferring an absence of a practical
significance of an effect [49,54]. Surprisingly, the PRInorm mean appeared to have been insensitive to the
leaf spectra differences across both cultivars and individual watering regimes. The PRI family detects
changes in crop photosynthetic radiation use efficiency by providing an insight into xanthophyll
epoxidation processes [76,104]. According to Peñuelas et al. [105], this information is a better proxy of
physiological status than total chlorophyll content. In a comparison of vegetation indexes by Rossini
et al. [104], PRI570 turned out to be the best predictor of a range of maize water status indicators.
In another maize study, the order of PRI570 values reflected the assignment of experimental plots to
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irrigation levels and the timing of irrigation suppression [106]. The same index exhibited reliable
correlations with several indicators of the winter wheat water status [107].

PRI is known to be sensitive to ambient illumination and other confounding factors [104,106].
Although in the present study the samples were placed in a photo tent to obtain diffuse illumination,
a sensor was employed during the imagery acquisition to compensate for irradiance instability, and the
linear model accounted for radiometric variability between the data cubes; the obtained correction
might have been insufficient given the variable external conditions. In the case of the cultivar treatment,
the examination of Cohen’s d points to the overall small variability of this index as an alternative
explanation of the obtained pattern with respect to PRInorm. For a drought diagnosis based on proximal
hyperspectral imaging and vegetation index means, we recommend avoiding days with unstable
illumination conditions, unless artificial illumination is employed, or one or more calibration panels
are included in every image.

Merzlyak et al. [73] proposed PSRI as an indicator index of leaf senescence, which can be
triggered by water deprivation. This index was among the features discerning between barley drought
senescence classes in the study by Behmann et al. [7]. Accordingly, the obtained PSRI standard
deviation sensitivity to the contrasting watering regimes in ‘Cadeli’ can be linked to the source–sink
character of the leaf senescence process [23]. TCARI and TCARI/OSAVI responded to the difference
between the watered and rewatered treatments. Such a separation was not possible with the index
means, suggesting that analysing the spectral variability is more suited to detecting a trace of a drought
episode from which a crop did not necessarily fully recover. TCARI/OSAVI can perform better
than TCARI and OSAVI by disentangling the effect of chlorophyll and LAI [81], as demonstrated
by Haboudane et al. [98] and Perry and Roberts [100]. It was one of the indexes reported to reflect
the maize physiological status in the Rossini et al. [104] drought experiment. It may seem that
LAI plays a limited role in the present study, as the background is filtered out using segmentation.
However, drought alters the structure of the foliage, leading to LAI modification accompanied by
increased chlorophyll concentration in shrunken leaves [8,105], both affecting the reflectance spectrum.
The remarkable overall consistency of the index standard deviations increasing with restricted watering
corroborates the relationship between the stress level and symptom variability mentioned by Kruschke
and Liddell [49]. In light of these findings, vegetation index standard deviations appear to be
sensitive stress indicators in the context of drought diagnosis using proximal hyperspectral imaging,
perhaps more so than the index means.

Biochemical and physiological parameters determined in the laboratory from leaf samples
are reliable indicators of a crop status [108]. Drought stress occurrence is commonly assessed by
analysing water content [15,24,44,104,107], pigment [5,15,24,108] and nutrient [5,8] concentrations,
photosynthetic fluorescence [44] and photosynthetic [8,15] and transpiration [15] rates, or stomatal
conductance [15]. Some measurements are possible in field conditions, such as leaf water
potential [24,101], stomatal conductance [109], fluorescence [24,104,106,108], SPAD chlorophyll [98];
and leaf [104,106,109] and canopy [102] temperature.

Relationships between the parameter values and vegetation indexes were demonstrated in various
drought studies. PRI570 and red edge position responded to chlorophyll and carotenoid concentrations
in maize [5]. The former index was also sensitive to the changes in the pigment concentration ratio
and leaf fluorescence [106]. In another maize study, PRI570 and TCARI/OSAVI exhibited strong
relationships to chlorophyll fluorescence and leaf temperature [104]. Several published vegetation
indexes predicted to a satisfactory degree leaf and canopy water contents of wheat, and further
improvements were obtained by formulating custom indexes based on raw and derivative spectra [107].
Multiple indexes responded to water deficit in wheat caused by a powdery mildew infection [108].
Rodríguez-Pérez et al. [101] obtained high correlations between grapevine leaf water contents and
indexes derived from spectra subjected to continuum removal.

OSR readily responds to drought stress in terms of biochemical and physiological indicators.
Clear differentiation between control and stressed plants was obtained by Urban et al. [15], with the
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differences especially pronounced for net photosynthetic rate, stomatal conductance, leaf transpiration
rate, evapotranspiration change, and proline content. Pasban Eslam [109] reported a consistent
modification of leaf relative water content, stomatal conductance, and temperature across five OSR
cultivars over two years of his experiment. In another experiment, water deprivation was associated
with decreased leaf fluorescence and an osmolarity increase [44]. The present study related the
patterns of vegetation index values to the experimental treatments: the OSR cultivar and the watering
regime. In the light of the cited results, it is plausible that a number of the obtained effects could be
replicated in an observational study, in which the treatments would be replaced with biochemical and
physiological parameter measurements at the linear modelling step. Further research is needed to
verify this expectation.

4.3. Full Spectrum Information

The distribution of the leaf pixel spectra in the principal component space differentiated the
regeneration treatment from the remaining investigated watering regimes. The indicated decrease
in the NIR reflectance for the raw spectra and the spectra subjected to SGF can be linked to leaf
cell structure alteration by stress [19]. However, this interpretation is contradicted by the redshift
revealed by the MSC transformation, indicative of good hydration [20]. Similarly, the steep red-edge
pattern obtained for the finite differences derivation can be associated with an increased chlorophyll
concentration [24]. These patterns need to be approached with caution, considering the fact that PCA
does not account for the experimental design resulting in the hierarchical structure of the dataset.
Moreover, only one data cube representing the rewatered treatment was analysed in the present study,
as registration failed for the other one, which had to be discarded. The obtained pixel clusters could be
the result of specific illumination conditions at the moment of image capture, which dominated the
spectral signal [29].

Regarding the double derivation, the apparent differences in pixel extents are in agreement
with the preceding part of the analysis, which revealed higher standard deviations of vegetation
indexes derived for the drought treatment relative to the control plants. One could suspect that the
occurrence of two large clusters for the MSC-transformed spectra is related to changing ambient
illumination conditions or an uneven distribution of radiant energy inside the photo tent. In that case,
each cluster would contain pixels associated with individual images or pot positions, respectively.
However, none of those hypotheses was confirmed by consulting the dataset.

The little-varied PC1 scores obtained for ‘Viking’ compared to ‘Cadeli’ can be explained in
terms of the higher stress level of the latter. ‘Cadeli’ tends to restrict stomatal conductance [45],
which is a suboptimal strategy in the conditions of high water availability, as photosynthesis is
impaired [13]. The discussed treatment separation was apparent only after subjecting the spectra to
MSC. This pre-processing is known to remove some scatter and baseline shift artefacts [85]. In the
present study, it might have mitigated the influence of variable illumination conditions on the captured
hyperspectral data cubes. A question arises whether a similar improvement would have been achieved
in the vegetation index part of the analysis if they had been derived from the MSC-pre-processed
rather than the raw spectra.

The high variation of the dry pixel spectra subjected to double derivation suggested by the
PCA analysis is absent from the results of the linear modelling. A possible explanation might be a
high noise characterising derivative spectra [85], and subject to compounding when the operation is
repeated [105]. The derivation might have also been negatively affected by the low spectral resolution
of the analysed hyperspectral data cubes, which precluded a detailed reconstruction of the spectra
shapes. Peñuelas et al. [105] reported an improved relationship between the second order derivative
indexes and sunflower leaf water potential relative to the principal components and indexes derived
from the raw spectra, but their data were acquired with a fivefold higher spectral resolution than in the
present study. Finally, the double derivation linear model posed problems for the MCMC sampler [59],
with detrimental consequences for the reliability of the obtained posterior distributions. In future



Remote Sens. 2020, 12, 3462 21 of 27

studies of this kind, it is recommended that the derivation be combined with smoothing [85] and that
the spectral resolution of the imagery be maximised, even at a price of an increased data volume [110]
and information redundancy [7].

The proximity of the extreme watering regimes in terms of the PC1 standard deviations is
counterintuitive and in disagreement with the results of the vegetation index part of the study.
The fact that each pre-processing resulted in distinctive PC loading vectors precludes a straightforward
interpretation in terms of the spectral regions. PCA is an unsupervised dimensionality reduction
method. Compared to the SVM approach, it does not require pixel labelling, and compared to the
vegetation index approach, it does not involve an arbitrary choice of indexes, the performance of which
is site-specific. On the other hand, the obtained principal axes do not necessarily need to be related to
factors of interest. The obtained result is problematic, but nevertheless interesting. Similarly to the
TCARI and TCARI/OSAVI standard deviations, it may point to a way of detecting a trace of a severe
drought episode in a seemingly healthy and well-hydrated crop. The signal attenuation obtained for
the finite differences derivation can be linked to the capability of this transformation to filter out the
effects of structural differences between crop cultivars [111]. For MSC, it can be associated with the
removal of illumination artefacts [85].

5. Conclusions

We investigated the feasibility of a 2D frame hyperspectral camera as a proximal sensor to detect
drought stress of juvenile plants of two oilseed rape cultivars with different water management
strategies in semi-controlled, outdoor conditions. A support vector machine accurately distinguished
between normal leaf pixels and those bearing drought symptoms. Only 2 of the 47 model validation
pixels were misclassified, though time-consuming labelling was required to train the classifier. Based on
the pixel assignment, some evidence of leaf discolouration was obtained for the drought-stressed
‘Viking’, in accord with the provenance of this cultivar. The ratio between the number of dry-labelled
pixels in the control and stress watering regimes was estimated as 0.009 [0.00005, 1.6].

Several vegetation index means responded to the difference between the control and
water-deprived plants, especially RGI, MTCI, RNDVI, and GI; while none of the tested PRI indexes
distinguished among the treatments. RGI excelled among the vegetation indexes in terms of effect
strengths, which amounted to −0.96 [−2.21, 0.21] and −0.71 [−1.97, 0.49] units for each cultivar with
respect to the watered–dry treatment contrast.

The most striking finding was a consistent increase in the multiple index standard deviations
to worsening of the hydric regime. The increases occurred not only in the dry treatment but also for
plants subjected to regeneration after a drought episode. This result suggests a higher sensitivity of the
vegetation index variability measures relative to the means for oilseed rape drought stress diagnosis.
It also justifies the application of imaging spectroscopy to capture these effects. Especially clear
responses were obtained for RGI, PSRI, TCARI, and TCARI/OSAVI. Some of the patterns involved
also the regeneration watering regime. In particular, PSRI standard deviation for ‘Cadeli’ differed
by a factor of 0.33 [0.16, 0.68] between the rewatered and dry treatments. It seems worthwhile to
include RGI in similar studies in the future given the fact that both the mean and standard deviation
(a multiplicative effect of 0.10 [0.07, 0.16] for the watered–dry contrast in the case of ‘Cadeli’) of this
index were affected by the water availability.

The drought stress could be discerned in the spectral signatures when regeneration was still
possible. On the other hand, the symptoms were already visible to the naked eye. Additional factors
can be introduced in follow-up studies to verify the robustness of the findings and their application
to earlier drought stress detection. A single campaign could be replaced by a time series to capture
the temporal development of the drought stress and of the spectral responses. Another modification
would be to restrict the watering of the plants at an earlier developmental phase and investigate which
of the spectral stress indicators remain viable for younger plants. Additional insights could be obtained
by augmenting the new dataset with biochemical and physiological measurements.
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Despite the unstable light conditions during the imaging campaign, the experimental treatments
had strong and consistent effects on some of the examined spectral indicators and can be interpreted
in terms of their robustness. However, although several measures were taken to mitigate the variable
illumination effects, it cannot be ruled out that the observed patters were artefacts caused by the
external conditions, instead. For this reason, regardless of the study extensions, the obtained results
need to be replicated in an independent experiment with a larger sample, an improved design,
and stricter precautions with respect to illumination stability during imagery acquisition.
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