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Abstract: The present manuscript faces the problem of performing high-resolution Unmanned
Aerial Vehicle (UAV) radar imaging in sounder modality, i.e., into the vertical plane defined by the
along-tack and the nadir directions. Data are collected by means of a light and compact UAV radar
prototype; flight trajectory information is provided by two positioning estimation techniques:
standalone Global Positioning System (GPS) and Carrier based Differential Global Positioning
System (CDGPS). The radar imaging is formulated as a linear inverse scattering problem and a
motion compensation (MoCo) procedure, accounting for GPS or CDGPS positioning, is adopted.
The implementation of the imaging scheme, which is based on the Truncated Singular Value
Decomposition, is made efficient by the Shift and Zoom approach. Two independent flight tests
involving different kind of targets are considered to test the imaging strategy. The results show that
the CDGPS supports suitable imaging performance in all the considered test cases. On the other
hand, satisfactory performance is also possible by using standalone GPS when the meter-level
positioning error exhibits small variations during the radar integration time.

Keywords: radar imaging; unmanned aerial vehicle; inverse scattering; linear scattering models;
global positioning systems; carrier based differential global positioning system; radar signal
processing; motion compensation

1. Introduction

Radar imaging by Unmanned Aerial Vehicle (UAV) platforms [1,2] is worth attention in the
remote sensing community as a cost-effective solution to cover wide and/or not easily accessible
regions, with high operative flexibility [3]. Indeed, Multicopter-UAVs (M-UAV) have vertical lift
capability, allow take-off and landing from very small areas, without the need of long runways or
dedicated launch and recovery systems, and, they are able to hover and move in any directions. These
peculiar features allow their use at any places and under different flight modes, thus introducing new
attractive possibilities in radar remote sensing [4].

UAV based radar imaging can be used in several civil [4] and military applications [5], such as
surveillance, security, diagnostics, monitoring in civil engineering, cultural heritage and earth
observation, with particular emphasis on natural disasters [6]. At the state of the art, M-UAV radar
imaging has been proposed in biomass mapping [7], glaciology [8] and for precision farming [9]. In
addition, M-UAVs have been also exploited to perform Synthetic Aperture Radar (SAR), for
monitoring small areas and avoiding large platforms. In this context, a first experimentation
concerning interferometric P and X band SAR sensors on board a UAV platform has been reported
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in [10]; moreover, a novel UAV polarimetric SAR system [11] and a multiband drone-borne SAR
system [12] have been recently proposed. UAVs have been also exploited in the frame of subsoil
exploration by means of Ground Penetrating Radar (GPR) for mine detection [13-16], soil moisture
mapping [17], and detecting subsurface Improvised Explosive Devices (IEDs) [18].

In all of these promising examples, different solutions have been devised to estimate the UAV
flight trajectory. For instance, in [7] the ultra-wideband radar PulsON 410 (3.1-5.3 GHz) is used and
altitude variations during the flight are corrected by exploiting the reflections from the ground. In
[15], a wideband Frequency-Modulated Continuous-Wave (FMCW) GPR, working in the frequency
range from 1 GHz to 4 GHz and in a bistatic configuration is proposed; the flight is controlled by
manual piloting and a Light Detection and Ranging (LIDAR) is used as the only positioning device
for measuring the flight altitude above ground. A standalone Global Positioning System (GPS) is
used in [17] for positioning a stepped-frequency continuous-wave (SFCW) radar working in the
range from 1 MHz to 6 GHz. Conversely, a sophisticated positioning system is exploited in [14] and
[18] to perform SAR imaging. In [14], a compact pulse radar working in the 3.1 to 5.1 GHz frequency
band is considered and a Real Time Kinematic (RTK) system as well as a LIDAR altimeter are used
to achieve the cm-level accuracy positioning. In [18], high-resolution 3D SAR imaging is carried out
by means of an M-sequence Ultra-Wide-Band (UWB) radar covering a frequency range from 100
MH2z to 6 GHz. This radar system is mounted on a UAV, which autonomously flies over a region of
interest. The flight is controlled by means of the UAV flight controller, an Inertial Measurement Unit
(IMU), a barometer, and a Global Navigation Satellite System (GNSS) receiver. In addition, a laser
rangefinder and a dual-band RTK system are exploited to enhance the accuracy of positioning data.

According to the survey just presented, general considerations are:

(i) Accurate UAV positioning data improve the radar imaging performances by avoiding
defocusing and localization errors [19];

(ii) Accurate knowledge of the UAV flight trajectory depends strongly on the quality of both the
embarked navigation sensors and the deployed ground-based aids [20].

Furthermore, small M-UAVs are constrained by the maximum payload mass and by cost
considerations, thus, limiting number and typology of on-board devices.

This work deals with the impact of standalone GPS and Carrier based Differential Global
Positioning System (CDGPS) positioning accuracy on small M-UAV radar imaging performed in
sounder modality. Therefore, differently from [21], the imaging is faced into a vertical domain, which
is a portion of the plane defined by the along-track and the nadir directions. The imaging strategy is
similar to the one proposed in [22,23]. It formulates the radar imaging as a linear inverse scattering
problem and uses the Truncated Singular Value Decomposition (TSVD) inversion scheme to get a
regularized solution. Since the TSVD algorithm requires significant computing resources, especially
when increasing the amount of data and the size of the investigated domain (in terms of the probing
wavelength), the Shift and Zoom strategy [24] is exploited. The herein adopted imaging strategy
benefits of a motion compensation (MoCo) procedure. MoCo exploits GPS or CDGPS positioning
information to manage radar measurements in such a way to obtain datasets wherein the waveforms
appear as collected at a constant altitude and evenly spaced along a straight line, which defines the
along-track direction. It is worth pointing out that, like the approaches proposed in [14,21,23], the
adopted imaging strategy can be implemented in such a way to consider the positioning information
in the focusing step directly. On the other hand, the MoCo procedure allows a not trivial
improvement of the computational effectiveness because it avoids the computation of the scattering
operator, and of its SVD, for each portion of dataset to be processed.

In order to evaluate the effect of the UAV positioning accuracy on the imaging capabilities, two
experiments were conducted in different weather conditions, i.e., during summer and winter seasons,
and by using targets having different geometrical and electromagnetic features. The analysis of the
radar imaging performance is carried out in terms of target detection as well as of estimating the
relative distance among the targets and their elevation from the ground.

The paper is organized as follows. Section 2 describes the technological instrumentation used to
realize the M-UAV based radar imaging prototype, the positioning estimation technologies and the
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signal processing strategy. Section 3 describes the two measurement campaigns conducted and
reports also a qualitative analysis of the imaging results. Then, Section 4 discusses the achieved
results. Conclusions end the paper.

2. Materials and Methods

2.1. Measurement Devices

The M-UAYV radar prototype described in [22] and shown in Figure 1a is used to collected radar
data. A second ground-based GPS receiver (see Figure 1b) is also deployed for the implementation
of the CDGPS.

The detailed description of the M-UAYV prototype with all mechanical and electronic devices is
given in [22]. Here, we briefly summarize the main hardware components:

e  Small M-UAV platform: DJI F550 hexacopter is a mini UAV able to fly at a very low speed (below
1 m/s), ensuring a dense data sampling, and is capable of taking-off and landing from a
constrained area;

e  Radar system: PulsON P440 is a compact and short range radar able to transmit ultra-wide band
pulses (about 1.7 GHz bandwidth) in the frequency spectrum between the S and C Bands (3.95
GHz carrier frequency) [25];

e Radar antennas: the radar system has been equipped with two Ramsey LPY26 antennas, which
are log-periodic PCB antennas, having a radiation pattern whose aperture angle is of about 80°
in the along-track and 110° in the across-track;

e  GPSreceivers: two single frequency, single constellation (GPS-only) u-blox LEA-6T devices, one
mounted onboard the UAV and the other one used as ground-based station;

e  CPU controller: Linux-based ODROID XU4, which is devoted to manage data acquisition for
both radar system and onboard GPS receiver, while assuring the time synchronization between
radar and GPS clocks.

The radar module is mounted very close to the flight battery, below the UAV autopilot, see
Figure la. The distance between the radar antennas and the drone center of mass is about 10 cm.
Identical antennas, pointing at nadir direction (down-looking mode) [26] are used to transmit the
probing signal and receive the backscattered one. The radar operates in monostatic mode being the
distance between the transmitting and receiving antennas negligible in terms of the radar signal
wavelength.

2.2. UAV Positioning Techniques

Two standard positioning techniques are considered, such as standalone GPS and CDGPS. One
of the two single frequency u-blox LEA-6T devices is installed onboard the drone; while the other
one acts as the ground station for CDGPS. The synchronization in time between positioning and radar
data is assured by means of the strategies summarized in Figure 2. These strategies have been
implemented by means of a dedicated software (written in C language), which exploits the internal
CPU clock to tag GPS and radar data during the acquisition stage. Thanks to the common CPU clock
reference tag, synchronization between standalone GPS and radar data is performed, while
synchronization between CDGPS and radar data is achieved by exploiting GPS time.
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Figure 1. Multicopter-UAVs (M-UAV) radar imaging system: (a) M-UAV hexacopter with onboard
equipment [21]; (b) ground-based Global Positioning System (GPS) station [Error! Reference source

not found.21].
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Figure 2. Positioning and radar data synchronization strategy (a) Standalone GPS; (b) Carrier based
Differential Global Positioning System (CDGPS).

2.2.1. Standalone GPS

In general, The UAV positioning estimation system A exploits only the information acquired by
the on-board GPS receiver (see Figure 2a). Standalone Global Navigation Satellite System (GNSS)
indicates the standard positioning service (see chapter 7 in [27], where basic equations can be found),
which processes pseudo-range observables to derive in an epoch-wise fashion to estimate the
absolute position of the UAV, e.g., in the World Geodetic System 1984 (WGS 84) reference frame. The
attention is here focused on GPS due to the available receivers. The absolute positioning accuracy
achievable by the standalone GPS receiver, is defined by the specifications provided by the U.S.
Department of Defense [28] Loosely speaking, absolute GPS localization errors are estimated by the
product of the User Equivalent Range Error (UERE), which is the effective accuracy of the pseudo-
range, and, the Horizontal Dilution of Precision (HDOP) and Vertical Dilution of Precision (VDOP).
Representative values of horizontal and vertical positioning errors, in case of satisfactory GPS
visibility conditions, are, respectively, 3.5 m and 6.6 m [29] However, when reasonably short time
flights are considered, several error sources (i.e., broadcast clock, broadcast ephemeris, group delay,
ionospheric delay and tropospheric delay) are strongly correlated both in space and time [27] and
may introduce positioning error, which results in a slow varying bias. In addition, the use of a proper
processing strategy, such as carrier-smoothing [27], allow a reduction of the measurement noise [30],
thus improving the GPS performance.
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2.2.2. Carrier Based Differential GPS

An enhanced strategy to reconstruct UAV positioning is based on the use of CDGPS, which is a
recognized technique to enhance the positioning performance accuracy of the onboard GPS and it
typically exploits at least one motionless GPS receiver working as a reference station (see Figure 2b).
Each GPS receiver collects observables, which are a pseudo-range and a carrier-phase measures for
any tracked GPS satellite. Carrier-phase measurements show significantly reduced measurement
noise (in the order of 1/100 of GPS signal wavelength, i.e., mm scale) with respect to pseudo-range,
but ambiguities appear, so carrier-phase ones are biased measurements [27]. If one is able to resolve
the ambiguity, very high accurate positioning is enabled. This can be achieved by differential
techniques, i.e., CDGPS, where differences between the measurements collected by two relatively
close receivers are computed. The CDGPS technique is, indeed, able to filter out the common errors
affecting the two receivers, i.e., satellite clock errors, tropospheric and ionospheric errors, thus,
achieving an accurate estimate of the relative position between them.

Relative positioning and ambiguity resolution are herein faced in post processing by means of
the open-source software RTKIib [31] Specifically, “Post-Processing Kinematic” (PPK) [27] is
implemented by using the RTKPOST [20], which processes single-frequency differential observables.
Basic equations for the problem at hand can be found in [20] Note that, depending on the working
environment, platform dynamics and receiver quality, two different types of CDGPS solutions can
be obtained, i.e., fixed or float solutions [32] In the experiments presented in this paper, the position
of the UAV with respect to the reference station is estimated with an accuracy ranging from several
cm to less than one cm. The better accuracy is achieved when the fixed solution is available, i.e.,
integer ambiguities are computed [33].

2.3. Imaging Approach

The block diagram of the applied data processing strategy is described in Figure 3. The strategy
takes as input the raw radargram, which represents the radar signals collected at each measurement
position (during the slow time and along the flight path) versus the fast time. The final output is a
focused and easy interpretable image, referred to as tomographic image, which accounts for the
reconstruction of the targets into the vertical slice defined by the flight trajectory (along-track
direction), which is assumed to be a straight line, and the nadir direction.

Initially, raw data are processed by means of the background removal step [34]. Background
removal is a filtering procedure herein adopted for mitigating the undesired signal due to the
electromagnetic coupling between transmitting and receiving radar antennas. Since this undesired
signal is typically spatial and temporal invariant, the background removal step replaces each single
radar trace of the radargram with the difference between the trace and the mean value of all the traces
collected along the flight trajectory.

After, the motion compensation (MoCo) stage is performed. The MoCo is a key element of the
proposed signal processing strategy and its main steps are depicted in Figure 3. The MoCo takes as
input the UAV positions estimated by GPS or CDGPS (defined as “estimated” trajectory), it generates
a straight flight trajectory (i.e., the along-track direction) and it modifies the radar signals by means
of the range alignment and the along-track interpolation procedures.

The range alignment compensates the altitude variations, occurred during the flight, by
realigning each radar signal, along the nadir direction, with respect to a constant flight altitude. This
latter is obtained from the UAYV altitudes, as estimated by GPS or CDGPS, by an averaging operation,
and it is assumed as the altitude of the radar system in the following processing steps.
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Figure 3. Signal Processing Strategy.

The along-track interpolation accounts for the deviations occurring in the north—east plane
between the estimated flight trajectory and a straight one. In details, a straight trajectory
approximating the GPS or CDGPS estimated UAV flight trajectory in the north-east plane is
computed by means of a fitting procedure. The straight trajectory in the north—east plane is taken as
along-track direction, and is considered as the measurement line in the following processing steps.
After the along-track direction is computed, the range aligned radar signals are interpolated and
resampled in order to obtain evenly spaced radar data along the along track direction. Attitude
variations are not considered in the MoCo. Indeed, the limited distance between the radar antennas
and the UAV center of mass and the wide antenna radiation pattern imply that UAV attitude
variation has a negligible effect on the data accuracy in terms of two travel time.

Figure 4a shows a schematic representation of the MoCo. As indicated in Figure 4a,b, originally,
the flight trajectory I' has an arbitrary shape and each measurement points can be indicated by the
following unevenly spaced vector: 7, = x, X + y,,J + z,,, 2. By applying the MoCo, the actual flight
trajectory (and accordingly the collected data) is first modified by the range alignment operation as
in Figure 4c and, then, by performing the along-track interpolation, the measurements points are
evenly spaced, as shown in Figure 4d.

Note that the imaging plane, i.e., the plane wherein the targets are supposed to be located, is the
vertical plane defined by the along-track and the nadir directions, from now on indicated as (x,z)
coordinates, respectively.
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Figure 4. The Unmanned Aerial Vehicle (UAV)-borne radar imaging system, (a) actual imaging
scenario; (b) starting schematic configuration; (c) schematic configuration after range alignment; (d)
schematic configuration after along-track interpolation.

After MoCo, the radar data pre-processing step is performed (see Figure 3). At this step, time-
domain radar preprocessing procedures as dewow and time gating are carried out. The dewow step
aims at mitigating the bias effect induced by internal electronic radar components by removing the
average value of each radar trace [34]. The time gating procedure selects the interval (along the fast
time) of the radargram, where signals scattered from targets of interest occur. This allows a reduction
of environmental clutter and noise effects [35]. Herein, we define a suitable time window around the
time where reflection of the air-soil interface occurs.

The last processing stage is the focusing. In this stage a focused image of the scene under test, as
appearing into the vertical imaging domain, is obtained by solving an inverse scattering problem
formulated into the frequency domain. Each trace of the radargram is transformed into the frequency
domain by means of the Discrete Fourier Transform (DFT) so to provide the input data to the
inversion approach. This latter faces the imaging as an inverse scattering problem by adopting an
electromagnetic scattering model based on the following assumptions:

e  The antennas have a broad radiation pattern;

e  The targets are in the far-field region with respect to the radar antennas;

e Alinear model of the scattering phenomenon is assumed, hence the mutual interactions between
the targets can be neglected (the Born approximation [36]);

e The time dependence e/“! is assumed, and, for notation simplicity, it is dropped.

Accordingly, at each angular frequency belonging to Q = [Wyin, Wmax], Which is the angular
frequency range of the collected signals, the backscattered signal at each point 7, is expressed by the
following formula [37]:
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Equation (1) is a linear integral equation, where S(w) is the spectrum of the transmitted pulse,
E; is the measured scattered field, y(r) is the unknown contrast function at a point r = xX + zZ in
imaging domain D; ko, = w/c, is the propagation constant in free space (c, = 3+ 108 [m/s] is the
speed of light), and, |, — 7| is the distance between the measurement point 7, and the generic
point r in D. The contrast function y(r) accounts for the relative difference between the
electromagnetic properties (dielectric permittivity, electrical conductivity) of the targets and the one
of the free-space. The spectrum S(w) is assumed unitary within the frequency range and is omitted
for notation simplicity. The kernel of Equation (1) depends on the distance between 7,,, and r; hence,
an accurate knowledge of this relative distance needs to achieve satisfactory imaging capabilities.

The discretized formulation of the imaging problem described in Equation (1) is obtained by
exploiting the Method of Moments [38]:

Es =Ly, 2)

where Eg isthe K = M X N dimensional data vector, M being the total number of radar scans
and N the number of operative pulsations w,, n = 1,2...N. The domain D is discretized by H =
P x Q pixels (xp, Zq) , where p=12..P, and ¢ =12..Q, x is the H dimensional unknown
vector, and £ is the K X H scattering matrix related to the linear operator which maps the space of
the unknown vector y into the space of data (measured scattered field) Ej.

The inverse problem defined by Equation (2) is ill posed, thus a regularization scheme needs in
order to obtain a stable and robust solution with respect to noise on data [39]:

L\ 1
¥=) o Eouvs, ©)
n=1

where () denotes the scalar product in the data space, T is the truncation threshold, o, is the
set of singular values of the matrix £ ordered in a decreasing way, u,, and v, are the sets of the left
and right singular vectors. The threshold T < K defines the “degree of regularization” of the solution
and is chosen as a trade-off between accuracy and resolution requirement from one side (which
should push to increase the T value) and solution stability from the other side (which should push
to limit the value of T) [40]. Therefore, the radar image is obtained according to the evaluation of the
contrast function in eq. (3).

Since the TSVD inversion algorithm is a computational intensive procedure when large (in terms
of the probing wavelength) domain are investigated, the Shift and Zoom concept [24] has been
implemented in order to speed up the computational time. The Shift and Zoom approach consists in
processing data on partially overlapping intervals and combining the images in such a way to get an
overall focused image. Specifically, it is schematically represented in Figure 5 and the main steps may
be explained as follows:

e The measurement acquisition line I' and the survey area D are divided into V partially
overlapping subdomains I; and D; with i =1,2,---,V;

e  For each subdomain D;, the tomographic reconstruction ¥; is obtained by the TSVD inversion
scheme indicated in Equation (3);

e The tomographic image of the overall surveyed area D can be obtained by combining the V
reconstructions ¥; achieved for each subdomain D;.
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A detailed description of the Shift and Zoom implementation is in [27].

Thanks to MoCo, the relative distance between the radar acquisition measurements and the pixel
belonging to each subdomain are equivalent for all subdomain. In this way, the SVD calculation of
the matrix £ have to be evaluated just in a single shot for the first subdomain and the inversion for
each subdomain mainly involve matrix times data vector multiplications. By doing so, the
computational time for the overall reconstruction process decreases drastically. In fact, the
computational cost of the SVD operation for matrix £ having size K X H is:

~0(K?) 4)

Conversely, the adoption of the Shift and Zoom approach and the MoCo procedure reduces this
cost to:

H
K%
~0 P @)

where @ and f are the scaling factors related to reduced size of measurement line I;and
subdomain D;, respectively. Therefore, an exponential reduction of the computational cost of the
TSVD inversion scheme is obtained.

3. Experimental Results

Experimental tests aim at verifying and comparing the radar imaging performance when UAV
positioning data are provided by GPS or CDGPS. The imaging capabilities are evaluated in terms of
ability to detect targets, to determine their elevation from the ground (i.e., the air-soil interface) and
to estimate their relative distance.

The tests have been performed at two different sites: a site for amateur UAV flights testing in
Acerra, a small town in suburban area of Naples; a site made available by TopView srl [41] in San
Nicola la Strada, a rural area closest to the famous Royal Palace of Caserta, Italy. The experimental
tests were carried out during summer and winter seasons, with low or moderate wind conditions,
and, by using targets with different geometrical and electromagnetic features.

3.1. First Test Case

The first experimental test was performed on 5 July, 2019, during a hot sunny day with weak
wind state [21]. Three targets were considered: one cylindrical wood trunk (here referred as target 1)
placed at 0.5 m above the ground, whose size are: 0.6 m length and 0.14 m of diameter; two metallic
trihedral corner reflectors, having size 0.40 m X 0.40 m X 0.57 m and referred as target 2 and target
3. These latter were used as on-ground targets and target 3 was covered with a cardboard box. The
targets were positioned along a straight line, with a relative distance of 10 m (see Figure 6) [21].
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The main radar system parameters adopted for data collection are reported in Table 1 [21].

Table 1. Operative Radar System Parameters: First Test Case.

Parameters Specification
Carrier Frequency 3.95 [GHz]
Frequency Band 1.7 [GHz]
Pulse Repetition Frequency 14.28 [Hz]
Sampling Time 61.1 [ps]
Start Fast Time 5.1 [ns]
End Fast Time 122.3 [ns]
Integration Index 12

The UAV was manually piloted (in GPS mode) and two flights at different altitudes, herein
indicated as Track 1 and Track 2, were carried out. Both tracks were performed on the same scenario
by positioning the UAV more or less at the same starting point (x,y).

The first flight had a duration of 22.3 s and covered a 36.5 m long path at the mean flight
altitude of about 4.5 m; along this track, data were gathered in 319 not evenly spaced measurement
points. Track 2 had a duration of 28.6 s and covered a 33 m long path at an average flight altitude
about 10 m; along this track data were gathered in 409 not evenly spaced measurement points.
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Figure 6. First test case: radar imaging scenario.

Figures 7 and 8 depict the raw radargrams (Figures 7a and 8a), the estimated east-north UAV
trajectory and the corresponding along-track direction (Figures 7b and 8b), the estimated UAV
altitudes and the corresponding average value (Figures 7c and 8c). Specifically, Figures 7b and 8b
depict a zoom of the estimated east-north trajectories obtained by means of GPS (blue color) and
CDGPS (red color) for both the tracks, respectively. Moreover, these Figures show the corresponding
zoom of the along-track directions (dashed blue line—GPS, dashed red line—CDGPS). Similarly,
Figures 7c and 8c show, as blue and red solid lines, the estimated altitudes and the corresponding
averages (dashed blue and red lines). The dashed lines in Figures 7 and 8 depict the straight line
obtained by means of the MoCo.

In Figure 7a, three diffraction hyperbolas corresponding to targets 1, 2, and 3 are clearly visible
and their apexes are placed at5s, 12.5 5, and 17.5 s along the slow time axis. In Figure 7a, the presence
of horizontal constant signals accounts for the antennas coupling, while the signal appearing at fast
time values higher than 60 ns are clutter due to lateral objects.
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Figure 7. Test 1-Track 1: (a) raw data; (b) east-north UAV positions estimated by GPS (solid blue line)
and CDGPS (solid red line), along-track direction defined by GPS (dashed blue line) and CDGPS
(dashed red line); (c) UAV Altitude estimated by GPS (solid blue line) and CDGPS (solid red line),
average altitude defined by GPS (dashed blue line) and CDGPS (dashed red line).
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Figure 8. Test 2-Track 1: (a) raw data; (b) east-north UAV positions estimated by GPS (solid blue line)
and CDGPS (solid red line), along-track direction defined by GPS (dashed blue line) and CDGPS
(dashed red line); (c) UAV Altitude estimated by GPS (solid blue line) and CDGPS (solid red line),
average altitude defined by GPS (dashed blue line) and CDGPS (dashed red line).

Despite these undesired signals, the UAV radar system is capable of detecting the three targets

as well as to recognize that the last encountered corner reflector (target 3) is hidden by a weakly

scattering object, as testified by the presence of a small apex above the last hyperbola.

For what concerns Track 2, unfortunately, the hyperbolas related to the target 1 (the wood trunk)
is not clearly visible in the raw radargram (see Figure 8a). This effect is due to the smaller intensity
of the field backscattered by the trunk being higher flight altitude (the radar transmits the same
power whatever the flight altitude is). In Figure 8a, the three hyperbolas related to the three targets

have apexes placed at 6 s, 15 s and 21 s along the slow time axis.
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In this first test case, GPS and CDGPS provide similar trajectories along the east-north plane,
with a slowly varying offset of the order of 1 m (Track 1) or 2 m (Track 2), whereas GPS altitudes are
higher than those estimated by CDGPS. Moreover, for Track 1, the GPS and CDGPS UAV altitude
profiles differ of a quasi-constant bias; whereas for Track 2 the GPS altitude are affected by a drift
(see Figures 7c and 8c, respectively). Given the statistics about the estimated CDGPS uncertainty
(based on residuals), reported in Section 4, CDGPS measurements can be assumed as a benchmark
for standalone GPS. Thus, the drift of the altitude differences can be interpreted as a vertical error
drift for the standalone GPS solution.

Figures 9 and 10 depict the aligned and interpolated radargram after the MoCo and standard
time-domain radar preprocessing for Tracks 1 and 2, respectively.

Data Aligned and Interpolated with GPS and Filtered «10*
) '
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Figure 9. Processed radargram Test 1-Track 1: (a) aligned ad interpolated radargram by exploiting
GPS information and after filtering operations; (b) aligned and interpolated radargram by exploiting
CDGPS information and after filtering operations.

Figure 9 corroborates that in Test 1-Track 1, by using both GPS and CDGPS information, MoCo
allows at compensating the altitude variations and, indeed, the air-soil interface appears as an almost
flat profile, as it is actually. Conversely, Figure 10 shows that in Test 1-Track 2, while MoCo driven
by CDGPS achieves a result similar to Test 1-Track 1, the result based on GPS is worse because the
air-soil interface does not have an almost flat profile. This uncompensated effect is due to the drift
affecting the estimated GPS altitude (see Figure 8c).
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Figure 10. Processed radargram Test 1-Track 2: (a) aligned ad interpolated radargram by exploiting
GPS information and after filtering operations; (b) aligned and interpolated radargram by exploiting
CDGPS information and after filtering operations.

Tables 2 and 3 list the signal processing parameters adopted to process the radargrams for Track
1 and Track 2 (after MoCo), respectively. The frequency step represents the step used to sample the
frequency spectrum of the collected data (ranging from fmin and fmax) and is calculated according
to the Nyquist criterion for avoiding aliasing problems [42] in the reconstruction process. The
horizontal (i.e., x-axis) size of the overall investigated domain is equal to the extent of the along-track
measurement line as defined by the MoCo. Conversely, the vertical (i.e., z-axis) size is such to
consider about 1 m up and 2 m below the air-soil interface, whose position is set according to the
average altitude value as computed from standalone GPS and CDGPS data. In other words, the zero
of the z-axis is in correspondence to the average vertical position of the radar antenna system.
Moreover, Tables 2 and 3 gives the subdomain apertures used to apply the Shift and Zoom procedure,
which correspond to 5 m and 7 m for Track 1 and Track 2, respectively. These parameters have been
chosen by measuring the target hyperbola extent in the processed radargram and take into account
that the hyperbola extent is dictated by the antenna footprint and thus by the flight altitude. This

justified why the subdomain aperture considered for the Track 2 is larger than the one used for Track
1.
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Table 2. Signal Processing Parameters: Track 1.

Parameters Specification

Time Gating Start Time 22 (ns) End Time 39 (ns)
Frequency range fmin = 3.1 (GHz) fax = 4.8 (GHz)
Frequency step 30 (MHz)

x-axis size: 36.50 (m) dx: 0.025 (m)

z-axis size: 3.45 (m) dz: 0.025 (m)
TSVD threshold (T) -20 (dB)

Subdomain Aperture (L) 5 (m)

Imaging Domain

Table 3. Signal Processing Parameters: Track 2.

Parameters Specification

Time Gating Start Time 57 (ns) End Time 87 (ns)
Frequency range fmin = 3.1 (GHz) f0c = 4.8 (GHz)
Frequency step 20 (MHz)

x-axis size: 37.30 (m) dx: 0.025 (m)

z-axis size: 5.65 (m)  dz: 0.025 (m)
TSVD threshold (T) -15 (dB)

Subdomain Aperture (L) 7 (m)

Imaging Domain

The tomographic images referred to Test 1-Track 1 and Test 1-Track 2, are depicted in Figures
11 and 12, respectively. These Figures show focused images wherein the metallic corner reflectors are
clearly distinguishable, whereas the response of wooden trunk is low due to its lowest reflectivity.
Moreover, these figures allow an approximate positioning of the targets.

Figure 11a,b provide an accurate estimation of the altitude of the targets with respect to the air-
soil interface; while they give an overestimation of the relative distance among the targets, which is
of 1 m in the worst case (i.e., distance between target 2 and target 3 by using GPS data). The air-soil
interface appears at z = 5.5 m in Figure 11a and at z = 4.5 m in Figure 11b and this positioning
difference is associated to the altitude estimation bias between GPS and CDGPS.

Tomographic reconstructions, depicted in Figure 12a,b, provide an approximate localization of
the targets by using both GPS and CDGPS, but standalone GPS data do not allow to correctly
reconstruct the air-soil interface profile (it is not flat in Figure 12a).

GPS Processing

air-soil interface

)

@=5.5) 06

5.5 LT TR 0 ’ ‘ 105
Target 1 ' .l

T o (x=6.1,2=5) T ' o

N Target2 LELTES, -

65 (x=16.7,2=5.5) B e "

x [m)

(@)



Remote Sens. 2020, 12, 3463

CDGPS Processing

07

air-soil interface
(z=45)

EM Taletl T | ’f’ |

5 (x=6.1,z=4)
Target 2 Target 3
(x=16.7,2=4.5) (x=274,2=4.5) 02

0.6

o

(=
o
.
2

20 25 30 35
x [m])

(b)

15 of 24

Figure 11. Tomographic images Test 1-Track 1 obtained by Shift and Zoom Truncated Singular Value
Decomposition (TSVD) algorithm: (a) GPS based motion compensation (MoCo); (b) CDGPS based

MoCo.
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Figure 12. Tomographic images Test 1-Track 2 obtained by Shift and Zoom TSVD algorithm: (a) GPS

based MoCo; (b) CDGPS based MoCo.

3.2. Second Test Case

The second test was carried out on the 21 February, 2020, during a cold day with a moderate
wind state. In this second case, four targets were placed along a straight line (see Figure 13). Target 1
was a couple of chipboard shelves, having size 0.38 m x 0.60 m, placed at 0.70 m above the ground
and with a relative distance of 5 m from the target 2. The target 2 was the same wood trunk adopted
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in the previous experiment, placed at 0.5 m above the ground and with a distance of 10 m far from
target 3. Target 3 was a void inside small box of plasterboard, having size of 0.53 m X 0.53 m X 0.1 m.
Finally, as target 4 was used a tuff brick of dimensions 0.27 m x 0.41 m X 0.14 m, placed on ground
and far 5 m form target 3. The upper side of target 3 and target 4 are 0.53 m and 0.27 m from the
ground, respectively.

Target 4 gmum Target 3 - JBE SRR <5
e % R Y Target 2 B

Figure 13. Second Test Case: radar imaging scenario.

Two flights were performed, again with manual UAV piloting in GPS mode. It is worth pointing
out that due to the wind effect, Target 3 was repositioned before carrying out the second flight and,
in order to assure its stability, which was compromised by foliage presence on the ground, it was
located 9 m far from Target 2 and 6 m far from Target 4.

The radar operative parameters adopted for this second test case are reported in Table 4.

Table 4. Operative Radar System Parameters: Second Test.

Parameters Specification

Carrier Frequency 3.95 (GHz)

Frequency Band 1.7 (GHz)
Pulse Repetition Frequency 10 (Hz)
Sampling Time 61.8 (ps)
Start Fast Time 5.1 (ns)
End Fast Time 87.2 (ns)

Integration Index 12

The first flight covered 27 min 41.9 s with an average flight altitude of about 4.2 m; along this
track, 420 not evenly points were collected. Track 2 had a duration of 37.9 s and covered 32.20 m
with an average altitude of 5.6 m; along this track, 380 unevenly radar scans were collected.

Figures 14 and 15 show the raw radargrams acquired along the two flights and the UAV
positions estimated by GPS and CDGPS. Within the east-north plane, positioning differences appear
as smoothly varying offsets of several meters (Track 1) or a few meters (Track 2). As concerns the
altitude difference, it shows some significant variations during the time interval corresponding to
Track 1, while it assumes smaller values in Track 2. As stated above, CDGPS can be assumed as a
reference for standalone GPS performance.
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Figure 15. Test 2-Track 2: (a) raw data; (b) east-north UAV positions estimated by GPS (solid blue
line) and CDGPS (solid red line), along-track direction defined by GPS (dashed blue line) and CDGPS
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(dashed red line); (c) UAV Altitude estimated by GPS (solid blue line) and CDGPS (solid red line),
average altitude defined by GPS (dashed blue line) and CDGPS (dashed red line).

The diffraction hyperbolas corresponding to the four targets are clearly visible in Figure 14a and
their apexes along the slow time axis are at 9's, 19 s, 31 s and 37 s. In Figure 15a, the hyperbolas
corresponding to Target 1, 2, and 4 can be easily identified at 9 s, 15 s, and 33 s; while the response of
Target 3 is less visible. This may be due to less intensity of the backscattered signal caused by the
flight altitude, which is higher with respect to the Track 1.

In this second test case, the flight trajectory estimated by GPS and CDGPS have a similar path
into the North-East plane, even if there is a bias that is more significant for Track 1 than for Track 2
(see Figures 14b and 15b); while the altitudes exhibit different profiles, even if their average values
are quite similar.

The tomographic images referred to Track 1 and Track 2 are depicted in Figures 16 and 17,
respectively. These images have been obtained by adopting the signal processing parameters
indicated in Tables 5 and 6, respectively. Respect to the previous test case, here, we want to remark
that the Subdomain Apertures have the same size, i.e., 4 m. This parameter has been chosen again by
considering the target hyperbola extent in the processed radargrams.

Figures 16b and 17b corroborate that the tomographic images obtained by exploiting CDGPS
data are focused images in which the air-soil interface appears flat, as it is actually, and the relative
distance among all targets as well as their elevation from the ground are estimated properly. The
maximum error is of 0.7 m and regards the estimation of the distance between Target 1 and Targets
2 provided by the tomographic image referred to Track 2.

Focused images allowing an approximated localization of the targets are achieved also by using
GPS data even if the imaging capabilities are degraded respect to those obtained by using CDGPS
(compare Figure 16a,b as well as Figure 17a,b). Indeed, in Figures 16a and 17a the air-soil interface
does not appear flat and the errors on the localization of the targets are larger. These degradations
are more visible in Figure 16a than in Figure 17a, i.e., for Track 1.

Table 5. Signal Processing Parameters: Track 1.

Parameters Specification
Time Gating Start Time: 16 (ns) End Time: 39 (ns)
Frequency range fmin = 3.1 (GHz) fiuax = 4.8 (GHz)
Frequency step 25 (MHz)

x-axis size: 27.32 (m) dx: 0.025 (m)

z-axis size: 4.37 (m)  dz: 0.025 (m)
TSVD threshold (T) -15 (dB)

Subdomain Aperture (L) 4 (m)

Imaging Domain

Table 6. Signal Processing Parameters: Track 2.

Parameters Specification

Time Gating Start Time: 25 (ns) End Time 47 (ns)
Frequency range fmin = 3.1 (GHz) fihax = 4.8 (GHz)
Frequency step 35 (MHz)

x-axis size: 33.76 (m) dx: 0.025 (m)

z-axis size: 3.10 (m)  dz: 0.025 (m)
TSVD threshold (T) -12 (dB)

Subdomain Aperture (L) 4 (m)

Imaging Domain
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Figure 16. Tomographic images Test 2-Track 1 obtained by Shift and Zoom TSVD algorithm: (a) GPS

based MoCo; (b) CDGPS based MoCo.
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Figure 17. Tomographic images Test 2-Track 2 obtained by Shift and Zoom TSVD algorithm: (a) GPS
based MoCo; (b) CDGPS based MoCo.

4. Discussion

The presented results represent a limited number of cases which allow at corroborating some
general observations about the reconstruction capabilities of the imaging strategy performed in
sounder modality but they do not provide an exhaustive analysis.

A first obvious remark is that targets are detectable if their backscattered signals collected by the
radar are distinguishable from clutter and noise. Hence, whatever UAV positioning technology is
adopted, the correct number of targets is expected to be identified in the tomographic image even if,
depending on their radar cross section, some targets are more clearly visible than other ones.

The second observation is that, as expected, in general the CDGPS positioning data allow better
imaging capabilities than standalone GPS data and they made possible to estimate the horizontal
distance occurring between targets as well as the target elevation from the ground with a reduced
amount of error. This happens even if the achieved CDGPS accuracy was not the same for all the
considered examples as it is confirmed by Table 7. This latter reports the percentage of fix/float
solution, the number of visible satellites, the average values of Geometric Dilution Of Precision
(GDOP), Positional DOP (PDOP), Horizontal DOP (HDOP) Vertical DOP (VDOP), and the mean East,
North, and Up Standard Deviations. In other words, even in float mode (estimated positioning
uncertainty of several centimeters), CDGPS is shown to effectively support radar imaging.

Table 7. CDGPS operative conditions.

Test 1-Track  Test 1-Track  Test 2-Track  Test 2-Track

1 2 1 2
. . 36% fix, 64% 70%fix, o 51.3%fix,
Percentage of fix/float solution float 30%float 100% fix 48.7% float
Number of visible satellites 9 9 10 11
Average values of GDOP; PDOP; 1.6;1.5;0.9; 1615 09: 1.2 1.9;1.7;0.9; 1.4;1.3;0.7;
HDOP; VDOP 1.2 e 14 1.1
Mean of East S:f:)dard Deviation 0.0429 0.0155 0.0056 0.0101
f h Deviati
Mean of Nort f::;' dard Deviation 0.0446 0.0176 0.0072 0.0141
Mean of Up Standard Deviation (m) 0.0927 0.0351 0.0212 0.0228

On the other hand, it is sometime possible that GPS-based motion compensation provides decent
radar imaging performance and this happens when space-time correlation of positioning errors is
significant. Specifically, the imaging degradation experienced by using GPS occurs when positioning
data are affected by drifts, while biases play a less significant role. These results are explained by
taking into account the relationship between data and unknowns of the imaging problem, see
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Equation (1). The kernel of this relationship depends on the knowledge of the relative distance
between the UAV radar system and the imaging domain; hence, as more precise is the knowledge of
this relative distance as more accurate the imaging results are. In addition, it is worth pointing out
that the imaging domain is defined according to the available positioning information. As a
consequence, while a constant and unknown bias is detrimental for the absolute localization of the
targets, it does not affect the imaging capabilities of the imaging strategy. The bias affecting the
generic measurement point ry, occurs also in definition of the generic point r of the investigated
domain and thus it is erased by computing their distance.

The final remark is about the computational time. As said in the Section 2, the MoCo allows the
use of the same scattering operator for the Zoom and Shift implementation of the TSVD based
inversion strategy. Therefore, the SVD computation is performed in one single shot and it is used for
all the subdomains. The computational time required to obtain the tomographic images are given in
Table 8 and are referred to the use of a modern laptop whose main hardware and software
characteristics are:

e  Processor: Intel® Core™ i7- 4510U CPU @ 2.00 (GHz)-2.60 (GHz);
e RAM:8.00 (GB);
e  Operative System: Windows 10 Pro.

Table 8. Computational Time.

Computational Time

Flight Test Case TRACK Is]
Track 1 5.16
Test 1
est Track 2 14.15
Track 1 4.65
Test 2 Track 2 3.27

The computational time is in the order of few unit seconds for Test 1-Track 1 and for both tracks
of Test 2, i.e.,, when the average altitudes are in the range of [4.5-5.6] m. Conversely, for Test 1-Track
2, the computational time is about 14 s. This is compliant with the average altitude, which increases
up to 10 m. As highlighted before, the higher altitude implies that the Shift and Zoom synthetic
aperture adopted for Test 1-Track 2 is larger than those used for the other tracks.

This analysis corroborates that, thanks to the MoCo, the required computational time is
compliant with that expected for quasi real-time imaging. In addition, with respect to other classical
data inversion strategies, exploiting the positioning information directly in the focusing stage (see
[14,18,21]), the MoCo supports the creation of an off line library of scattering operator and their SVD.
This feature is useful especially in view of a real-time automatic on board processing for long flight
surveys.

5. Conclusions

This manuscript has dealt with UAV radar imaging system and a signal processing strategy for
generating high resolution radar images in the plane defined by the nadir range and the along-track
directions. The signal processing exploits the MoCo procedure based on standalone GPS or CDGPS
positioning data, and faces the imaging as an inverse scattering problem. This latter is solved by
means of the TSVD inversion scheme, whose implementation has been speeded up by the Shift and
Zoom approach.

To assess the imaging capability and to evaluate the effect of the UAV positioning data on the
reconstruction performance, two measurement campaigns have been carried out in different weather
conditions (winter and summer) and by using multiple different targets.

The experimental results demonstrate that, in general, inclusion of CDGPS positioning
information within the MoCo procedure enables satisfactory imaging results and good target relative
localization accuracy, both with fixed and floating solutions. On the other hand, it is sometime
possible that standalone GPS-based motion compensation provides suitable radar imaging
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performance, which happens when space-time correlation of positioning errors is significant. In fact,
imaging degradation is associated with the drift of positioning errors during the radar integration
time, while biases play a less significant role. This consideration may be important in view of imaging
scenarios where CDGPS cannot be used or cannot provide nominal performance levels.

Final comments are dedicated to future developments. First of all, it is necessary to perform an
investigation involving a large number of field trials in order to perform an in-depth statistical
analysis for quantitatively assessing the impact of the positioning techniques on the imaging system
capabilities; in this frame, we will exploit merit figures, such as the achievable resolutions and
imaging quality parameters as peak contrast and entropy. Then, an imaging sensitivity comparison
analysis between the current MoCo imaging approach and 3D UAV positioning integration in the
focusing stage will be conducted. Furthermore, an advanced autonomous flight mode with the
possibility to plan the UAV flight on a predesigned grid will be accounted for as well as the use of
low frequency radar systems allowing underground penetration capabilities. In this frame, imaging
procedures devoted to exploit data gathered along multiple lines will be considered in order to obtain
a 3D tomographic reconstruction of the investigated scene. In addition, imaging strategies able to
account for the different electromagnetic velocity in air and soil will be considered in case of

underground penetration.
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