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Abstract: Remote sensing image segmentation with samples imbalance is always one of the most
important issues. Typically, a high-resolution remote sensing image has the characteristics of
high spatial resolution and low spectral resolution, complex large-scale land covers, small class
differences for some land covers, vague foreground, and imbalanced distribution of samples.
However, traditional machine learning algorithms have limitations in deep image feature extraction
and dealing with sample imbalance issue. In the paper, we proposed an improved full-convolution
neural network, called DeepLab V3+, with loss function based solution of samples imbalance.
In addition, we select Sentinel-2 remote sensing images covering the Yuli County, Bayingolin Mongol
Autonomous Prefecture, Xinjiang Uygur Autonomous Region, China as data sources, then a typical
region image dataset is built by data augmentation. The experimental results show that the improved
DeepLab V3+ model can not only utilize the spectral information of high-resolution remote sensing
images, but also consider its rich spatial information. The classification accuracy of the proposed
method on the test dataset reaches 97.97%. The mean Intersection-over-Union reaches 87.74%,
and the Kappa coefficient 0.9587. The work provides methodological guidance to sample imbalance
correction, and the established data resource can be a reference to further study in the future.

Keywords: remote sensing image; image segmentation; deep learning; DeepLab V3 plus;
loss function; data augmentation; sample imbalance

1. Introduction

Remote sensing images have become the main data source for obtaining land-use information at
broad spatial scales [1]. With the continuous development of satellite remote sensing technology and
remote sensing platform, the spatial-temporal resolution of remote sensing imagery has achieved great
enhancement. The remote sensing image data that were obtained from high-resolution remote sensing
satellite sensors have rich texture information, spatial information, and more obvious ground geometry.
Remote sensing data obtained from hyperspectral remote sensing satellite sensors has rich spectral
information, but the spatial resolution is often not high enough. The rich information of surface features
in high-resolution satellite remote sensing image is conducive to the extraction of complex features of
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the surface features, which can be used to classify and extract the surface features. Image segmentation
algorithm has a strong ability to extract spectral and spatial features, which makes more researchers
introduce it into remote sensing image classification [2]. Evidently, image segmentation is a
crucial prerequisite in (GEographic) Object-Based Image Analysis (OBIA)[3]. In particular, accurate
segmentation of remote sensing data could benefit applications in land cover mapping and agricultural
monitoring to urban development surveyal and disaster damage assessment [4]. The image
segmentation of remote sensing images is a pixel-level classification of images and it is an important
research direction for remote sensing image classification [5]. The common image segmentation
methods first extract features and subsequently perform classification [6,7]. The application and
processing of remote sensing images are different in different fields, so are the classification tasks of
remote sensing images. In the past, the classification methods of remote sensing images mainly relied
on prior knowledge and classification was always based on the differences in the spectral characteristics
of ground features. Different spectral features can be used in order to distinguish different ground
features [8,9]. Typical ground features, such as water, vegetation, and farmland, have different
normalized difference indexes, such as NDWI, NDVI, NDBI, etc. [10–12]. However, only using
spectral information to classify the ground features when facing the phenomenon of “same spectral
from different materials” and “same material with different spectral”, it will cause misclassification
and affect classification accuracy. High-resolution remote sensing images have the characteristics
of high spatial resolution and low spectral resolution. Traditional methods cannot make full use
of the rich spatial information, so the classification accuracy is usually low. The current studies
mostly adopted unsupervised or supervised learning methods, such as Restricted Boltzmann Machine
(RBM) [13], K-means clustering [14,15], maximum likelihood method [16], Support Vector Machine
(SVM) algorithm [17–20] and its variations [21], decision tree method [22], Random Forest (RF)
algorithm [23,24], and other machine learning algorithms have been proposed. The selected model is
generally trained by selecting feature bands and regions of interest. These traditional machine learning
methods rely more on spectral features and ignore the spatial features and texture information of
high-resolution remote sensing images.

Deep learning [25] methods have strong capabilities for the feature extraction of spectral and
spatial information. Since Long et al. [26] proposed the fully connected network (FCN), a series
of classic image segmentation networks emerged, such as U-Net [27], PSPNet [28], SegNet [29],
DeepLab series [30–32], ICNet [33], etc. There have been many advances in using FCN network for
remote sensing image classification. Based on this method, Zhao et al. [34] combined spatial features
with spectral features by using the multiscale convolutional neural network, and it helps to transform
the original data set into a pyramid containing multiscale spatial information to capture rich spatial
information. Mnih et al. [35] proposed a kind of convolutional neural network based on airborne
large-scale context features. Wang et al. [36] spliced multiple image feature maps, and the feature maps
have stronger expression ability after fusion. Compared with the end-to-end network architecture,
the network models based on the slice structure, lack the overall understanding, and easily lead to high
resource consumption with low efficiency. At the same time, these network structures are also inferior
to the Encoder-Decoder architecture in not combining the boundary information of low-level features,
resulting in poor accuracy of the boundary part. Wei et al. [37] proposed the RSRCNN structure for
the road structure and designed a novel loss function. Kemker et al. [38] utilized synthetic images for
parameter initialization to avoid model overfitting. He et al. [39] designed the Encoder-Decoder deep
image segmentation network for the road extraction of remote sensing images, and then improved
the two-class cross-entropy loss function and extracted roads with rich local features and simple
semantic features. Zhang et al. [40] used full convolutional neural network to fuse multi-scale features
for image segmentation of Irrigation Networks in Irrigation Area. Wu et al. [41] applied it to the
classification of remote sensing images. Based on the U-Net model, a weighted cross-entropy loss
function and an adaptive threshold method were adoptd in order to enhance the accuracy of small
classes. Zhu et al. [42] mixed binary value with floating point numbers in a U-Net network to solve the
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problems of poor detection accuracy and low efficiency of the global binary network. Yang et al. [43]
used the SegNet network structure to extract rural construction land, using the spectral information
in high-resolution remote sensing images, and spatial information. However, when compared with
models using multi-scale context information, the above models do not consider the correlation
between local features and global features in multiple ratios. On the one hand, the types of features
that are extracted by this model are also relatively single, which is not suitable for multi-type extraction
tasks, and it is difficult to directly apply to the classification of remote sensing images. On the other
hand, this type of deep learning-based image segmentation model has high requirements on training
samples with great quantity and high labeling quality, and the actual operation is more difficult.
In addition, remote sensing images usually capture the roof information of geospatial objects and
natural scene images usually capture the profile information of objects. There is a huge difference
between remote sensing images and natural scene images [44]. Therefore, the image segmentation
algorithm learned from natural scene images cannot be directly transferred to remote sensing images.
Specially, the data set created in this paper is a kind of high-resolution remote sensing data set for arid
regions, which not only has the characteristics of the above remote sensing data sets, but also the crops
in the arid area and large-scale strip farming.

Inspired by success in several classification tasks, deep convolution neural networks have been
applied for HSI classification problems and achieved state-of-the-art performance [45]st. and it plays
an increasingly important role in remote sensing [46]. Niu et al. [47] utilized DeepLab to mine the
spatial features of hyperspectral images, fuse the spatial-spectral features in a weighted way, and input
the fused features into a support vector machine for final classification. The network follows the
idea of FCN in image segmentation and incorporates the Encoder-Decoder structure simultaneously.
The boundary segmentation is more accurate by combining low-level spatial information. Meanwhile,
multi-scale context information, as obtained from multiple sizes of atrous convolution, makes the
model achieve more accurate semantic features and classification results. However, high-resolution
remote sensing image data are different from large general-purpose datasets and hyperspectral data.
It covers complex ground features, large spatial resolution, and small spectral resolution, which can
easily lead to unclear image foreground. At the same time, due to the large intra-category or small
inter-category differences, using the DeepLab V3 + model directly will not achieve the same effect as
the general data set. The obtained classification results usually have low accuracy with much salt and
pepper noise.

As a data-driven method, the quality and quantity of data are vital for supervised training.
Limited by low quantities of ground truth labels, Wang [4] heuristically created pixel land cover
mappings through exploring weak labels in the form of a single pixel per image and class activation
maps to create pixel land cover mappings. Unlike other general data sets, the high-resolution remote
sensing image sample set is prone to causing the problem of sample imbalance among classes due to
the skewed distribution of ground features, which has been a huge challenge to machine learning and
data mining and aroused strong attention [48]. The problem of sample imbalance between categories
refers to the large difference in the amount of samples among different classes. The class with
absolute quantity advantage is called the large class, and the class with the relatively small quantity is
called the small class [41,49]. While classifiers tend to classify new samples into large classes, so the
classification accuracy for small classes is low. Therefore, such problem of sample imbalance restricts
the classification accuracy of small classes, which reduces the average classification accuracy of image
segmentation in turn. The common processing methods for such sample imbalance problems use
resampling methods [49], including over-sampling and down-sampling methods. Although this
method is effective, it has drawbacks. The down-sampling method may remove the samples that have
a great impact on the classification performance, and the over-sampling method balances the size of
each class mainly by copying the existing samples instead of importing new samples, so it is easy to
cause overfitting [49].
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In view of the above problems, we consider the application of high-resolution remote sensing
image in arid areas with the characteristics of high spatial resolution, low spectral resolution, large size,
complex feature type, and samples imbalance. Meanwhile, the characteristic crops in the arid area
generally adopt large-area strip farming methods, and the large or small intra-category differences in
some ground objects result in unclear image prospects. In the paper, we utilize the strong representation
ability of deep learning to extract features, and then redesign and optimize the loss function for multiple
types of objects. The improved model can better address these problems. The main contributions of
this work are listed, as follows:

(1) The improved DeepLab V3 + image segmentation model facilitates the alleviation of samples
imbalance problem by proposed function-based solution.

(2) Mixed precision mode was introduced into training for the improvement model training efficiency,
and it performed well.

(3) The experimental results on self-constructed dataset and GID dataset show the proposed model
obtains significant performance when compared with existing state-of-the-art approaches.

2. Materials and Methods

2.1. Study Area

We selected the 31st, 33rd Regiments and their surrounding areas of the Second Division of
Xinjiang Production and Construction Corps, Yuli Comt, Bayinguoleng Mongolian Autonomous
Prefecture, Xinjiang Uygur Autonomous Region, China. The study area range from 40◦39’N to 41◦4’N,
and 86◦35’E to 87◦20’E. The location of the study area is shown in Figure 1. The study area of Yuli is
520 km from Urumqi City, 50 km south of Korla City, with a total area of 59,700 square kilometers.
It includes seven townships, one town, nine communities, and 50 administrative villages. There are a
total of five County level units, including three regiments of the second division (31st, 33rd, and 34th
Regiments) and two state direct units (Qala Water Management Office, Tahe Bayinguoleng Authority
Kongquehe downstream station). National Highway 218 crosses through the county and it is also one
of the important transportation hubs in southern Xinjiang. The area is rich in types of ground features,
including cultivated land, water, deserts mand roads. Therefore, it is suitable for remote sensing image
classification study. Simultaneously, the study area is located between the Taklamakan Desert and the
Kumtag Desert, and it is of great significance to understand the ecological situation of the study area
by mastering the distribution of ground features.

2.2. Data and Samples

In the paper, we select Sentinel-2 data from June to August 2019, with a total of five scenes,
specifically including three Sentinel-2A data scenes and two Sentinel-2B data scenes. Table 1 shows
the data acquisition phase and other information.

Table 1. Acquisition time of S2A and S2B.

Image Acquisition Date Satellite Number of Bands Cloud Coverage

A 28 June 2019 S2B 13 13%
B 28 July 2019 S2B 13 3.5%
C 30 July 2019 S2A 13 0%
D 29 August 2019 S2A 13 2%
E 29 August 2019 S2A 13 2.9%
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Figure 1. Location of the Study area.

The main land covers of the study area include desert, cotton land, roads, water, wetlands,
uncultivated arable land, jujube trees, populus euphratica, buildings, woodland, pear trees, and other
backgrounds, totaling 12 types of land covers. Figure 2 shows the main vegetation phenology
information in the study area. Because the plants are in the summer growth period or flower bell
period from June to August, the vegetation spectral and texture characteristics are more obvious,
as shown in Figure 2. Additionally, when considering the quality of remote sensing images on the
impact of remote sensing images classification, we select five scenes in this period. The Sentinel-2
image data used in the experiments are all from the European Space Agency, whose 1C level products
are atmospheric apparent reflectance products that have undergone ortho correction and sub-pixel
geometric fine correction, but no atmospheric correction. Accordingly, the plug-in Sen2cor released by
ESA needs to be atmospherically corrected to obtain a 2A-grade product. Su et al. [50] proved that
the plug-in has the highest accuracy by experiments. Because of different resolutions in 13 bands for
images, we selected the visible light band with a ground resolution of 10m in Sentinel-2 as the data
source, which is 2nd, 3rd, and 4th band (blue, green, and red), respectively.

February March April May June July August September October November

Seedling stage Flower bellBud stage Boll opening stage Harvest

germination florescence Young fruit Growth period Maturity Defoliation

germination DefoliationMaturityGrowth periodYoung fruitflorescence

germination Spring growth period Summer growth period Winter preparation

December

populus euphratica

pear trees

jujube trees

cotton

Figure 2. Main phenological information of study area.
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2.3. Dataset Preparation

The quality of the dataset is directly related to the accuracy of remote sensing image classification.
The data annotations in this paper come from field investigations and they are combined with
high-resolution Google Earth image visual interpretation. On 30 June 2019, the experimental team
went to the study area for a detailed investigation, using high-precision GPS to record and take pictures
of different land covers. Based on the location results, we labeled the Sentinel-2 data for 28 June 2019
after preprocessing while using the method mentioned above.

The data in this period are a mosaic of two scenes. Take study area as region of interest for image
cutting, we get the image with size of 6338 × 4722 pixels. Subsequently, we cut it into subimages with
the size of 500 × 334. The cut images are independent of each other without overlap, and the blank
images are also removed by filtering. A total of 155 images are obtained. Next, label the image with
Labelme software [51] to obtain the corresponding mark file. Because the selected image data gather
from the same year with short time interval and without experiencing crop harvest or natural disasters
and other great changes, vegetation is in the same period, water bodies, deserts, buildings, roads,
etc. have not changed much too. The images do not need to be manually labeled repeatedly, and the
shapes recorded in the first labeled file can be used to label the remote sensing images in the same area
again [52,53]. Because remote sensing image classification is a multi-classification task, the category
labels need to be fixed. We utilize the number from zero to eleven to mark the classes of land covers.
These land covers are background, desert, cotton land, road, water, wetland, uncultivated arable land,
jujube tree, populus euphratica, building, woodland, and pear tree, respectively.

After manual and repeated machine annotations, there generated 775 labeled images, and each
one was 500 × 334 pixels in size. Figure 3 presents some labeling results.

Figure 3. Partial Annotation Results.

2.4. Data Set Sample Distribution

The annotated data set has a total of 775 pieces of Sentinel-2 satellite data, including five scenes
from June to August, and the distribution of various land covers is shown in Table 2. Here shows
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the number of pixels and pictures for each kind of land covers. Where class frequency refers to the
frequency of occurrence of this type of feature, and its formula is:

class f requency =
pi

∑N
i=1 Pi

(1)

where pi represents the number of pixels occupied by the surface feature of class i, and Pi represents the
pixel size of the image of class i, which is 500× 334 in this paper. Ni is the number of images containing
this class, and ∑N

i=1 Pi represents the sum of the total number of pixels of all images containing this
ground feature class, which is, the number of pixels of images containing this class in the data set.

While weight in the table is designed to be assigned to a class in the loss function for median
frequency balancing [29,54], and its value is the ratio of the median of class frequencies computed on
the entire training set divided by the class frequency. The calculation formula is as follows:

weighti =
median(class f requency)

class f requencyi
(2)

For the land covers with a small proportion, its weight is greater than 1, while the weight is less
than 1 for the land covers with a larger proportion. The smaller the proportion, the greater the weight.
We measure the balance of the sample data based on the obtained weighting results. As can be seen
from Table 2, land covers, such as desert and cotton land, are obviously in the dominant position of the
big category. While the land covers such as pear trees have the smallest number of pixels and occupy a
small number of pictures, resulting in a small class frequency, but not the largest weight. Because of
the small number of pixels and large number of images, road features have a large class frequency and
weight ratio, which need to be adjusted and paid attention to.

Table 2. Dataset sample distribution.

Class Name Number of Pixels Number of Pictures Class Frequency Weight

desert 46963290 775 0.3628610392118988 0.13304701
cotton 21022970 505 0.24927930278057747 0.19366861
roads 845340 260 0.01946890833717181 2.27707261
water 4672470 460 0.06082361364228066 0.7937308

wetland 4061970 165 0.1474131736526946 0.32749838
uncultivated arable land 4780315 430 0.0665689319036346 0.72522683

jujube trees 678805 130 0.0211086199693636 1.54404602
populus euphratica 555585 140 0.022732784431137725 1.596573

buildings 1790150 300 0.024234483414124132 1.35111947
woodland 684185 185 0.022145492798187408 1.63891363
pear trees 631290 160 0.021537724550898203 1.68516176

backgrounds 42588115 775 0.3290563260575623 0.14671523

2.5. GID Dataset

We adopt Gaofen Image Dataset (GID) [55] as standard dataset to make comparison for our
method verification. In the paper, partial GF-2 satellite images from the released GID dataset were
utilized for preparing CNN model training samples, and the images only include red, blue, and green
bands. GID consists of two main parts, namely large-scale classification and fine land-cover
classification set. For the former, five representative land-use atecgories are annotated, built-up,
farmland, forest, meadow, and water, respectively. These land-use categories were annotated,
corresponding to five different colors: red, green, blue, cyan, yellow, and blue. In addition, areas not
belonging to the above five categories and clutter regions are both labeled as background and are
represented by black color. The fine land-cover classification set is composed of 15 sub-categories:
paddy field, irrigated land, dry cropland, garden land, arbor forest, shrub land, natural meadow,
artificial meadow, industrial land, urban residential, rural residential, traffic land, river, lake, and pond.
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Similarly, areas not belong to the above categories or unidentified manually are annotated as unknown
areas, and are represented in black. We take the same strategy as [55] to cope with multispectral images,
ignoring unknown regions, and only calculating the accuracy of deterministic regions. The two
parts of GID constitute a hierarchical classification system, and Figure 4 shows the affiliation of
them. In the paper, 50 GF-2 images form large-scale Classification set and 10 GF-2 images from
fine land-cover classification set were extracted, and they were utilized for five-classification and
ten-classification, respectively.

GID

ForestBuilt-up Farmland MeadowWater

industrial land

urban residential

rural residential

traffic land

garden land

arbor land

shrub land

paddy field

irrigated land

dry cropland

natural meadow

artificial meadow

river

lake

pond

GID

Large-scale classification set

Fine land-cover classification set

Figure 4. Gaofen Image Dataset (GID) dataset structure.

2.6. DeepLab v3+ Model

2.6.1. Overview

Figure 5 shows the architecture of DeepLab V3 +, an image segmentation model based on deep
full convolutional neural networks used in this paper. The network utilizes the Encode-Decoder
structure with atrous convolution [30,31,56]. Among them, the Encoder part uses the DeepLab V3
network to encode multi-scale context information by with atrous convolution on multiple scales.
The model takes the deep convolutional network Xception of atrous depthwise convolution [30,31]
as the backbone network. Subsequently, multi-scale atrous convolution is used to encode multi-scale
context information, while simple and effective decoder modules can be used to refine the classification
results. The mathematical formula of atrous convolution is as follows:

y[i] = ∑
k

x[i + r • k]ω[k] (3)

where y and ω represent the output feature map and the convolution filter, respectively. y[i] refers
to the output of atrous convolution at each position i on the filter ω. The k is the filter’s kernel size,
and x is the input feature map. The ratio of atrous convolution r is the sampling step of the input
signal. The filter’s field-of-view can be modified by the modified value of r in order to obtain the
output characteristics at any resolution. Therefore, the receptive field can be adjusted through atrous
convolution to detect and segment large targets with high location accuracy. Besides, Multi-scale
context information can be obtained by adjusting the parameter r.

The encoder part of the network is a process of extracting high-level semantic
features, transforming low-dimensional features into abstract high-dimensional feature vectors.
Therefore, DeepLab V3 + can extract feature vector with atrous convolution at any resolution.
The output stride represents the ratio between the input image spatial resolution and the final output
resolution before pooling or full connection layer, as shown in Equation (4). We set outputstride = 16
to perform image segmentation on remote sensing images.

output stride =
input image spatial resolution

f inal output resolution
(4)
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Atrous Conv

Encoder

1×1 Conv

3×3 Conv

rate 6

3×3 Conv

rate 12

3×3 Conv

rate 18

Image

Pooling

1×1 Conv

1×1 Conv Concat

Upsample

by 4

3×3 Conv
Upsample

by 4

Decoder

Input

Output
Low-Level

Features . . .

. . .

Figure 5. Structure diagram of DeepLab V3+.

2.6.2. Atrous Spatial Pyramid Pooling with Depthwise Separable Convolution

In DeepLab V3+, the encoder takes DeepLab V3 network [31] as the base, simultaneously retaining
atrous convolution and ASPP layer, and the backbone network adopts the method of Xception model,
which can effectively improve the robustness and running speed of image segmentation. The method
combines Atrous and Spatial Pyramid Pooling [57–59] in order to solve the multi-scale problem of
image segmentation of objects by using four different rates of atrous convolution. ASPP includes
a 1 × 1 convolution and three 3 × 3 atrous convolution with the sampling rate of rates = {6,12,18},
respectively. It also adopts image-level features, namely the features after global average optimization
and convolution fusion, and the image pooling is performed, as shown in Figure 5. Because of in the
process of image segmentation tasks with the existing convolutional neural network, down sampling
will lead to information loss and the space invariance of convolutional neural network should be
considered simultaneously.

In the paper, Depthwise separable convolution [60–62] is adopted to reduce the calculation cost
and maintain model performance. Be different from conventional convolution operation, a convolution
kernel of Depthwise convolution is responsible for one channel, and only one convolution kernel
convolutes one channel. After depthwise convolution operation, the number of feature maps is
the same as the number of channels in the input layer, so the pointwise convolution is needed in
order to combine these feature maps to generate new feature maps, as shown in Figure 6. It is
noteworthy that the operation of pointwise convolution is very similar to the conventional convolution
operation. Its convolution kernel size is 1 × 1 × M, and M is the number of channels in the upper
layer. Therefore, the convolution operation in this step will combine the feature map of the upper step
in the depth direction to generate a new feature map.
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Figure 6. Depthwise separable convolution.

2.6.3. Data Augmentation

In deep learning algorithm, the quality of training depends on the quality of dataset. The spatial
resolution of the Sentinel-2 data used in this paper is relatively high. The ground resolution of the band
is up to 10 m with abundant features. Therefore, we can enhance the dataset obtained in Section 2.3
to prevent overfitting. The commonly used methods of data augmentation include image rollover,
including left-right, up-down, and both together. Therefore, by flipping, there are four cases of the
image, the original, left-right, up-down, and left-right-up-down, respectively. When satellites shoot
land covers, they use a bird’s-eye view, and shooting at various positions is reasonable. There also
exists other methods of data augmentation, such as Unpadding, Step-Scaling, and Range-Scaling,
as shown in Figure 7. Specifically, unpadding is to use resize mode to scale the original image to
512 × 512 pixels. With step-scaling method, the original image is scaled up in a certain range by step
size value. In this paper, we set scale parameter from 0.75 to 1.25, and the step size parameter is 0.25.
If the range scaling method fixed the aspect ratio before training, then it will change in a certain range
during training. The long edge needs to be aligned to a specified size during prediction. The specified
size selected in this paper is 500, and the range of change is 400 to 600. The original dataset includes
775 pieces with 500 × 334 pixels each, and the number of flipped pieces was 775 × 4 pieces. The final
number of flipped pieces was 775 × 4 × 2 × 3 × 2 after unpadding, step-scaling, and range-scaling,
totally 37,200 pieces. The data set was divided into training set, verification set, and test set, and the
ratio was 3:1:1.

Unpadding

500×334

512×512

Range-Scaling

375×25

1

625×418

500×334
Continuous change of 

side length

Step-Scaling

0.75×
1.0×

1.25×

Figure 7. Part of data augmentation.

2.6.4. Loss Function-Based Solution of Samples Imbalance

There exists many kinds of land covers in the study area, where the road covers little with small
area. During training, imbalanced category distribution will be encountered. Softmax loss function
treats each pixel equally during image segmentation, and generally adopted in multi classification
tasks. The mathematical Equation (5) is as follows:

Js = −
1
m

[
m

∑
i=1

k

∑
j=1

l
{

xi ∈ cj
}

log
ewT

J xi

∑k
l=1 ewT

l xi

]
(5)
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where wj ∈ Rd refer the vector of weight w ∈ Rd×k in column j. l{·} is the indicator function. As shown
in Formula (6), xi ∈ cj means the label of the sample xi belongs to class j. Because the optimizer used
in the model is SGD, the parameters can be optimized quickly in the gradient descent process.

l(A) =

{
1 A is true
0 A is false

(6)

It can be seen from the sample distribution in Section 2.4 that the road class features have a large
class frequency and weight, which needs to be focused on. Due to the little cover proportion of road,
samples are not balanced in multi-class tasks. While softmax loss evaluates the category of each pixel
and finally evaluates the image with all pixels, and the training model will be dominated by the most
mainstream category, reducing the network’s ability to extract roads. The combination of DICE and
BCE loss can improve the stability of model training. Dice loss is defined as formula (7):

dice loss = 1− 2|Y ∩ P|
|Y|+ |P| (7)

where |Y ∩ P| refers to the intersection of set Y and P. It can be seen from the formula that it measures
the similarity of the two contours, and calculates the overlap between prediction and annotation
to calculate the loss function. The combination of BCE loss function can improve the stability of
model training. In this paper, the DICE and BCE loss functions are combined in order to improve
detect accuracy for the surface features such as the road, while softmax loss function is still used for
other surface features, improving the overall classification accuracy by comprehensively using these
loss functions. For image segmentation of road, we compare the use of softmax and DICE-BCE loss
function. The classification accuracy is as shown in Table 3. For road ground features, the DICE-BCE
loss function can effectively improve its classification results and all three indicators are better than
using only softmax loss function.

Table 3. Effect of different loss functions on road segmentation results.

Loss Function OA(%) MIoU(%) Kappa

softmax loss 97.44 73.62 0.6598
dice loss 97.40 75.99 0.6933
bce loss 97.44 73.94 0.6581

dice loss+bce loss 97.47 76.02 0.6908

2.6.5. Model Training

For deep learning training, the storage and update of network weights take up huge amount
of memory and resources. Hence, how to improve calculation efficiency is the crucial issue. In this
paper, we adopt the network training method that is based on mixed precision [63] training to
improve the training efficiency of the model. Mixed precision training, namely, based on the
complexity and accuracy requirements of data calculation, single-precision format (FP32) and IEEE
half-precision format (FP16) are flexibly chosen in order to carry network weights, instead of
conventional completely using FP32. The difference between the two precision modes, is shown
in Table 4. Specifically, the model parameters are stored in FP32, and FP16 is chosen for the forward
calculation of the network. Due to back-propagation involving weight update, FP32 was used to
prevent weight parameters from missing because of the lack of accuracy. Simultaneously, the loss
scaling factor is introduced into training to avoid overflow and underflow.
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Table 4. Comparsion of single-precision float with half-precision float.

Type Bits Representable Maximum Kappa

Single-precision floating-point number 32 3.4 × 1038 6 digits after the decimal point

Half-precision floating point 16 65,504
cannot accurately represent
all integers in the range

3. Results

3.1. Experimental Environment and Model Training

The experiments were performed on an Ubuntu 16.04LTS 64-bit system, while using NVIDIA
Titan XP for graphics acceleration. The model uses the ploy strategy to attenuate the learning rate,
and the formula is as follows:

LR = InitialLR
(

1− iter
maxiter

)power
(8)

The initial learning rate InitialLR is 0.005, the learning rate decay strategy decline index power
is 0.9, and the maxiter is the maximum training step size. iter refers to current training step length.
Figure 8 shows different decay curves. When power = 1, the learning rate decay curve is a straight
line, when power > 1, the learning rate decay curve turns to concave inside and when power < 1,
the learning rate decay curve turns to convex outside. In this paper, we use random gradient
descent algorithm with power = 0.9 for parameter optimization. The whole training process includes
100 batches with a total of 12.900 steps with several kinds of loss functions.
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Figure 8. Changes in learning rate(LR) under different power values.

3.2. Evaluating Indicator

We use classification accuracy (CA), overall accuracy (OA), intersection over Union (IoU),
mean intersection over Union (MIoU), and kappa coefficients as evaluation indexes in order to evaluate
the segmentation accuracy of the model in remote sensing image reasonably and objectively. The larger
the index value, the better the model effect.

(1) Classification Accuracy and Overall Classification Accuracy
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Classification accuracy (CA), which can directly express the classification accuracy of a certain
class of pixels, is expressed by the ratio of the correct number of pixels in this class to the total number
of all pixels in this class. The formula is as follows:

CA =
pii

∑k
j=0 pij

(9)

where we assume there exists k + 1 classes (including k target classes and 1 background class). In this
paper, k is 11. pii represents the number of pixel i correctly predicted as i and pij represents the number
of pixel i predicted as j.

Overall classification accuracy (OA) can express the overall classification accuracy of pixel points,
and calculate the ratio of pixel points with correct overall classification and the total number of all
pixel points. The formula is as follows:

OA =
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pij
(10)

(2) Intersection over Union and Mean Intersection over Union
Intersection over Union (IoU) is a standard metric of the image segmentation model. It calculates

the ratio of the intersection and union of the ith type true value pixel set and predicted value pixel set.
It is defined, as follows:

IoU =
pii

∑k
j=0 pij + ∑k

j=0 pij − pii
(11)

The Mean Intersection over Union (MIoU) is to calculate the intersection ratio of each class and
calculating the average of all classes. This index can better reflect the accuracy and completeness of
model segmentation in different terrain type areas in the experiment, as defined below:

MIOU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pij − pii
(12)

(3) Kappa coefficient
The Kappa coefficient is an index for consistency check. It can measure the effect of classification or

segmentation. The value range is [−1,1], the closer it is to 1, the better the classification or segmentation
effect, the definition is as follows:

kappa =
po − pe

1− pe
(13)

where, po is the overall classification accuracy, assuming that the real number of samples of each class
is a1 , a2 ,..., a(k + 1), and the predicted number of samples of each class is b1 , b2 ,..., b(k + 1), the total
number of samples is n, then:

pe =
a1× b1 + a2× b2 + · · ·+ a(k + 1)× b(k + 1)

n× n
(14)

3.3. Training Protocol

Pre-train: due to limited remote sensing image dataset, public datasets were considered for
model pre-training, namely ImageNet [64], COCO [65] and Cityscape [66]. Then remote sensing
image training dataset was feed into the initialized model, and MIoU results were shown as Figure 9.
It can be seen that model pre-trained by ImageNet performed worst. Model pre-trained by COCO
and Cityscape show approximate MIoU value at first, while cityscape-based model accelerate the
convergence speed gradually and finally achieved better performance. Therefore, the cityscape dataset
was selected for model pre-training.
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Figure 9. Mean intersection over Union (MIoU) result on the validation set over the model pre-trained
by ImageNet, COCO, or Cityscapes dataset.

Norm Type: as the number of network layers increase, the distribution of weight will gradually
shift with the training of the network, causing declining feature representing ability and slow
convergence speed. To address the problem, we selected Batch Normalization (BN) [67] and Group
Normalization (GN) [68] for model training, and made verification comparison on validation set
with MIoU. The BN-based method outperforms with faster convergence speed and high MIoU value,
as shown in Figure 10. That is because GN-based method cannot handle loss value with type of NaN.
Consequently, we select BN as the normalization-based method.
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 Batch Normalization
 Group Normalization

Figure 10. MIoU result on the validation set over the model normalized by BN and GN.

The number of training epochs: We vary the number of training epochs as [100, 200, 300]. Figure 11
shows the experimental results. We can see that, as the number of epochs increases, the performance
of the model is gradually improved. Subsequently, the model starts to converge form the 50th epoch,
and the performance becomes stabilized when the epoch reaches the 200th epoch. In order to make
model fully trained, we set the number of epoch to 300.
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Figure 11. Training Epoch.

3.4. Experiment Result Analysis

In the paper, we compared our improved loss function-based method with four mainstream
segmentation network: U-Net, PSPNet, ICNet, and DeepLab V3+. Table 5 shows the experimental
results on the satellite image dataset.

Table 5. Experiment results of models with different structure on test dataset.

Model
Category

U-Net PSPNet ICNET DeepLab V3+
Mobilenet DeepLab V3+

DeepLab V3+
Mixed Loss

Function

CA/% IoU/% CA/% IoU/% CA/% IoU/% CA/% IoU/% CA/% IoU/% CA/% IoU/%

desert 84.64 81.57 97.77 96.15 97.41 94.39 81.98 77.17 98.06 96.07 98.69 97.38
cotton 73.42 70.49 92.80 88.36 90.35 83.46 57.46 54.87 92.88 88.27 95.03 90.94
roads 50.85 6.71 77.92 58.71 57.05 33.91 0.00 0.00 74.36 57.45 97.47 76.02
water 78.81 63.15 93.55 85.37 89.22 80.62 61.40 46.72 91.15 85.61 93.51 89.87

wetland 55.33 22.92 89.81 85.92 94.28 82.66 0.00 0.00 92.47 88.16 95.13 91.90
uncultivated
arable land 40.68 7.99 90.07 81.45 84.02 72.59 0.00 0.00 85.43 80.19 91.19 86.63

jujube trees 0.00 0.00 86.00 77.86 66.01 58.40 0.00 0.00 86.22 77.25 89.75 85.41
populus
euphratica 12.09 0.05 85.92 77.18 70.47 63.75 0.00 0.00 85.61 75.40 87.94 81.63

buildings 77.22 57.40 89.19 84.09 86.28 77.21 0.00 0.00 86.13 82.76 92.03 88.83
woodland 0.00 0.00 86.74 83.89 70.88 66.22 0.00 0.00 84.55 81.72 87.89 83.46
pear trees 33.21 0.87 89.02 79.03 70.82 65.31 0.00 0.00 91.46 81.14 92.93 87.43

backgrounds 97.24 88.72 97.15 93.07 94.88 90.53 98.35 87.73 97.16 92.70 97.94 94.58
OA(%) 86.16 95.88 93.97 81.79 95.77 97.97

MIOU(%) 33.32 82.59 72.44 22.21 82.23 87.74
Kappa
coefficient 0.8000 0.9415 0.9144 0.7367 0.9401 0.9587

In order to evaluate the impact of each model on the extraction accuracy of various land covers
quantitatively and accurately, we utilize the test set to evaluate the accuracy of different models
with indicators, such as: OA, MIoU, Kappa coefficient, CA and IoU. Table 5 shows that the U-Net
model utilizes the COCO data set for pre-training initialization, with an overall accuracy of 86.16%.
PSPNet and ICNet model utilizes the Cityscapes data set for pre-training initialization, with an overall
accuracy of 95.88% and 93.97%, respectively. In Deeplab V3 + mobilenet model, we take mobilenet
V2 as the backbone network. Subsequently, we utilize COCO dataset for pre-training initialization,
and the overall accuracy reaches 81.79%. Simultaneously, we take Xception as the backbone network,
initializing the model with Cityscapes dataset and the overall accuracy reaches 95.77%. In this paper,
we select a loss-function hybrid model based on DeepLab V3+. The backbone network of model is
Xception. The model utilizes Cityscapes dataset for pre-training. As a result, the overall accsuracy
reaches 97.97%, which outperforms other models, especially on the road detection. This is because the
roads belong to small class samples and softmax loss function always treats any pixels equally. In case
of unbalanced samples, it will lead to classification biased towards large types of features if only using
the softmax loss function. In this paper, the method is to deal with the road with the combination of



Remote Sens. 2020, 12, 3547 16 of 21

DICE and BCE loss function, which greatly improves the segmentation accuracy of small class samples
and overall classification accuracy.

The Kappa coefficients are 0.8000, 0.9415, 0.9144, 0.7367, 0.9401, and 0.9587, respectively. It can be
seen that the model based on DeepLab V3+ model with mixed use of loss function has the highest
Kappa coefficient with the best segmentation effect. The U-Net model has a poor classification result
due to the simple network structure and the lack of multi-scale context information, which results in
misclassification because of “salt and pepper noise”. Therefore, the Kappa coefficient is relatively low.
ICNet obtains semantic information through low-resolution branches, and takes medium-resolution
and high-resolution branches for recovery and refinement of rough predictions. However, because of
low input resolution and small amount of calculation, the Kappa coefficient obtained is not optimal.
Because PSPNet can combine multi-scale context information, and 50-layer ResNet, as the backbone
network, also has a strong expression ability, the boundary segmentation effect is better. DeepLab
V3+ has poor segmentation ability in the case of insufficient trunk network expression ability, such as
MobileNet, but, in the case of strong trunk network capability, such as Xception, it has strong
segmentation ability. Because PSPNet does not combine the low-level rich spatial information for
decoding, its segmentation boundaries are relatively rough. While DeepLab V3 + architecture combines
multi-scale context information, the segmentation boundaries are refined by the Encoder-Decoder
structure. The performance is shown as Figure 12. In the figure, (a) is the original remote sensing
image, (b) is the ground truth of the manually labeled result, and (c) to (h) are the visual results of
u-net, PSPNet, ICNet, DeepLabv3+ Mobilenet, DeepLeb V3+, and DeepLeb V3+ with mixed loss
function, respectively. It is not difficult to see from the Figure 12 that U-Net has a large area of “salt and
pepper noise”, which seriously affects the classification effect. While the classification performance of
DeepLeb V3 + Mobilenet is fuzzy, and the result is also unsatisfactory. Although the results of PSPNet
and ICNet are generally correct, the boundary of ground object classification is not clear with fuzzy
edge contour. The boundary of the features divided by DeeLab V3 + network is clear and complete,
and the classification is accurate.

(c)U-Net visualization of results (d)PSPNet visualization of results

(e)ICNet visualization of results (f)DeepLeb V3+  Mobilenet 

visualization of results

(g)DeepLeb V3+ visualization of 

results

(h)DeepLeb V3+ with mixed loss function 

visualization of results

(a)Remote sensing image (b)Manual annotation results

Figure 12. Partial visualizations of different models.

We also conducted experiments on GID dataset in order to test the effectiveness of this model.
Accordingly, we compared our model with object-based classification methods and other general
segmentation network, and the experimental result is shown in Table 6. Our method outperforms
other algorithms, indicating the effectiveness on public high resolution remote sensing image dataset,
as shown in Table 6. Although the acquisition location and time are diverse, the objects belong to
the same class have similar spectral response in the images that were captured by the same sensor
(i.e., GF-2 satellite). It can be seen that our model achieved the highest Kappa and OA of 0.6355 and
74.98% on five classes, and of 0.5979 and 69.16% on 15 classes, showing the strong transferability and
effectiveness of the model.
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Table 6. Experiment results of models with different structure on GID dataset.

Methods
5 Classes 15 Classes

OA(%) Kappa OA(%) Kappa

MLC 65.48 0.504 22.65 0.134
RF 68.73 0.526 23.79 0.164

SVM 46.11 0.103 22.72 0.024
MLP 60.93 0.442 14.19 0.082

U-Net 62.68 0.421 56.59 0.439
PSPNet 66.11 0.498 60.73 0.458

DeepLab V3+ Mobilenet 66.79 0.508 54.64 0.357
DeepLab V3+ 72.86 0.604 62.19 0.478

DeepLab V3+ Mixed loss function 74.98 0.636 69.16 0.598

4. Discussion

As mentioned above in Section 2.4, desert, cotton land, water, wetland, and background, as the
large classes, are of the great sample size. Therefore, various models get well trained, and the
classification effect is relatively good. Uncultivated arable land, jujube trees, populus euphratica,
building, woodland and pear trees, etc., as the classes occupy a relatively small sample size, so various
models have poor training effects on these small classes. It is obvious in DeepLabv3+ Mobilenet that
the accuracy of these categories is seriously affected due to the lack of backbone network expression
ability. In addition, the overlap between the classified markers and ground truth can be understood by
observing the IoU values. In U-Net, the classification effect of these categories is only slightly improved,
owing to the thin number of network layers, but the low IoU value is still unsatisfactory. As a contrast,
PSPNet, ICNet, and DeepLab V3+ extract rich underlying semantic features by using multi-scale
context, which greatly improves the recognition accuracy of these categories. PSPNet and DeepLab
V3+ have similar classification effects, with a classification accuracy of over 80%, while ICNet is slightly
inferior, with over 70%. However, their IoU value is relatively low, only over 70%, indicating that the
classified labels and ground truth do not coincide well. For the road ground features, as the small class
with high weight, the training effect of the above models is general with poor classification accuracy,
and the IoU value is also low.

In the paper, the model proposed based on the DeepLab V3 + network using a mixed loss function
has better effects on road edges and higher overall accuracy. The accuracy reached 97.47% and the IoU
was 76.02%, both of which outperform other models. When compared to Figure 12g trained only by
DeepLab V3 + model, the road edge is more complete with a better classification effect and fewer error
marks than the rest of the visual structure in Figure 12h. Simultaneously, the average intersection ratio
is also higher, reaching 87.74%. By the one-scene labeling, multi-scene image data can be used to build
a richer dataset. The dataset obtained by the data augmentation method is different from the previous
methods, which enhances the generality of the model ability to make classification better.

The experimental results demonstrate that the proposed model outperforms other deep learning
models. In this paper, the method helps to solve the samples imbalance problem and improve
classification accuracy for small class samples by mixed use of loss function. It improves the
generalization ability of the model and the classification effect of the model by image marking methods
and enhancement methods. As a whole, the overall accuracy, average occurring, and Kappa coefficient
have been improved. The effectiveness of the model is reflected in three aspects: (1) the DeepLab V3+
model extracts high-level semantic features from multi-scale context information, the encoder-decoder
structure combines low-level spatial information and high-level semantic information to recover
ground object boundaries more effectively. (2) Mixed use of DICE and BCE loss function is to deal with
small class samples, which helps to improve classification accuracy and achieve better segmentation
performance. (3) The data are enhanced by one-phase annotation and multi-phase remote sensing
image data, saving the work of visual interpretation. We verify the effectiveness of our model when
comparing with traditional machine learning methods and mainstream segmentation networks on
GID dataset.
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5. Conclusions

The problem of class imbalance limits the classification accuracy of the model for small-scale
objects, and then affects the overall effect of image segmentation. In this paper, when considering
high-resolution remote sensing image space has the characteristics of high resolution, low spectral
resolution, large-scale size with complex land covers, and unclear image prospects resulting from
large intra-category differences or small inter-category differences. In this paper, DeepLab V3+,
an image segmentation algorithm that is based on the full convolutional neural network, is selected
and improved and Sentinel-2 data of remote sensing image around Yuli County, Bayingolin Mongol
Autonomous Prefecture, Xinjiang Uygur Autonomous Region are used as the data source.
Additionally, a high-resolution remote sensing image data set of the reaserch area was sorted out.
The data set of the multi-date labeled image was obtained by labeling the one-date image, and the data
set of the study area was obtained for model training through data augmentation. And the distribution
of samples within the data set is analyzed. The experimental results demonstrate that the proposed
model can be effectively used for image segmentation of the remote sensing image. When compared
with U-Net, PSPNet, ICNet, and the proposed method help to improve classification for small class
samples. Subsequently, the overall classification accuracy and average intersection ratio both get
improved. The overall accuracy reaches 97.97% and the average intersection ratio reaches 87.74%.
We verify the effectiveness of the proposed model on the GID dataset.

We will consider such two improvements in our future work. For one, as well known there are
not only spectral resolution scale, spatial resolution scale, but also temporal resolution scale in the
classification task of remote sensing imagery, and we just make use of spatial resolution and spectral
resolution in our previous work. Our further work is to consider how to add the temporal resolution to
the network in order to improve the classification accuracy. For another, the model adopted in the paper
is relatively complex, and the calculation of parameters is large. When facing a large number of remote
sensing image data, it also needs to consider how to improve the efficiency of the algorithm and realize
the fast remote sensing image classification while maintaining the certain performance of the algorithm.
Although it has accelerated the operation by deep separable convolution and mixed precision training
methods in the paper, we still need to consider enhancing the classification performance of the model
in the future.
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