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Abstract: Burn severity mapping is critical to quantifying fire impact on key ecological processes and
post-fire forest management. Satellite remote sensing has the advantages of high spatial-temporal
resolution and large-scale monitoring and provides a more efficient way to evaluate forest fire burn
severity than traditional field or aerial surveys. However, the proportion of tree canopy cover
(TCC) affects the spectral signal received by remote sensing sensors from the background charcoal
and ash. Consequently, not considering this factor normally leads a spectral confusion in burn
severity retrieval. In this study, the burn severity of two Qinyuan forest fires was estimated using a
coupled Radiative Transfer Model (RTM) and Sentinel-2A Multi-Spectral Instrument (MSI) reflectance
data. A two-layer Canopy Reflectance Model (ACRM) RTM was coupled with the GeoSail RTM
by replacing the spectra of the background input of GeoSail RTM to simulate the spectra of the
three-layered forests for burn severity retrieval measured as the Composite Burn Index (CBI). The TCC
data was then served to RTM parameterization and constrain the backward inversion procedure
of the coupled RTM to alleviate spectral confusion. Finally, the inversion retrievals were evaluated
using 163 field measured CBI. The coupled RTM can simulate the radiative transfer characteristics
of three-layer vegetation and has greater potential to accurately estimate burn severity worldwide.
To evaluate the merit of our proposed method, the CBI was estimated through coupled RTM
inversion with TCC constraint (CP_RTM+TCC), coupled RTM inversion with global optimal search
(CP-RTM+GOS), Forest Reflectance and Transmittance (FRT) RTM inversion with TCC constraint
(FRT+TCC), and random forest (RF) algorithm. The results showed that the method proposed in this
study (CP_RTM+TCC) yielded the highest estimation accuracy (R2 = 0.92, RMSE = 0.2) among the
four methods used as benchmark, indicating its reasonable ability to assist forest managers to better
understand post-fire vegetation regeneration and forest management.

Keywords: burn severity; composite burn index; Tree canopy cover; RTM; Sentinel-2A

1. Introduction

Wildfire is a pervasive natural disturbance, which affects the global forest climate services by
regulating the spatial distribution of forests, as well as the exchange of carbon, water, and energy
between the land and atmosphere [1–3]. Burn severity has been defined as the impact of fire on
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post-fire environments, including vegetation and soil [4]. Accurate, robust, and timely estimations
of burn severity are very important for the quantification of forest fire impact and post-fire forest
management [5,6].

To quantify the burn severity and make it easier for forest managers to quantitatively assess the
impact of fire on forest ecosystems, Key and Benson [7] proposed the composite burn index (CBI).
The CBI ranges from 0 to 3, where “0” stands for unburned and “3” stands for all biomass was
completely consumed. CBI divides the forest vegetation structure into five layers from top to bottom
and visually evaluates the burning degree of each layer of vegetation to obtain the CBIi of a specific
i layer. Here, i, represents the number of layers, and the CBI of all layers is calculated from the average
CBI of the five layers in the forest. Subsequently, De Santis and Chuvieco (2009) [8] modified the CBI
into the GeoCBI that calculates the field burn severity by considering the fraction of cover (FCOV) of
each vegetation layer. GeoCBI has better spectral consistency with satellite remotely sensed data but
there is a risk of increasing the area of moderate and high burn severity in the area covered by sparse
trees [9]. Because of its fine evaluation, CBI has high accuracy as a field measurement index to evaluate
the burn severity [7]. However, the collection of CBIs is time-consuming and costly, especially in
remote regions. To cover the remote regions, only a simplified assessment can be carried out from a
helicopter in most cases [5,10]. Consequently, CBI is usually used as the ground truth to verify the
accuracy of estimated burn severity. Remote sensing techniques provide a cost-effective approach for
large-scale spatial post-fire burn severity assessment as it offers high temporal and spatial observation
for landscapes [11].

Four kinds of optical remotely sensed data-based methods have been used for burn
severity estimation: empirical spectral index-based methods, Spectral Mixture Analysis (SMA),
machine learning methods, and Radiative transfer model (RTM)-based methods. Empirical spectral
index-based methods make use of statistical models calibrated using field measured CBI and vegetation
indices such as the differenced Normalized Burn Ratio (dNBR), the relative differenced Normalized
Burn Ratio (RdNBR), and the differenced Land Surface Temperature and Enhanced Vegetation Index
ratio (d(LST/EVI)) derived from satellite data [12–14]. These empirical models are straightforward
and performed well for sensor-specific and site-dependent burn severity estimates, but they lack
physical meaning and require site-specific calibration for promising accuracy [9]. Spectral Mixture
Analysis (SMA)-based methods are also among the most commonly used methods. In these methods,
burn severity is estimated by solving the sub-pixel mixing problem because the post-fire environments
are usually composed of a mixture of ash, vegetation, and soil. This kind of method normally uses all
reflective bands of satellite data and has achieved promising accuracy in Mediterranean regions [15–17].
However, it is limited by the need for an extensive, site-specific end-member library of different burn
severities [5]. Machine learning methods for burn severity estimation typically use the Random Forest
(RF) classifier [18,19]. RF classifier is well suited to addressing fire mapping problems [20,21] as it can
account for multiple environment environmental factors at the same time [22]. However, the accuracy
of burn severity classification accuracy largely depends on the selection of the training data, and the
classification results are usually only applicable to specific locations [18].

RTM-based methods have been proposed to solve the limitation in accuracy and precision of
previous burn severity studies and improve the estimation of burn severity from remotely sensed data
as RTM are based on physical laws that provide an explicit connection between the biophysical and
biochemical variables of vegetation and canopy reflectance [9,23–25]. The RTM selected to estimate
burn severity should be sensitive to the spectral characteristic variation of as many vegetation layers as
possible as the evaluation of CBI consider five vegetation layers [26]. RTMs are first “forward” applied
to simulate reflectance and transmittance corresponding to specific burn severity values, expressed as
CBI or GeoCBI. In the backward inversion procedure, the surface reflectance extracted from remote
sensing data is used to retrieve the biophysical and biochemical parameters of the vegetation that
corresponding to a certain CBI or GeoCBI value [24,25]. However, the RTMs which are often used to
retrieve burn severity, e.g., Markov Chain Canopy Reflectance Model (MCRM) and GeoSail model,
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cannot directly simulate the radiative transfer characteristics of three-layer vegetation structure except
for the Forest Reflectance and Transmittance (FRT) model [27–29]. The two-layer vegetation structure
generally includes tree canopy and lower grassland on the soil surface, while the three-layer vegetation
structure includes upper tree canopy, middle shrub, and lower grassland. Quan et al. [30] has proved
that the coupled RTM has better performance than the single RTM as the coupled RTM can better
simulate the radiative transfer characteristics of multi-layer vegetation structure forest.

All of the previously presented methods that estimate burn severity by use of a single optical
post-fire remotely sensed image have a defect in that there will spectral confusion between different
burn severity levels with the variation of tree canopy cover (TCC). This is because the post-fire dead
leaf litter and charcoal on the soil surface will have different contributions to the spectral signal received
by remote sensing sensors with the variation of TCC [12]. The charcoal and dead litter on the soil
surface will have a stronger contribution to the observed spectral signal for the sparse tree-covered
area, while for the dense tree-covered area, the spectral signal of remote sensing sensors received from
the soil surface will be shielded by the green tree canopy. The variation of TCC will lead the same
burn severity will produce different spectral characteristics and the same spectrum will correspond to
different burn severity values. Yin et al. [9] significantly improved the CBI estimation accuracy by
using prior TCC information into the forward simulations and backward inversions of FRT model.
Because there is no TCC parameter in FRT model, the stand density is used as a proxy parameter
to constrain TCC. However, TCC is not only determined by stand density but also canopy diameter.
Moreover, the correlation between stand density and TCC has not been validated other than the
Yatir forest in Israel [31], and therefore the established empirical relationship cannot be generalized,
limiting the application of FRT RTM-based inversion for forest burn severity somewhere else.

Within this context, our objectives are to (1) develop an improved RTM-based method to retrieve
burn severity by coupling A two-layer Canopy Reflectance Model (ACRM) and GeoSail models at
canopy level, and (2) achieve more accurately burn severity mapping. ACRM is used to model the
spectra of vegetation in the middle and low stratum, while GeoSail is used to model the spectrum of
the discontinuous upper tree canopy layer. The tree coverage parameter FCOV is one of the input
parameters of GeoSail model, therefore it can explicitly account for variations in TCC without a proxy
parameter. Our hypothesis is the coupled RTM can simulate the radiative transfer characteristics
of three-layer vegetation and has greater potential to accurately estimate burn severity worldwide
given it directly accounts for variation in TCC to avoid misclassify burn severity without the need of
determining a site-specific stand density–TCC relationship. More accurate estimation of burn severity
will contribute to better guide post-fire forest management.

2. Materials and Methods

2.1. Study Area

The study area is located at Qinyuan County, central China (111◦58′30”E–112◦32′30”E,
36◦20′20”N–37◦00′42”N) (Figure 1). The study area is dominated by overstory vegetation of
Pinus tabuliformis while the middle vegetation layer is dominated by low Quercus acutissima and
Rosa xanthine and the grass over the soil surface are dominated by Gramineous weeds. Under the
management of the local government’s policy of closing hills for reforestation, the vegetation growth
in the study area is very dense, and the TCC in most areas is more than 50%. The height of
Pinus tabulaeformis in the study area ranged from 3 to 5 m, which has a positive correlation with fire
behavior [32]. Pinus tabulaeformis will become very flammable in dry and hot weather for a long time.
At the same time, pine balls will help the fire spread faster with the help of wind. The topography of
the study area is rugged, and the altitudes range from 1020 to 1639 m. The average annual rainfall
in this region is 656.7 mm. The average annual relative humidity is 65% and the average annual
temperature is 8.7 ◦C. Maximum and minimum precipitations were recorded in July–September
and November–March, respectively. From November to March there is little precipitation, and the
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temperature will continue to rise from about −10 ◦C to 15 ◦C. During this period, sparse precipitation
and temperature rise will help forest ecosystems accumulate large amounts of dry and flammable fuels.
Generally, the fire season begins in March and ends in May.

Figure 1. Location of the study area and surveyed field plots (dots in the figure) for fire 1 (bottom right
panel) ignited on the 14 March (20 Composite Burn Indexes (CBIs)) and 2 (top right panel) ignited
on the 29 March (143 CBIs). The background images used in the right two maps are the false-color
composites (short wave infrared 2 (SWIR2), near-infrared (NIR), and red bands) of post-fire Sentinel-2A
Multi-Spectral Instrument (MSI) data for the 30th June 2019. The fire perimeters are drawn manually
based on differenced Normalized Burn Ratio (dNBR) data of the two fires.

2.2. Data Collection

In March 2019, two fires that caught the attention nationwide broke out in south (fire 1, 14 March)
and north of (fire 2, 29 March) Qinyuan County (Figure 1). Fire 1 was small in scale (approximately
burnt 48 ha), but six firefighters died during fire suppression because of sudden changes in wind
direction. There were no casualties in fire 2 even though the burn area was larger (approximately
16,788 ha,). The post-fire field survey was conducted from 18 to 23 July 2019. The CBI was measured
based on the field criterion proposed by Key and Benson (2006) and used as the ground truth to
validate the accuracy of burn severity estimated by the methodology proposed in this study. There was
a total of 20 and 143 field CBIs recorded for fire 1 and fire 2, respectively (Figure 1). Field plots were
selected within areas with homogeneous burn severity levels, as recommended by Key and Benson [7].

2.3. Remote Sensing Data

2.3.1. Sentinel-2A MSI Data

In this study, the Sentinel-2A Multi-Spectral Instrument (MSI) data were used as the satellite
data source to estimate burn severity. The Sentinel-2A MSI data has 13 spectral channels in the
visible (VIS), near-infrared (NIR), and shortwave infrared (SWIR) spectral ranges. To keep the spatial
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resolution (20 m) consistency of surface reflectance data, nine out of the 13 spectral bands (bands
2–7, 8a, 11, and 12) were used to estimate burn severity (Table 1). Considering that NBR can provide
more additional spectral information, the post-fire NBR, normalized of bands 8a and 12 were also
used for burn severity estimation. To ensure that it is closest to the field survey time, the post-fire
imagery was acquired on 30th June 2019. This image is the closest to the sampling date and has
the best imaging quality. The Sentinel-2A MSI Level-1C data used in this study were downloaded
from the Copernicus Open Access Hub (https://scihub.copernicus.eu/). The atmospheric correction of
Sentinel-2A MSI data was conducted by use of the Sen2Cor Tool (version 2.3.1) [33,34]. The reflectance of
the Level-1C Bottom-of-Atmosphere (BOA) was converted to Level-2A by using the default parameters.
Sen2Cor consists of two main modules: the Scene Classification (SCL) module and the Atmospheric
Correction (AC) module [35]. The AC is executed using a set of Look Up Tables (LUTs) generated by
libRadtran [36]. AC includes three configuration parameters: aerosol type, atmosphere type, and ozone
content. The aerosol type can be set as rural or maritime (the default setting is rural). There are
two atmosphere types (mid-latitude summer or mid-latitude winter) that can be set, which will
be automatically selected by Sen2Cor according to the geographic location and climatology of the
scene [35]. The Ozone content is also automatically selected by Sen2Cor according to the geographic
location and climatology.

Table 1. Spectral bands for the Sentinel 2A sensor.

Band Number Central Wavelength (nm) Bandwidth
(nm) Spatial Resolution (m)

1 442.7 21 60
2 492.4 66 10
3 559.8 36 10
4 664.6 31 10
5 704.1 15 20
6 740.5 15 20
7 782.8 20 20
8 832.8 106 10

8a 864.7 21 20
9 945.1 20 60

10 1373.5 31 60
11 1613.7 91 20
12 2202.4 175 20

2.3.2. Landsat Vegetation Continuous Fields Product

The Landsat Vegetation Continuous Fields (VCF) tree cover product contains estimates of the TCC
in each 30 m pixel covered by woody vegetation greater than 5 m in height [37]. The product extracts
all seven bands of Landsat 5 Thematic Mapper (TM) and/or Landsat 7 Enhanced Thematic Mapper Plus
(ETM+) by rescaling the 250 m Moderate-resolution Imaging Spectroradiometer (MODIS) Vegetation
Continuous Fields (VCF) Tree Cover layer. On 5 March 2019, the NASA Land Cover/Land Use Change
Program released version 4 of the Global 30 m Landsat tree canopy cover product. The fourth edition
of the TCC product replaced the previous version of global tree canopy cover estimates for 2000,
2005, 2010, and 2015. Previous versions of TCC were collected using the Landsat Global Land Survey,
but version 4 was created by mining and processing entire Landsat archives, providing improved
and accurate representation for specific years (https://landsat.gsfc.nasa.gov/global-30m-landsat-tree-
canopy-version-4-released/). In this study, the TCC layer of 2015 was used to parameterize and
constrain the RTM. The forests in the study area are natural forests with little human intervention,
and there has been no forest fire in the study area since 2015, thus the TCC layer in 2015 can be
used to represent the situation before the fire. For more information about this dataset please visit
http://landcover.org/data/landsatTreecover. The TCC layer of Landsat VCF data was resampled to
20 m matching the spatial resolution of Sentinel-2A MSI data using nearest-neighbor interpolation.

https://scihub.copernicus.eu/
https://landsat.gsfc.nasa.gov/global-30m-landsat-tree-canopy-version-4-released/
https://landsat.gsfc.nasa.gov/global-30m-landsat-tree-canopy-version-4-released/
http://landcover.org/data/landsatTreecover
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2.4. Burn Severity Retrieval Using Coupled RTM

The methodology to retrieve burn severity using coupled RTM is carried out in four steps
(Figure 2): (i) remote sensing data preprocessing, including the atmospheric correction of the Sentinel
2A MSI data and resampling of the Landsat VCF product; (ii) couple RTMs of leaf and canopy level
for burn severity retrieval; (iii) forward modeling, including the parameterization of the coupled
RTM based on the sensitivity analysis results of previous studies and construction of the LUT [24];
and (iv) Coupled RTM backward inversion procedure by finding the simulated surface reflectance
(saved in the LUT) that most similar to the extracted spectrum from satellite remotely sensed data
by use of a cost function [38]. The coupled RTM can simulate the radiative transfer characteristics
of three-layer vegetation and has greater potential to accurately estimate burn severity worldwide
given it directly accounts for variation in TCC to avoid misclassify burn severity without the need of
determining a site-specific stand density–TCC relationship.

Figure 2. Methodological flowchart of this study. The four parts in the flowchart correspond to the
four steps of burn severity inversion.

2.4.1. Model Selection and Coupling

Several vegetation layers are considered for CBI evaluation. Therefore, the selected RTM should
have the capacity to simulate the spectrum of multi-layered forests. In this study, the leaf-level
RTM PROSPECT [39], canopy-level RTM ACRM [40,41], and GeoSail RTM [42] were coupled to
simulate the spectra of the multi-layered forests for burn severity retrieval. The coupled RTM has
the capacity of simulating the radiative transfer characteristics of three-layer vegetation and has
greater potential to accurately estimate burn severity worldwide given it directly accounts for variation
in TCC to avoid misclassifying burn severity without the need of determining a site-specific stand
density–TCC relationship.

The PROSPECT model was used to simulate the spectrum of a green and brown needle leaf.
Although other RTMs may be more suitable for simulating the reflectance and transmittance of
needles than PROSPECT (e.g., LIBERTY model proposed by Dawson et al. [43]), they are not as
operational as PROSPECT because it requires more input variables with more complex parameters.
Besides, PROSPECT has been successfully applied to the simulation of needle leaves’ spectra in many
studies [24,44,45]. The PROSPECT model is a leaf optical model, which calculates the reflectance and
transmittance of the leaf hemisphere in the range of 400 to 2500 nm in steps of 1 nm. The calculated
reflectance and transmittance are expressed as a function of six input parameters: leaf structure
parameter, N (unit-less); Cab (µg cm−2); Equivalent Water Thickness, Cw (g cm−2); Dry Matter Content,
Cm (g cm−2); carotenoid content, Car (µg cm−2); and leaf brown pigment, Cs (unit-less).
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ACRM assumes that the canopy consists of a homogeneous vegetation layer and a thin layer of
vegetation on the soil surface. The model is an extension of the homogeneous multispectral canopy
reflectance model MSRM [46] and Markov chain canopy reflectance model MCRM [47]. The model
has a step size of 1 nm in the 400 to 2400 nm spectral range. This RTM is thus suitable for simulating
the spectra of middle and lower canopies. Here, the ACRM was coupled with the GeoSail model
by replacing the spectra of the bare soil input of GeoSail and considering the vertical stratification
characteristics of vegetation in the study area. The ACRM was used to simulate the spectrum of middle
vegetation layers and grass over the soil surface.

The GeoSail model was used to simulate the spectrum of the upper tree canopy layer since it is
a geometric model that considers the geometry and shadowing effects of forest stands. The Geosail
model described the canopy reflectance of heterogeneous and discontinuous vegetation types with
relatively simple input parameters [42] and has been successfully used for burn severity retrieval [24].
The tree coverage parameter FCOV in the GeoSail model can be directly constrained by satellite-derived
TCC without proxy parameters such as stand density, therefore the coupled RTM has greater potential
than FRT RTM in burn severity retrieval. All the canopy vegetation parameters required by the coupled
RTM are listed in Table 2. For the range and default values of model parameters, refer to the user’s
guide and previous studies [24,27,30].

Table 2. The input canopy vegetation parameters are used for the parameterization of the coupled
Radiative Transfer Model (RTM). The simulation of radiative transfer characteristics of upper vegetation
was based on GeoSsail model, while that of middle and lower vegetation layers was based on the A
two-layer Canopy Reflectance Model (ACRM) model.

Parameters Units Abbreviation Range Defaults

Upper tree canopy GeoSail
Fractional cover FCOV 0–1 0.7
leaf area index (m2 m−2) LAI 0.1–2.5 2

height to width ratio of the crown CHW 1–8 2.36
sun zenith angle (◦) tts 0–90 42.27

Middle vegetation layer ACRM
LAI2_ground (m2 m−2) LAI2 0.01–6 0.208
HS-parameter sl2 0.02–0.4 0.15

foliage clumping parameter clmp2 0.4–1 1.0
displacement parameter szz 0–2 1.2

eccentricity parameter of LAD eln2 0–4.5 3.99
modal leaf angle (◦) thm2 0–90 53.37

n_ratio2 n_ratio2 0.6–1.3 0.991
leaf weight per area g m−2 SLW2 30–180 81.7

Lower vegetation layer ACRM
LAI1_ground (m2 m−2) LAI1 0.01–1.1 1.064
HS-parameter sl1 0.02–0.4 0.15

foliage clumping parameter clmp1 0.4–1 1
eccentricity parameter of LAD eln1 0–4.5 3

modal leaf angle (◦) thm1 0–90 75.469
n_ratio1 n_ratio1 0.6–1.3 1.224

leaf weight per area g m−2 SLW1 30–180 78.54

For the coupled RTM, the diffuse radiation was set as the dominant radiation for the grassland
layer by the hypothesis that most of the direct radiation intercepted by the tree canopy. Therefore,
the bi-hemispherical reflectance rather than the BRDF of the understory was modeled in this case.
Besides, the spectral reflectance of the background originally in the GeoSail is assumed to be the
reflectance of Lambertian while the spectra modeled by the PROSAIL (PROSPECT and Scattering by
Arbitrarily Inclined Leaves) is non-Lambertian.
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2.4.2. Model Parameterization and Forward Modeling

The parameterization of the coupled RTM was based on prior information obtained from field
quantitative measurements, qualitative survey, previous studies [24,30], and Sentinel 2A MSI metadata.
Only the parameters most sensitive to the change of the target bands according to previous analysis
from De Santis et al. [24] and Yin et al. [9] were used, i.e., the fractional cover (FCOV), leaf area index
(LAI), and water content (Cw) are most sensitive to the short-wave infrared (SWIR) band. In detail,
the LAI and FCOV are the most sensitive parameters for the NIR band. The Cab, LAI, and brown
pigments content (Cs) are the most sensitive parameters for VIS bands. Therefore, the sensitive
parameters selected for the GeoSail model were FCOV and LAI at canopy level and Cw, Cab, and Cs

at the leaf level, as illustrated in Table 3. In the CBI field criterion, burn severity is evaluated using
a set of variables for each vegetation vertical strata, and the CBI increases with the proportion of
brown over green leaves. Therefore, the PROSPECT model was used at the leaf level to simulate
only one representative spectrum for green and brown reference leaf types. The parameterization for
PROSPECT model were N = 2.5, Cab = 70 µg cm−2, Cw = 0.048 g cm−2, and Cs = 0.2 for green leaf [48]
while to N = 2.5, Cab = 20 µg cm−2, Cw = 0.008 g cm−2, and Cs = 1.5 for brown leaf [49]. The simulated
green and brown leaf spectrum based on the PROSPECT model was shown in Figure 3. The ACRM
model was calibrated following Yin et al. [9]. For the middle vegetation layer, the sensitive parameters
are LAI of middle vegetation and a series of biochemical parameters determining leaf color (N, Cab,
Cw, and Cs); for the lower vegetation layer, the sensitive parameters are LAI of lower vegetation and
biochemical parameters determining leaf color (N, Cab, Cw, and Cs) (Table 3).

Table 3. Combination of parameters used as inputs in the coupled RTM for simulating the reflectance
corresponding to different CBI values. To improve the efficiency of model execution and alleviate the
ill-posed problem, only the parameters sensitive to burn severity inversion were used to construct Look
Up Tables (LUTs).

CBI 0.5 1 1.5 1.8 2 2.3 2.5 2.8 3

FCOV 0–0.8
LAI3 0.8 0.8 0.8 0.78 0.75 0.72 0.7 0.5 0.05

leaf color Green Green Green Green Green Green Green Brown Brown
LAI2 0.5 0.4 0.3 0.15 0.1 0.05 0.05 NAN NAN

leaf color Green Brown Brown Brown Brown Brown Brown NAN NAN
LAI1 3 0.3 NAN NAN NAN NAN NAN NAN NAN

leaf color Brown Brown NAN NAN NAN NAN NAN NAN NAN

sub-stratum 0.6soil+
0.4DCH

0.5soil+
0.5DCH DCH DCH DCH DCH DCH/

LCH
DCH/
LCH

DCH/
LCH

Figure 3. Modeled spectra of brown (brown curve) and green leaf (green curve) used as input for the
simulation at canopy level based on the PROSPECT model.
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Considering the uncertainty caused by unrealistic combinations of the input model variables,
a supervised simulation scheme was executed to reduce the error because it is better than the full range
variations [24,26]. The parameter FCOV (range from 0 to 0.8) in the GeoSail model was set as the only
free variable to generate the LUT. When the coupling model is forward simulated, the spectral curves
corresponding to different TCC conditions can be generated with the variation of FCOV. A combination
example of the model input parameters used to generate LUT is listed in Table 3. The background
shortly after wildfires usually consists mainly of soil and charcoal [24]. Therefore, three reference
spectra were considered as the background layer for the model input: soil, dark charcoal (DCH),
and light charcoal (LCH; a mixture of charcoal and ash) (Figure 4). The soil spectra were measured on
sandy soil with moderate moisture, while the spectrum of dark and light charcoal was measured with
GER 2600 field spectro-radiometer (Geophysical & Environmental Research Corporation, Millbrook,
NY, USA) by De Santis et al. [24]. The simulated CBI value variation from 0.5–3 with steps of 0.1.
The burn severity can be divided into low, moderate, and high level by use of CBI threshold values of
2 and 2.5 [9]. For low burn severity level, only the grassland and shrub on the soil surface were burned.
For moderate burn severity level, the underlying grass and shrubs were completely burned and the
understory of the tree was slightly burned, but the trees still retained the green canopy. For high
burn severity level, the low and middle vegetation strata were completely burned and the crown was
severely burned. For the part of CBI lower than 2.5, only the DCH scenario was simulated. For the part
of CBI higher than 2.5, the organic matter in the soil and all vegetation strata is burned, the substratum
can be charcoal or ash, therefore both DCH and LCH scenarios are simulated. Finally, there are 352
combinations of input parameters used to construct the LUT for burn severity retrieval.

Figure 4. The reference spectrum used as post-fire background layer: soil (brown curve), dark charcoal
(DCH; black curve), and light charcoal (LCH; a mixture of charcoal and ash, grey curve). The reference
spectrum was provided by De Santis.

2.4.3. Coupled RTM Inversion

In this study, the LUT was used as the inversion algorithm to retrieve burn severity using
Sentinel-2A MSI satellite remotely sensed data. We derived burn severity using the information on
TCC to constrain the backward inversion procedure. For each pixel in the burnt area, the Landsat
VCF product was served to select the corresponding LUT. The model simulated spectral reflectance in
the LUT corresponding to a specific TCC range was subsequently compared to the extracted surface
reflectance of the pixel by use of a cost function. The Spectral Angle Mapper (SAM) was used as the
cost function to find the model simulated spectral reflectance that was most similar to the spectra
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reflectance extracted from remotely sensed data. SAM is a supervised classification technology based
on pixels. SAM solves spectral similarity by calculating the spectral angle (SA) between two spectral
vectors [50,51]. This angle is independent of the length of vectors and is therefore insensitive to the
illumination or albedo effects (Equation (1)). Consequently, SAM can eliminate most of the errors
introduced by terrain relief [23].

SA = cos−1


nb∑

i=1
tiri(

nb∑
i=1

t2
i

) 1
2
(

nb∑
i=1

r2
i

) 1
2

 (1)

The i represents the band number, nb represents the number of the bands, and t and r represent the
simulated and observed spectrum, respectively. SA between the simulated and observed reflectance
was calculated as the cost function to estimate the biophysical and biochemical variables of the
vegetation that corresponding to certain CBI values. The R square (R2), root mean square error (RMSE),
and slope between the measured and estimated CBI were used as the accuracy evaluation index.
The backward inversion process in this study was executed by use of all nine Sentinel-2A MSI bands
and the coupled RTM with TCC constraint (labeled as CP-RTM+TCC). In addition to the nine spectral
bands of Sentinel-2A MSI data mentioned above, the post-fire NBR was also used as an additional
vector to provide more spectral information and improve the accuracy of burn severity retrieval.

2.4.4. Methodological Comparison

To compare and evaluate the merit of our proposed method (labeled as CP-RTM+TCC), we derived
burn severity using three other existing methods. In the first method, the coupled RTM is inverted
using a global optimal search and without TCC constraint (labeled as CP-RTM+GOS). The second one is
the method used by Yin et al. [9] (labeled as FRT+TCC). In this method, the burn severity was estimated
using the FRT model with TCC constraint. The third method uses a random forest (RF) algorithm.
The RF classifier is particularly useful for burn severity mapping with promising accuracy [18,19,52].
In the RF method, the independent variables are the nine spectral bands and the post-fire NBR index of
Sentinel 2A MSI data, and the dependent variable is CBI. First, the field measured plots were randomly
divided into three samples (each sample comprised about 54 CBI measurements). Second, two samples
(i.e., the training sample) were used for RF model calibration, and the other sample (i.e., the testing
sample) was used for the validation. Third, the process was repeated three times to adequately test the
performance of the RF method [53]. To minimize the statistical error caused by each run of the RT
model, we set the number of trees to 1000 and run 100 times to train each RF model.

3. Results

3.1. Influence of TCC on the Spectral Response of Burn Severity

The surface reflectance and post-fire NBR of all the field plots were extracted from Sentinel-2A
MSI data from locations corresponding to our sampling locations and averaged by burn severity
level and TCC (<20%, 20%–30%, 30%–50%, and >50%) to prove the influence of TCC on the spectral
response and the confusion between different burn severity levels (Figure 5). Under this circumstance,
the burn severity was divided into low, moderate, and high level by use of CBI threshold values of 2
and 2.5 [9]. Figure 5(a1,b1), and Figure 5(c1) represent the extracted mean reflectance from all field
plots without constraining TCC. The averaged reflectance of all field plots obscured the reflectance
variation between different TCC ranges. By analyzing the spectrum of three different levels of burn
severity under different TCC, it can be found that the high-level burn severity is not sensitive to the
change of tree coverage, while the medium level burn severity shows little sensitivity to the change of
tree coverage, and the low-level burn severity is most sensitive to the change of tree coverage. This was
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also observed from the spectral angle (SA) between the spectra of lowest and highest TCC within the
same burn severity. The SA was 0.68 (Figure 5(a2,a5)), 0.33 (Figure 5(b2,b5)), and 0.27 (Figure 5(c1,c5))
for low, moderate, and high burn severity, respectively. For TCC over 50%, the spectral characteristic
of the high burn severity exhibited similar characteristics to the moderate and low burn severity
with the lower TCC. For a detailed analysis of the influence of TCC on the inversion of burn severity,
please refer to Yin et al. [9]. The results given in Figure 5 indicate that if the TCC is not considered
in the inversion of burn severity, spectral confusion will be caused by the change of TCC between
different burn severity levels.

Figure 5. Mean and standard deviations (std) of the Sentinel-2A MSI spectral signatures of plots
with (a) low, (b) moderate, and (c) high burn severities and TCC ranges. The x-axis represents the
nine spectral bands and post-fire NBR, and the y-axis represents the value of the reflectance (SR) and
post-fire NBR. The first column represents the reflectance from all field plots without constraining TCC;
other columns represent the reflectance statistics in different TCC levels.

3.2. Evaluation of Burn Severity Estimates

A total of 163 CBI values recorded at two sample sites were used to validate the retrieved CBI.
The CBI was estimated based on the coupled RTM constrained by TCC information provided by
satellite estimates (CP_RTM+TCC). The validation results at both sites showed a high correlation
between the observed and simulated CBI (R2 equal to 0.96 for study site 1 (Figure 6a), 0.91 for study
site 2 (Figure 6b), and 0.92 for two study sites (Figure 6c)) and an almost 1:1 linear fit (slope: ~1;
constant: ~0). The RMSE is also very low (0.15 for study site 1, 0.21 for study site 2, and 0.20 for two
study sites).

Figure 6. Field measured versus estimated burn severity (expressed as CBI) based on the method
proposed in this study (CP_RTM+TCC) for (a) study site 1, (b) study site 2, and (c) two study sites.
The dotted line and solid line represent the 1:1 line and fitting line, respectively.
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When comparing the method proposed in this study with the burn severity estimations obtained
with CP_RTM+GOS, FRT+TCC, and RF methods (Table 4 and Figure 7), the method proposed in this
study but without TCC constrains (CP_ RTM+GOS method) presents slightly worse performance than
FRT+TCC and RF. Figure 7b also shows that the estimated results of the FRT+TCC method yield a
relatively higher accuracy (R2 equal to 0.82, RMSE equal to 0.32, and slope equal to 0.81). As can be
indicated from Figure 7c that the validation accuracy (R2 = 0.76, RMSE = o 0.35 and slop = 0.7) based
on the RF method is higher than CP_RTM+GOS but lower that of the FRT+TCC method. Overall,
the CP_RTM+TCC method (Figure 6) performed best (R2 equal to 0.92, RMSE equal to 0.2 and slop
equal to 0.99) among these four methods.

Table 4. The accuracy summary of the four methods used in this study. The method proposed in this
study is CP_RTM+TCC, which has the highest accuracy of burn severity estimation.

CP_RTM+TCC
(Proposed Method) CP_RTM+GOS FRT+TCC RF

R2 0.92 0.57 0.82 0.76
RMSE 0.2 0.57 0.32 0.35
Slop 0.99 0.74 0.81 0.7

Figure 7. Field measured versus estimated burn severity (expressed as CBI) based on (a) CP_RTM+GOS,
(b) FRT+TCC, and (c) RF method for two study sites. The dotted line and solid line represent the
1:1 line and fitting line, respectively.

3.3. Burn Severity Mapping

The focus of this study is burn severity estimation, so the dNBR as well as visual interpretation
were used to extract burn area. Burn severity maps for the two sample sites of Qinyuan country were
produced based on the burn area extraction and the CP_RTM+TCC method (Figure 8). The high-level
burn severity range (CBI ≥ 2.5) in site 1 is mainly distributed in the western area because the elevation
of the western area of the site is relatively high and its main vegetation type is dense and dry
Pinus tabulaeformis forest, which is quite flammable. The eastern part corresponds to the foot and
hillside with relatively low elevation, the vegetation types are mainly yellow rose, low bush, and dense
herbaceous vegetation, and the burn severity type is mainly of medium (2 ≤ CBI < 2.5) and low level
(CBI < 2). For study site 2, the main vegetation type is also Pinus tabulaeformis. The middle and
high-level burn severity are mainly distributed at the top of the mountain with relatively high altitude,
while the low-level burn severity is mainly distributed at the foot of the mountain with relatively low
and flat terrain. From the spatial distribution map of burn severity in study area 2, we can also see that
there are more areas with CBI over 2.8 and below 2.0, but fewer areas with CBI between 2.0 and 2.8
than in study site 1.
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Figure 8. Burn severity maps for study sites 1 (left) and 2 (right) of Qinyuan fires achieved using the
CP_RTM+TCC method proposed in this study. In order to show the spatial distribution characteristics
of burn severity in the two study sites more finely, CBI was divided into six grades which vary
from 0 to 3.

In the field measurement, in addition to the photos used to estimate the CBI value of the sample
plots, we also selected some areas with a wide view to take panoramic photos for quantitative
verification of burn severity inversion results. The qualitative validation was carried out by comparing
the field landscape panoramic photos and the spatial distribution map of burn severity (Figure 9).
A total of four validation points were selected: two (Figure 9b,c) of them point to the valley, and the
other two (Figure 9a,d) point to the hillside. The qualitative accuracy validation results indicated that
the burn severity map and the landscape panoramic photos from the field survey showed good spatial
distribution consistency. This provided further evidence for the reliability of our burn severity estimates.

Figure 9. Examples of panoramic landscape photos (left of a–d) and burn severity map (right of a–d) to
demonstrate the validity of the method proposed in this study. The black point represents the position
of sight, the arrows represent the direction of the sight. The qualitative validation indicated that the
burn severity map and the panoramic landscape photos showed good spatial distribution consistency.
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4. Discussion

In this study, the burn severity of two forest fires was estimated using a coupled RTM and
Sentinel-2A MSI reflectance data. ACRM assumes that the canopy consists of a homogeneous
vegetation layer and a thin layer of vegetation on the soil surface, which is thus suitable for simulating
the spectra of middle and lower canopies. The GeoSail model is a geometric model that considers the
geometry and shadowing effects of forest stands and was used to simulate the spectrum of the upper
tree canopy layer. The ACRM was coupled with the GeoSail model by replacing the spectra of the bare
soil input of GeoSail and considering the vertical stratification characteristics of vegetation in the study
area. The coupled RTM can simulate the radiative transfer characteristics of three-layer vegetation
and has greater potential to accurately estimate burn severity worldwide given it directly accounts for
variation in TCC to avoid misclassify burn severity without the need of determining a site-specific
stand density–TCC relationship.

Compared with the three existing methods in other studies, the proposed method (CP_ RTM+TCC)
in this study performed best. The CP_ RTM+GOS method performed worst because if TCC is not
constrained, there is serious spectral confusion between the different burn severity levels. This is
similar to the conclusion of Yin et al. [9], who found spectral confusion between different burn severity
levels when the influence of TCC was not considered in the RTM forward and backward inversion
procedure. Accuracy comparison results also showed that the FRT+TCC method yields a relatively
higher accuracy. This is because the influence of tree canopy cover is considered in the FRT+TCC
method. However, the accuracy was still lower than that of this study. This is because the stand density
was used as a proxy parameter to constrain the TCC in the FRT+TCC method, but stand density is
not the only determining parameter of tree coverage. Furthermore, the statistical correlation between
stand density and the lack of universality in TCC occurs because the empirical correlation has not been
validated other than the Yatir forest in Israel. Therefore, the indirect constraint of tree canopy cover
through stand density will produce matching errors, which will affect the estimation accuracy of CBI.
In essence, the RF algorithm estimates the burn severity according to the characteristics of spectral
reflectance, so it cannot get rid of the influence of TCC. Therefore, the estimated accuracy based on the
RF method is still lower than the method proposed in this study.

The spatial distribution of burn severity in the two study sites shows obvious boundary
characteristics. Most regions have CBI values above 2.8 or below 2.0, but few regions between
2.0 and 2.8. Combined with field sampling, we analyzed two main reasons for this phenomenon. First,
the interval between the fire and the field sampling was nearly 4 months and there was rainfall during
this period. The vegetation recovery ability in the low and medium burn severity area was stronger
than that in the high burn severity area. Most of the trees are burned completely under the high burn
severity level, which hinders quick recovery, and the low and medium burn severity is only affected
by the medium degree, supporting recovery faster speeds, which is consistent with the conclusion of
Meng et al. [54]. On the other hand, the relationship between vegetation recovery rate after the fire and
burn severity is not linear, but is a saddle curve [54]. This curve shows that the forest has certain fire
resistance. For example, some trees under fire stress have a short-term loss of canopy leaves but do not
die. Therefore, their canopies will recover in a short time after the fire. However, with the increase of
forest burn severity, tree survival will decrease as canopies cannot recover from the damage. The areas
affected by a moderate burn severity did not cause fatal damage to trees, therefore the recovery rate
was the fastest, with quick recovery to the state of lower burn severity level after the fire. In most
cases, the damage to trees caused by high burn severity is irreversible, implying slow recovery. Second,
field sampling saw that the high burn severity level was mainly distributed in areas with high altitude
and high slope. During the period from the fire (29 March) to the field sampling (18 July), there were
several precipitation events (>83 mm), and the temperature continued to rise (from 6.9 to 26.3 ◦C)
(Figure 10); this created good conditions for the post-fire recovery of vegetation in the study area.
However, because of the fire-related decrease of water storage capacity in mountain forests, there was
a slower recovery rate of trees at the top of mountains and in steep areas compared to valleys and



Remote Sens. 2020, 12, 3590 15 of 19

relatively flat terrain. In the process of field survey, we also found that the spatial distribution of burn
severity has a high correlation with terrain characteristics. For example, the areas with high burn
severity are mostly distributed on the top of the mountain and steep hillside, which indicates that
terrain factor is the important drive factor of burn severity. Future work will be focus on analyzing the
relationship between post-fire burn severity and pre-fire environmental drive factors.

Figure 10. Average daily temperature and daily precipitation data for study site 2 obtained from
Taiyuan weather station (longitude: 112.35◦E, latitude: 37.37◦N) during the period from October 2018
to July 2019. There is almost no precipitation from October 2018 to March 2019, and the temperature
has continued to rise since January 2019. The location of the black dotted line represents the ignition
date of the fire, and the location of the red dotted line represents the time of field sampling.

The meteorological data before the forest fire 2 in Qinyuan county were also analyzed. Figure 10
gives the daily average temperature and precipitation data of Taiyuan meteorological station nearest
to Qinyuan county (longitude: 112.35◦E, latitude: 37.37◦N) from 1 October 2018 to 31 July 2019.
There was almost no precipitation in the six months before the fire and the temperature continued
to rise in the three months before the fire, which provided sufficient external conditions for the fire.
This is also evident in the driving effect of meteorological factors on fire. Furthermore, due to the
local policy of closing the mountain for forest cultivation, many areas in sample site 2 were completely
closed, resulting in the accumulation of a large number of fuel load, including live fuel, such as
Pinus tabulaeformis and other shrubs; herbaceous vegetation; and dead fuel represented by litter and
humus on the ground. The accumulation of fuel load is also one of the important causes of fire
ignition. Meteorological variables are one of the most important factors affecting post-fire vegetation
regeneration. Vegetation regeneration and growth are generally highly depending on favorable postfire
meteorological conditions, such as conditions with higher moisture and proper temperature [55].
The several precipitation events and the average daily temperature continued to rise in the study area
after the fire created good conditions for vegetation regeneration.
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5. Conclusions

Burn severity is of vital importance for post-fire forest management and will assist in post-fire
vegetation regeneration. In this study, the burn severity of two forest fires in Qinyuan was estimated
using coupled RTM and Sentinel 2A MSI data. Traditional optical satellite remotely sensed data-based
methods that do not take the variation in TCC into account will lead to spectral confusion in burn
severity retrieval. Yin et al. [9] significantly improved the CBI estimation accuracy by using prior TCC
information into the forward simulations and backward inversions via the stand density parameter
of the FRT model. However, TCC is not only determined by stand density but also canopy diameter.
Moreover, the correlation between stand density and TCC is not universal, limiting the application of
FRT RTM-based inversion for forest burn severity somewhere else. In this study, ACRM was coupled
with the GeoSail model, by replacing the spectra of the bare soil input of GeoSail and considering
the vertical stratification characteristics of vegetation in the study area. The tree coverage parameter
FCOV in the GeoSail model was directly constrained by TCC without proxy parameters, and therefore
has greater potential to accurately estimate burn severity worldwide. The verification of the accuracy
of results using four methods (CP_RTM+TCC, CP_RTM+GOS, FRT+TCC, and RF) showed that the
method proposed in this study (CP_RTM+TCC) has the highest burn severity estimation accuracy.
The more accurate estimation of the burn severity obtained from the approach presented in this study
will help land managers to better understand post-fire vegetation regeneration and help in post-fire
forest management. Now that a new method for accurately estimate fire severity has been found,
future work will be focus on analyzing the relationship between post-fire burn severity and pre-fire
environmental drive factors.
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