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Abstract: Spatially continuous soil thickness data at large scales are usually not readily available
and are often difficult and expensive to acquire. Various machine learning algorithms have become
very popular in digital soil mapping to predict and map the spatial distribution of soil properties.
Identifying the controlling environmental variables of soil thickness and selecting suitable machine
learning algorithms are vitally important in modeling. In this study, 11 quantitative and four
qualitative environmental variables were selected to explore the main variables that affect soil
thickness. Four commonly used machine learning algorithms (multiple linear regression (MLR),
support vector regression (SVR), random forest (RF), and extreme gradient boosting (XGBoost) were
evaluated as individual models to separately predict and obtain a soil thickness distribution map
in Henan Province, China. In addition, the two stacking ensemble models using least absolute
shrinkage and selection operator (LASSO) and generalized boosted regression model (GBM) were
tested and applied to build the most reliable and accurate estimation model. The results showed
that variable selection was a very important part of soil thickness modeling. Topographic wetness
index (TWI), slope, elevation, land use and enhanced vegetation index (EVI) were the most influential
environmental variables in soil thickness modeling. Comparative results showed that the XGBoost
model outperformed the MLR, RF and SVR models. Importantly, the two stacking models achieved
higher performance than the single model, especially when using GBM. In terms of accuracy,
the proposed stacking method explained 64.0% of the variation for soil thickness. The results of our
study provide useful alternative approaches for mapping soil thickness, with potential for use with
other soil properties.

Keywords: soil thickness; random forest; extreme gradient boosting; variable selection;
machine learning; stacking ensemble method

1. Introduction

Soil thickness is considered to play an important role in numerous areas, such as soil structure
and function [1], vegetation growth [2], land surface energy flux [3], hydrology [4] and ecological land
classification [5]. Traditional soil sampling is laborious, time consuming and difficult to carry out
at large scales [6]. Currently, most modeling works require continuous and quantitative spatial soil
information [7,8].
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Digital soil mapping (DSM) techniques can be used not only to reduce sampling and analytical
costs but also to obtain the spatial distributions of soil properties over large scales [9,10]. Current
soil thickness mapping methods can be classified into three categories: (1) physically based models,
(2) empirical-statistical based models built using environmental covariates, and (3) interpolation from
point samples [11]. These mathematical or statistical methods are based on key landscape factors and
processes that determine the formations of soil properties. Spatial patterns in soil thickness result
from complex interactions of soil-forming environmental factors, including terrain relief, climate,
parent material, biological factors, human activities, physical processes and time [6,12]. Quantitative
environmental variables such as elevation, slope, aspect derived from digital elevation models and
vegetation index derived from remote sensing data have been widely used. Qualitative environmental
variables such as geomorphic maps, geological maps, land use types, and legacy soil maps could be
important parameters for predicting soil properties [13,14].

Given the large numbers of environmental variables that characterize soil-forming factors from
multiple aspects, the selection of appropriate variables is an important issue in DSM modeling [12].
The relationships between soil properties and environmental variables should be investigated to
obtain reliable soil thickness estimations. It is commonly accepted that more detailed covariates
could convey more spatial information, more adequately describe the interpretation of soil formation,
and improve the accuracy of the soil property predictions [15–17]. However, some studies have shown
that the use of all environmental variables would not necessarily improve the accuracy and cause
the curse of dimensionality [18,19]. Some covariates may be useless, noisy, redundant and cause
noise in modeling [20]. Variable selection should select the few most effective variables to reduce the
spatial dimensions of the variables, simplify predictive models, improve accuracy, and provide robust
models [21,22]. Therefore, it may be more effective to obtain fewer and more suitable variables to build
a robust and simplified model for DSM.

Recently, various machine learning (ML) algorithms have become very popular in digital soil
mapping, including: multiple linear regression (MLR) [23], regression trees (RT) [8], regression kriging
(RK) [11,23], generalized additive model (GAM) [24], random forest (RF) [21], artificial neural networks
(ANN) [25], and support vector regression (SVR) [26]. Early reviews on the strengths and weaknesses of
these machine learning algorithms have been discussed in some published articles [6,27,28]. However,
due to different working environments, some disputes still remain on which method is the best suited
for DSM [25,29]. Therefore, machine learning algorithms should still be compared and evaluated
under different landscapes in order to be able to make better judgements on which one is best suited
for soil thickness [30].

Ensemble learning is a popular machine learning paradigm that integrates the predictions of
individual single learners to achieve higher performance than that of a single learner [31]. Boosting,
bagging and stacking are the three main ensemble methods [32]. The stacking approach can take
advantage of the characteristics of different machine learning algorithms, reduce the variance of the
single machine learning model, and provide better and more stable predictions. Previous studies have
shown the potential of stacking models in improving the accuracy of soil property maps of soil organic
carbon [33–37], soil total nitrogen [38], soil class [39], soil pH [40], and soil texture [41].

In this paper, we selected quantitative and qualitative environmental covariates and compare
stacking ensemble approaches with four machine learning algorithms (MLR, SVR, RF, and extreme
gradient boosting (XGBoost)) to create the optimal models and predict the soil thickness map in
Henan Province, China. The specific objectives of this study were as follows: (1) to select optimal
environmental variables for soil thickness estimation models; (2) to investigate the performance of the
SVR, RF, and XGBoost models; (3) to evaluate the ability of stacking ensemble approaches to predict
soil thickness; and (4) to draw spatial distribution maps of soil thickness for the study area.
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2. Material and Methods

2.1. Study Area

Henan Province is located in central China (Figure 1). The study area lies between latitudes
of 110.35◦ and 116.65◦ north and between longitudes of 31.37◦ and 36.37◦ east with a total area of
approximately 167,000 km2. This region has a humid and semi-humid monsoon climate with an
average annual temperature ranging from 12.7◦ to 16.2◦ and an annual precipitation from 478 mm to
1167 mm. The soil types consist of cinnamon soil, fluro-aquic soil, brown soil and yellow-cinnamon
soil [42]. The plain basin and hilly areas account for a total of 55.7% and 44.3% of the region of Henan
Province, respectively. Forest and farmland are the dominant land uses in the study area.
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Figure 1. Location of study area and soil sampling plots.

2.2. Soil Dataset

Soil thickness is defined, in this study, as the distance from surface to bedrock or material that
contains >75% volume of >2 mm gravel [43]. Three available soil datasets were extracted from the
work of Wei on soils of Henan Province [44,45]. Detailed information on the landscape, soil profile, soil
type, land use and parent material about the sampling sites was employed. A total of 246 soil thickness
sample points were collected. The soil thickness values ranged from 7 to 250 cm with a mean of 101.5 cm.
The standard deviation and coefficient of variation were 47.5 cm and 46.8%, respectively. The results of
the Shapiro–Wilk test (p > 0.05) indicated that soil thickness samples followed a normal distribution.

2.3. Environmental Factors

All quantitative and qualitative environmental covariates assumed to influence soil formation were
selected (Tables 1 and 2), including topography, climate, organisms, parent material and soil properties.
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Table 1. Quantitative environmental variables used in this study.

Variable Abbreviation Soil Forming Factor Resolution

Elevation elevation Topography 30 m
Slope slope Topography 30 m

Aspect aspect Topography 30 m
Topographic Wetness Index TWI Topography 30 m

Plan Curvature PLC Topography 30 m
Profile Curvature PRC Topography 30 m

Mean Annual Precipitation MAP Climate 250 m
Mean Annual Temperature MAT Climate 250 m
Mean Annual Normalized

Vegetation Index NDVI Organism 250 m

Mean Annual Enhanced
Vegetation Index EVI Organism 250 m

Mean Annual Leaf Area Index LAI Organism 1000 m

Table 2. Qualitative environmental variables used in this study.

Variable Abbreviation Soil Forming
Factor Category

Landform LF Topography
Middle Relief Mountain,

Low Relief Mountain
Hill, Platform, Plain

Parent Material PM Parent Material

Residual and Slope Deposits,
Proluvial,

Loess and Laterite,
Alluvial Deposits,

River and Lake Sediments

Land Use LU Organism Forest, Farmland

Soil Texture ST Soil Property Sand, Silt, Clay

2.3.1. Topography

Shuttle Radar Topography Mission (SRTM) digital elevation datasets at 1 arc second (30 m) spatial
resolution are widely available from EarthExplorer. Five topographic attributes derived from SRTM
DEM were used, including slope, aspect, topographic wetness index (TWI), pan curvature (PLC) and
profile curvature (PRC). The System for Automated Geoscientific Analysis (SAGA) was used to derive
these topographic attributes [46].

2.3.2. Climate

Both mean annual temperature (MAT) and mean annual precipitation (MAP) for the study
area from 1980 to 2010 were obtained from China Meteorological Data Sharing Service System
(http://data.cma.cn/). MAT and MAP were interpolated over a 250 m grid for 176 meteorological
stations using the inverse distance weighting (IDW) interpolation procedure. Mean annual precipitation
(MAP) ranges from 518 to 1378 mm, with the average being 766 mm. Mean annual temperature (MAT)
ranges from 11.6◦ to 16.1◦ mm, with the average being 14.7◦.

2.3.3. Vegetation

The normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and leaf
area index (LAI) were used to represent the vegetation conditions of the soil properties. Both NDVI
and EVI data were extracted from the MOD13Q1 product from the Moderate-resolution Imaging
Spectroradiometer (MODIS) with 250 m spatial resolution and 16-day composites. LAI data were
extracted from MOD15A2 with a spatial resolution of 1000 m and 8-day composite. All data

http://data.cma.cn/


Remote Sens. 2020, 12, 3609 5 of 21

were obtained from the Earth Observing System Data and Information System (EOSDIS) (https:
//search.earthdata.nasa.gov/). This study collected three vegetation products in the period from
2010–2015. First, monthly vegetation data were produced using the maximum value composite (MVC)
method [47]. Then, the mean annual NDVI, mean annual EVI and mean annual LAI from 2001 to 2015
were calculated based on monthly vegetation data.

2.3.4. Geological and Soil Environment

We obtained the 1:1,500,000 geological resources and soil environment database of Henan Province
from National Earth System Science Data Center (http://www.geodata.cn/). The four quantitative
environmental variables used in this work included landform, parent material, soil texture, and land
use (Table 2). In order to have sufficient soil thickness samples in each land use category, land use was
grouped into forest and farmland.

All the covariates were available as raster files. As a processing step, the covariates were resampled
to match a 250 m grid using the nearest neighbor strategy. The spatial distributions of 15 environmental
variables in this study area are presented in Figure 2.

2.4. Individual Machine Learning Techniques

Numerous machine learning algorithms for digital soil mapping have been provided and
discussed [23]. Four commonly used machine learning techniques (MLR, SVR, RF and XGBoost) were
compared as individual models in this study.

2.4.1. Multiple Linear Regression

Multiple linear regression (MLR) is one of the simplest machine learning methods to digitally
create soil maps [48–50], due to its simplicity and efficiency in computation, and easy interpretation.
This algorithm finds the best covariates to predict the primary variable (soil thickness) from the
explanatory variables (environmental variables) by fitting a linear equation. The MLR was implemented
using the lm function in R [51].

2.4.2. Support Vector Regression

Support vector machine (SVM) is a supervised learning method that has recently gained some
popularity for predicting soil properties [52]. Support vector regression (SVR) is an extension of SVM,
and is used as a regression technique. SVR generates an optimal separating hyperplane to differentiate
classes that overlap and are not separable in a linear way. In this case, a large transformed feature
space is created to map the data with the help of kernel functions to separate it along a linear boundary.
More detailed explanations about SVR can be found in [53]. The commonly used radial basis kernel
function was applied in this study. Two parameters of cost and sigma should be defined. After several
experiments, the optimal set of cost and sigma is 0.5 and 0.07, respectively. The SVR was implemented
using the R package e1071 version 1.7-3 [54].

2.4.3. Random Forest

Random forest (RF) is currently one of the most successful data mining methods in DSM [49].
The principle of RF, randomly selects two-thirds of the training dataset (bootstrapping) to build a
decision tree, and the remainder of the training dataset is left out to test the model error using an
out-of-bag (OOB) strategy. The RF defines the percent increase in the mean square error (%IncMSE) as
the indicator to quantify the importance of the input variables. More detailed explanations about RF
can be found in [53]. In RF modeling, the number of trees to grow in the forest (ntree) and the number
of variables used per tree (mtry) should be defined. One third of the total number of predictor variables
for mtry and ntree = 500 provided stable and visually meaningful results. The RF was implemented
using the R package randomForest version 4.6-14 [55].

https://search.earthdata.nasa.gov/
https://search.earthdata.nasa.gov/
http://www.geodata.cn/
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2.4.4. Extreme Gradient Boosting

Extreme gradient boosting (XGBoost) is a novel tree-based ensemble model proposed by Chen and
Guestrin [56]. Based on the boosting strategy, XGBoost can obtain a strong learner from weak learners.
The XGBoost algorithm can improve computing speed by parallel learning, prevent over-fitting and
improve performance. XGBoost is also able to measure the importance of input variables using
the weight. More detailed information about XGBoost can be found in Chen and Guestrin [56].
The XGBoost was implemented using the R package xgboost version 1.1.1.1 [57]. After several
experiments, the number of trees (n_estimators) is set as 180, the learning rate is 0.02, the maximum
tree depth (max_depth) is 2 and for remaining variables, default parameters were used.

2.5. Stacking Ensemble Learning Models

Four outcomes of MLR, SVR, RF and XGBoost served as an input dataset to the stacking technique
that generated the final output. Two stacking ensemble learning models were applied. The first was
the least absolute shrinkage and selection operator (LASSO) model (Stacking1), which is a linear model
with regularization and avoids over-fitting in the prediction model [58]. The second is the Generalized
Boosted Regression Models (GBM) model (Stacking2), which deals with non-linear systems and
provides great predictive performance [59]. The glmnet [60] and the gbm [61] packages in R were used
to implement the stacking ensemble learning models.

2.6. Model Evaluation

To achieve stable model results, a ten-fold cross validation with 100 repetitions was used to
evaluate the prediction performance of different models. Four validation criteria were used to evaluate
the prediction accuracy of models: (1) coefficient of determination (R2), (2) root mean square error
(RMSE), (3) the mean absolute error (MAE) and (4) Lin's concordance correlation coefficient (LCCC).
These indices were calculated as follows:

R2 =

[∑n
i=0

(
Oi −O

)(
Pi − P

)]2

∑n
i=1

(
Oi −O

)∑n
i=1

(
Pi − P

)2 (1)

RMSE =

√∑n
i=1(Pi −Oi)

2

n
(2)

MAE =
1
n

n∑
i=1

|Pi −Oi| (3)

LCCC =
2rσoσp

σ2
o + σ

2
p +

(
P−O

)2 (4)

where Pi and Oi are the predicted and observed soil thickness for the i-th observation; n is the number
of sample points; P and O are the means of the predicted and observed soil thickness values; σ2

o and
σ2

p are the variances of the predicted and observed values; and r is the Pearson correlation coefficient
between the predicted and observed values.

The workflow for digital mapping of soil thickness in this study was shown in Figure 3.



Remote Sens. 2020, 12, 3609 8 of 21Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 22 

 

The workflow for digital mapping of soil thickness in this study was shown in Figure 3. 

 

Figure 3. Framework of the soil thickness estimation in this study. 

3. Result 

3.1. The Relationships between Soil Thickness and Environmental Factors 

The Pearson correlation matrix between soil thickness and eleven quantitative environmental 

variables was shown in Figure 4. Soil thickness was positively correlated with TWI (r = 0.60, p < 0.01), 

PRC (r = 0.21, p < 0.01), NDVI (r = 0.19, p < 0.01), EVI (r = 0.47, p < 0.01), LAI (r = 0.27, p < 0.01), and 

PLC (r = 0.13, p < 0.05), but negatively correlated with elevation (r = −0.54, p < 0.01) and slope (r = 

−0.54, p < 0.01). All variables were strongly related to soil thickness, except the aspects MAP and MAT. 
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3. Result

3.1. The Relationships between Soil Thickness and Environmental Factors

The Pearson correlation matrix between soil thickness and eleven quantitative environmental
variables was shown in Figure 4. Soil thickness was positively correlated with TWI (r = 0.60, p < 0.01),
PRC (r = 0.21, p < 0.01), NDVI (r = 0.19, p < 0.01), EVI (r = 0.47, p < 0.01), LAI (r = 0.27, p < 0.01),
and PLC (r = 0.13, p < 0.05), but negatively correlated with elevation (r = −0.54, p < 0.01) and slope
(r = −0.54, p < 0.01). All variables were strongly related to soil thickness, except the aspects MAP
and MAT.
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Figure 4. Pearson correlation coefficients between soil thickness and quantitative environmental
variables used in this study. * and ** indicate significance levels at 0.05 and 0.01, respectively.

Figure 5 describes the distribution characteristics of soil thickness on four qualitative environmental
variables at different classes. The soil thickness values of three soil textures (sand, silt and clay) had
similar distributions. There were significant differences in the soil thickness of five landform categories,
five parent material categories and two land-use categories. The soil thickness values increased with an
increase from middle relief mountain to plain in landform categories. Similarly, each parent material
category had a linear effect on soil thickness. The mean soil thickness value of forest was lower than
that of farmland in land use.
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3.2. Performances of Four Individual Machine Learning (ML) Models

Eleven quantitative environmental variables and four qualitative variables (LF, LU, PM and ST)
were used to train four individual ML models: MLR, SVR, RF and XGBoost. To further illustrate
the stable performances of these four models, we used boxplots of the R2, LCCC, RMSE and MAE
distributions based on 100 iterations (Figure 6). The results showed that the average R2 values of
four models using eleven quantitative variables ranged from 0.43 to 0.53; LCCC ranged from 0.63 to
0.68; RMSE was between 32.7 and 35.8 cm; MAE ranged from 24.2 to 27.6 cm. The XGBoost model
obtained the best performance to predict soil thickness (R2 = 0.53, LCCC = 0.68, RMSE = 32.7 cm and
MAE = 24.2 cm), followed by RF, SVR and MLR.
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machine learning (ML) models for different input environmental variables (Quan: eleven quantitative
environmental variables. Qual: four qualitative variables).

Incorporation of four qualitative variables improved soil thickness predictions in these four
individual ML models. For example, the XGBoost model improved the predictive performance by
increasing the R2 and LCCC by 9.15% and 7.57%, respectively, while also reducing the RMSE and MAE
by 5.72% and 3.9%, respectively.
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3.3. Best Environmental Variables

The relative importance of 15 environmental variables in the XGBoost, RF and SVR models were
assessed by normalizing the environmental variables of each model to 100% (Figure 7). Three models
showed similar environmental variable importance. The five most important predictor variables in
the XGBoost model were slope, TWI, LU, LF and elevation. According to the RF model, they were
TWI, slope, elevation, LU, and EVI. In the SVR model, they were TWI, lope, elevation, EVI and LU.
Generally, TWI and slope were the most critical variables for determining soil thickness. The following
important predictor variables varied, but their difference was insignificant. Based on the average
rankings of three methods, the variables were ranked in the order of TWI > Slope > Elevation > LU >

EVI > LF > PM > PRC > PLC > MAT > LAI > NDVI > MAP > Aspect > ST. In total, the topography
exhibited the highest explanation (57.5%, with seven variables) in the soil thickness model, followed
by organisms (27.0%, with four variates), climate (8.8%, with two variables), parent material (5.0%,
with one variable); and soil (1.7%, with one variable).
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Figure 7. The importance of environmental variables from random forest models.

To identify the variations in the predictive accuracies with different numbers of environmental
variables using MLR, SVR, RF and XGBoost, we used a forward variable selection approach based on the
ranked variables above. Figure 8 shows how R2 values vary with the number of input environmental
variables for the MLR, SVR, RF and XGBoost models. The four models had similar variations in that
their R2 values increased progressively for each additional input variable. The models comprising the
first five variables (TWI, slope, LU, EVI and elevation) were sufficient to reach the highest R2 values of
the graph, and the subsequent additional input variables resulted in only very small increases in R2.
The inclusion of some redundant variables (such as LF) may cause noise that reduced the robustness of
the predicted models. This result indicated that the use of only a few important variables was sufficient
to achieve a high level of estimation accuracy.
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Figure 8. Variations in the coefficient of determinations for different numbers of environmental variables
using MLR, SVR, RF and XGBoost.

3.4. Performances of Stacking Ensemble Models

On the basis of the selection of the five best variables (TWI, slope, LU, EVI and elevation),
the performances of four individual ML models (MLR, SVR, RF and XGBoost) and two stacking
models (Stacking1 and Stacking2) are presented in Table 3. The model accuracy was as follows:
Stacking2 > Stacking1 > XGBoost > RF > SVR > MLR. Two stacking approaches had higher accuracy
than individual ML models. For instance, the R2 values of Stacking2 and Stacking1 were 7.4% and
3.3% higher than XGBoost, respectively. The Stacking2 model exhibited the greatest performance and
could explain 58.7% of the soil thickness variation, with the highest R2 (0.640) and LCCC (0.763) values
and the lowest RMSE (29.2 cm) and MAE (22.2 cm) values.

Table 3. Prediction performances of ensemble models for soil thickness using the five best variables.

Models R2 LCCC RMSE (cm) MAE (cm)

MLR 0.521 0.696 32.9 25.4
SVR 0.562 0.715 31.4 24.0
RF 0.587 0.732 30.5 23.2

XGBoost 0.596 0.734 30.2 23.1
Stacking1 0.616 0.759 29.3 22.7
Stacking2 0.640 0.763 29.2 22.2

3.5. Spatial Distribution of Soil Thickness

The spatial distribution maps and corresponding descriptive statistics of soil thickness predicted
by different models (MLR, SVR, RF, XGBoost, Stacking1 and Stacking2) are shown in Figure 9 and
Table 4, respectively. These predicted soil thickness maps had similar spatial distributional trends of
soil thickness (Figure 9). Thin soil thickness values were mainly distributed in the western and southern
parts of the research area where mountains dominated the landscape. Thick soil thickness values
were mainly distributed in the wide plain in the central-eastern and southwest regions. These results
showed that the spatial distributions of soil thickness varied significantly with topographic position.
The mean values of soil thickness predicted ranged from 99.6 to 105.5 cm, respectively, which were
close to the measured values (Table 4).
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Figure 9. Soil thickness maps obtained from different models.

Table 4. Descriptive statistics of soil thickness predicted from different models.

Model Minimum (cm) Maximum (cm) Mean (cm) Standard
Deviation (cm)

MLR 24 199 103.7 35.8
SVR 21 202 99.6 32.6
RF 25 200 104.5 36.2

XGBoost 22 204 105.5 34.4
Stacking1 25 199 105.1 34.6
Stacking2 24 206 105.1 34.5

Figure 10 and Table 5 display the differences in the predicted soil thickness maps between the
Stacking2 model and the other five models (MLR, SVR, RF, XGBoost, Stacking1). The MLR model
and the SVR model had the most significant differences with the Stacking2 model in the predictions
results, where their standard deviations were more than 19.1 cm and their differences less than 10 cm
were less than 50 %. Most of the differences between the Stacking2 model and the RF and the XGBoost
models were less than 10 cm. The Stacking2 model and the Stacking1 model had the smallest spatial
distribution differences, of these 91.3% were less than 10 cm. In general, the larger differences of
predicted soil thickness maps were mainly located in relatively large topographic variation areas such
as steep hillsides, mountain ridges and river valleys, whereas the regions with gentle slopes or low
elevations had smaller differences.
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other models.

Table 5. Descriptive statistics of differences of predicted soil thickness maps between the Stacking2
model and other models.

Model Minimum
(cm)

Maximum
(cm)

Mean
(cm)

Standard
Deviation

(cm)

Proportion of Total Area (%)

<10 cm 10–20 cm >20 cm

Stacking2-MLR −61.1 40.0 1.3 19.1 43.1 39.1 17.8
Stacking2-SVR 60.3 46.1 5.4 21.1 45.8 40.7 13.6
Stacking2-RF −35.2 20.4 0.6 11.0 69.6 23.4 7.0

Stacking2-XGBoost −29.4 17.4 −0.5 8.9 79.3 16.8 3.9
Stacking2-Stacking1 −19.8 12.1 0.0 5.9 91.3 7.9 0.9

4. Discussion

4.1. The Performance of Environmental Variables

According to soil formative factors of the SCORPAN model [12], a total of fifteen relative
environmental variables from five factors (soil, climate, organism, topography and parent material)
were assembled to explain spatial variability of soil thickness in Henan Province, China.

Findings in previous works coincide with our results in the sense that topography was the main
predictor in soil thickness modeling [21,24,62]. Of the topographical variables used in the study, TWI,
elevation and slope had highly significant correlations with soil thickness and were the most influential
variables in the soil thickness models. We also found that LF was a combination of topography and
could reflect the trend of soil thickness variation, which showed significant correlations with soil
thickness. The spatial distribution of thick soil thickness was mainly in the floodplains or the bottom of
the valleys with low elevations and gentle slopes in this study area. Shallow soil was found in areas of
high elevation, steep slopes or rugged relief, where the rate of soil erosion was high. The spatial pattern
of soil thickness is a result of the interaction of soil deposition, soil erosion and surface runoff [49].
Soil deposition can be intensified in low plains and valley bottoms and soil erosion is accelerated under
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increasing elevation in steep areas [29]. TWI reflects the spatial distribution of water flow and thus the
accumulation processes in a closed catchment. Yang et al. [50] reported that TWI, slope and elevation
explained approximately 61.4% of the variation on soil thickness in karst regions in Southwest China.
Ho et al. [63] also showed that TWI was an important variable reflecting the spatial distribution of
soil thickness.

The main soil-forming or altering organisms are natural vegetation or humans (e.g., land use) [12].
The soil-vegetation feedback system indicates that the distribution of vegetation is influenced by soil
properties [64]. We also demonstrated that vegetation was the main factor affecting soil thickness.
EVI, NDVI and LAI have positive correlations with soil thickness. The high vegetation fractional
coverage shows that soil can be well protected against soil erosion, resulting in a large soil thickness.
EVI provides improved vegetation monitoring through increased sensitivity in areas with dense
biomass and reduced atmospheric influences [65]. EVI captured vegetation variations more sensitively
compared to NDVI and LAI. Land use was classified as forest and farmland in this study, and it was
another indicator of vegetation. The soil thickness values of forest were significantly lower than those
of farmland, where the high fractional coverage of vegetation mostly occurred in farmland. The models
that used LU made a large contribution to soil thickness modeling. Kuriakose et al. [11] indicated
that land use had a strong relationship with soil thickness in the Aruvikkal catchment. Sarkar et al.
(2013) stated that land use was identified as the most dominant predictor of soil thickness in the
regression analysis.

The nature of the parent material can be a significant influence on soil thickness. We also found
that soil thickness values varied with different parent material categories. Additionally, the spatial
distributions of topography and parent material were highly consistent in this study area. The soil
thickness values increased with an increase from residual and slope deposits to loess and laterite.
Chen et al. [66] also indicated that parent material was the most important variable in the soil thickness
modeling of mainland France.

Climate may control soil distribution over a continental scale [8]. Malone and Searle [67] found
that climatic variables were consistently used and important in mapping soil thickness across Australia.
In this study, MAP and MAT had no correlation with soil thickness (p > 0.05) and were not selected as
predictors in the modeling. This could be due to the distributions of MAP and MAT that decreased
from south to north, which reflects the characteristics of latitude, and these variables have relatively
small impacts on the weathering of parent rocks and soil formation in this area [21]. In this study,
soil texture showed only weak predictive power in the models. Soil texture was slightly relevant to
infer soil thickness variations.

4.2. The Importance of Variable Selection

Variable selection is one of the most important processes in modeling, which can reduce the number
of predictor variables to several important variables and make it easier to interpret the model [18].
The inclusion of additional environmental variables potentially adds additional information and
is usually expected to improve predictions in DSM. However, different variables showed different
predictive capabilities in the soil thickness modeling. This increased dimensionality and complexity
may actually result in a decrease in accuracy. We generally observed improvements when using more
variables, but the improvements were not large and may be outweighed by the costs. This is because
the number of training data may be insufficient to characterize the increased complexity associated
with the larger dimensionality of the feature space. The contributions of the other variables were
less important and could reduce the model’s performance and capability [68]. RF, SVR and XGBoost
models have their own procedures for calculating the importance of each variable. Their importance
scores may be different, but most optimal variables selected were similar. This result is in line with
other studies [69]. In this study, TWI, slope, LU, EVI and elevation played more important roles than
the other variables and achieved the best accuracy, which is consistent with the result of Lu et al. [21]
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who reported that the performance of four environmental covariates selected by the proposed method
was better than that of all 17 variables.

4.3. The Performance of Ensemble Methods

RF and XGBoost are the most popular ensemble methods for bagging and boosting, respectively.
They are both based on decision trees and are different with respect to the tree ensemble methods.
In this study, the XGBoost model performed slightly better than the RF model based on the comparison
of four statistical indicators (R2, LCCC, RMSE and MAE). This is likely due to the differences in the tree
ensemble methods. RF uses the bagging (bootstrap resampling) method to build different training sets,
and average the forecast results of decisions trees. XGBoost uses previous ideas from gradient boosting,
creating tree models based on residuals from previously created trees. Dietterich [70] compared
bagging and boosting ensembles and found that boosting outperformed bagging in the dataset with
little noise.

These two tree-based models performed much better than SVR and MLR, as they are more capable
of dealing with the non-linear problem, resistance to overfitting, and capturing complex interactions
in the variables. MLR exhibited poorly performance in this study area because it cannot solve the
non-linear relationships between soil attributes and environmental variables. SVR is able to model
highly non-linear dimensional relationships, but its performance is still susceptible to overfitting and
finding optimal parameters. Scarpone et al. [29] used different models to map the soil thickness in
the Tulameen study area in the southern interior of British Columbia and found that the predictive
performance of the RF model was significantly better than the generalized linear model. Li et al. [49]
compared the accuracy of MLR, geographically weighted regression (GWR), SVR, and RF models to
predict active-layer soil thickness, and found that RF performed best and MLR performed worst.

All available information is not always efficiently used by a single accurate model. Each
algorithm has specific advantages and disadvantages. The errors of the single model have different
uncertainties. The application of the stacking ensemble model used multiple learning models’ strengths
to achieve more robust performance, reduce estimation uncertainties and improve prediction accuracy.
The stacking strategy was more accurate than individual models in the current research. The predictions
from four individual models with different principles were combined using two stacking approaches:
LASSO and GBM. The GBM stacking model (Stacking2) achieves better predictive performance than
the LASSO stacking model (Stacking1). GBM is more capable of dealing with the non-linear problem,
resistance to overfitting, and capturing complex interactions in the variables [71,72].

Several studies have found this advantage for predicting soil properties. For instance,
Taghizadeh-Mehrjardi et al. [36] proposed the stacking approach to have the best performances
in soil organic carbon (SOC) content predictions in comparison to six ML models. They also found that
the RMSE values of stacking models using SVR for SOC content were lower those of stacking models
using LASSO. Chen et al. [40] couplied RF and XGBoost models to predict soil pH at the national scale.
Román Dobarco et al. [41], however, found that the ensemble predictions did not improve for silt and
sand, and improved only for clay. The performance of the stacking models may depend on the quality
of input datasets or primary maps and the diversification of the input single models [73,74].

4.4. The Performance of Predictions

The proposed model (Stacking2) found in this study used the five best variables and the stacking
ensemble method to explain 64.0% of soil thickness variation. Tesfa et al. [24] used the developed
random forest model with 11 input variables to explain approximately 50% of the variation of soil
thickness in a semiarid mountainous watershed. Sarkar et al. [23] showed that the regression kriging
model with seven landscape variables could explain 67% of the variability of soil thickness in a
Himalayan terrain. Lacoste et al. [8] proposed three methods to explain 50–58% of the soil thickness
variation in France. Lu et al. [21] used five environmental covariates and the RF method to explain 76%
of the variation in soil thickness. Malone and Searle [67] developed an integrated data mining approach
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to create soil thickness maps across Australia with a concordance coefficient of 0.77. The results
described in our research were within the range of previous studies.

The soil thickness maps predicted by different models exhibited similar distribution patterns,
and topography was the most notable variable. Thick soil was mostly concentrated in valleys,
wide plains and areas with gentle slopes, while thin soil was mainly found in steep slopes and areas of
high elevation. Topography was shown to be the dominant factor of soil thickness in these landscapes.
This result was also consistent with other studies [8,11,49]. Our results indicated that the predicted soil
thickness was less variable than the measured soil thickness. Similar findings were also reported in
soil thickness mapping studies by Yang et al. [50]

4.5. Limitations and Future Research

First, it was difficult to assess the uncertainty of the quantitative environmental variables with
coarse resolutions, which were surveyed during the Second National Soil Survey of China [75].
Therefore, it is necessary to explore the influence of more detailed environmental variables in soil
thickness mapping [76]. Other environmental variables such as vegetation types, bedrock geology and
soil type should be explored [77,78]. Second, machine learning approaches discover and quantify only
the relationships between soil thickness and environmental variables and ignore the neighbouring
spatial information of soil sample sites for DSM. The combination of regression models and geostatistical
methods such as kriging could account for more of the variability in the landscape, and thus has led
to improvements in DSM [29]. Different validation strategies (such as block cross validation) should
be applied to test model performance because of the over-fitting in machine learning models [79–81].
Third, the main factors controlling soil thickness may not be the same at different spatial and temporal
scales [75] and the optimal spatial resolution for soil thickness prediction should be discussed [25].

5. Conclusions

In this study, exhaustive covariates and machine learning methods were applied to build the most
reliable and accurate estimation model to provide the spatial distribution of soil thickness for Henan
Province in China. The results suggested that using qualitative environmental variables could improve
the accuracy of soil thickness estimations; in particular, each qualitative variable category showed
significant differences with soil thickness values. The results also demonstrated the importance of
variable selection in soil thickness modeling. Topography and organisms were the most important
environmental soil-forming factors in predicting soil thickness. After variable selection, TWI, slope,
elevation, land use and EVI were the most important environmental variables explaining the observed
variability in soil thickness. Out of four individual machine learning methods, XGBoost achieved
the best performance, followed by RF, SVR, and MLR. However, compared with these individual
methods, two stacking models showed better performance. The best model (Stacking2) exhibited
the greatest performance with the highest R2 (0.640) and LCCC (0.763) values and the lowest RMSE
(29.2 cm) and MAE (22.2 cm) values. From the soil thickness spatial distribution maps, thick soils
were mainly concentrated in valleys and low elevations and shallow soils mostly occurred on steep
slopes and high elevations. This study provided an example of producing regional soil thickness maps.
It is recommended to select appropriate variables and stacking models when using machine learning
algorithms for digital soil mapping.
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