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Abstract: Global navigation satellite system reflectometry (GNSS-R) uses signals of opportunity
in a bi-static configuration of L-band microwave radar to retrieve environmental variables such
as water level. The line-of-sight signal and its coherent surface reflection signal are not separate
observables in geodetic GNSS-R. The temporally constructive and destructive oscillations in the
recorded signal-to-noise ratio (SNR) observations can be used to retrieve water-surface levels at
intermediate spatial scales that are proportional to the height of the GNSS antenna above the water
surface. In this contribution, SNR observations are used to retrieve water levels at the Vianden
Pumped Storage Plant (VPSP) in Luxembourg, where the water-surface level abruptly changes up to
17 m every 4-8 h to generate a peak current when the energy demand increases. The GNSS-R water
level retrievals are corrected for the vertical velocity and acceleration of the water surface. The vertical
velocity and acceleration corrections are important corrections that mitigate systematic errors in the
estimated water level, especially for VPSP with such large water-surface changes. The root mean
square error (RMSE) between the 10-min multi-GNSS water level time series and water level gauge
records is 7.0 cm for a one-year period, with a 0.999 correlation coefficient. Our results demonstrate
that GNSS-R can be used as a new complementary approach to study hurricanes or storm surges that
cause abnormal rises of water levels.

Keywords: GPS; GNSS; reflectometry; GNSS-R; SNR; water level

1. Introduction

Global navigation satellite systems (GNSS) signal have been used for unanticipated purposes,
such as remote sensing of the environment [1]. In the last two decades, GNSS reflectometry (GNSS-R)
has emerged as a reliable method to estimate water levels, with many studies highlighting the
technique’s potential [2–7]. Geodetic GNSS-R uses near-surface or ground-based signals of opportunity
at the L-band frequency to retrieve environmental variables such as snow depth, soil moisture,
and water level at intermediate spatial scales that are proportional to the height of the antenna above
the surface being observed (i.e., 1000 m2 for a GNSS antenna installed on 2-m-tall monument) [4,8–12].
This technique is based on the simultaneous reception of the direct or line-of-sight transmissions,
along with their coherently reflected signals.

GNSS-R can retrieve absolute water levels by taking the vertical land motion into account.
It should be noted that the vertical land motion of the tide gauge benchmarks ought to be corrected to
isolate tide gauges from the land motion [13]. Furthermore, the international workshop on sea-level
measurements in hostile conditions that was held from 13 to 15 March 2018 and was cosponsored by the
Intergovernmental Oceanographic Commission (IOC) of the United Nations Educational, Scientific and
Cultural Organization (UNESCO) has recommended the investigation of GNSS reflectometry (GNSS-R)
“if conditions are too difficult for conventional observing methods”; this was in addition to the general
recommendation that “tide gauges should be connected to benchmarks and co-located with GNSS as

Remote Sens. 2020, 12, 3614; doi:10.3390/rs12213614 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-3743-3630
http://dx.doi.org/10.3390/rs12213614
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/21/3614?type=check_update&version=2


Remote Sens. 2020, 12, 3614 2 of 12

required by the Global Sea Level Observing System (GLOSS) standards”. Therefore, geodetic GNSS-R
would be especially valuable in the harsh environments where conventional tide gauges are very hard
to maintain, and therefore, sea level observations are very sparse (i.e., sea-ice-covered regions).

The potential of GPS L1 reflections from a ground-based GNSS-R experiment first was
demonstrated for sea-state monitoring in [14]. They used an upright right-handed circularly polarized
(RHCP) antenna and an upside-down left-handed circularly polarized (LHCP) antenna to generate a
times series of the interferometric complex field. The authors of [15] further developed the concept of
the GNSS-R using GPS L1 phase delays from two geodetic-quality GNSS antennas.

The excess delay of water-surface reflections with respect to the line-of-sight transmission that
is recorded with a commercial off-the-shelf GNSS receiver can be used to estimate the water level.
The signal-to-noise ratio (SNR) observations from a geodetic-quality receiver/upright antenna at
Kachemak Bay, Alaska were first demonstrated by [16] to retrieve the water levels. GNSS-R water
levels using carrier-phase and SNR observations of Global Positioning System (GPS) and Russian
global navigation satellite system (GLObal’naya NAvigatsionnaya Sputnikovaya Sistema; GLONASS)
from a GNSS station in Sweden were compared with those of a co-located tide gauge sensor; the
results showed correlation coefficients of 0.86 to 0.97 [17]. Using the GNSS station on top of the
Cordouan Lighthouse for a three-month period, [18] reported a root means square error (RMSE) of
0.87 m between GNSS-R water levels and tide gauge (TG) records that were located ~9 km from the
lighthouse, taking the dynamic of the reflection surface into account.

In this contribution, we used SNR observations for about a one-year period (from 27 June 2017
to 28 July 2018) at the Vianden Pumped Storage Plant (VPSP) in Luxembourg (Figure 1a) to report
the water-surface levels to investigate if geodetic GNSS-R can detect sudden and large water-surface
changes caused by nonastronomical forces. We corrected the estimated GNSS-R heights for tropospheric
propagation [19]. Then, we corrected the reflector heights for vertical velocity and acceleration of the
water surface [6]. The water level of the upper reservoir can abruptly change up to about 17 m every
4–8 h in either generating or pumping modes. This process repeats daily but at different times of the
day when the energy demand is high. Therefore, the dynamic satellite and surface corrections are
very important, as the water surface at VPSP has a unique water-surface regime. In the last decade,
the velocity and vertical velocity corrections were estimated by fitting a daily sinusoidal fit based on the
mean frequencies of the dominant tides [16]. However, the traditional method cannot be applied, as the
water-surface changes are not caused by diurnal and semidiurnal tides at VPSP. Here, the estimated
GNSS-R water levels are corrected using centered finite differences. Finally, the 10-min GNSS-R water
levels with a two-hour window width are compared with those of a co-located water level gauge to
assess the performance of the technique.
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Figure 1. Vianden-pumped storage plant (a) (courtesy of the SEO, [20]), global navigation satellite 
system (GNSS) station VPSP at the Vianden pumped storage plant (b), and (c) occurrences of GS1C 
first Fresnel zones (FFZs) of July 2018 at the VPSP. Each color depicts each GPS satellite, and the 
location of the GNSS station is shown as a yellow pin. 
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reversible turbine-pump generators. At times when the power consumption is low, water is pumped 
into the upper reservoir from the lower reservoir dam at VPSP. When the energy demand increases, 
the stored water is used to generate a peak current. The elevation difference between the upper and 
lower reservoirs is 282.8 m [20]. The VPSP hydroelectric plant generates an average of 1650 gigawatt-
hours electricity every year. The upper reservoir with the total capacity of 7,340,000 m  is equipped 
with ten pump-turbine generators. The 1st to 9th reversible turbine-pump generators with the 
turbine-runner diameter of 2.45 m can discharge 39.5 m /s  of water when electricity is generated. 
The 10th machine with a diameter of 4.40 m has a water flow of 77 m /s  and 74 m /s in the turbine 
operation and pumping mode, respectively [20]. The 11th pump generator with the turbine capacity 
of 200 megawatts was commissioned in December 2014.  

The GNSS station VPSP (latitude: 49.94°, longitude: 6.18°, altitude: 561.96 m) was installed in 
late-June 2017 at VPSP. It was equipped with a Septentrio PolaRx5 receiver and a Trimble 
TRM59800.00 antenna with no external radome (Figure 1b). The antenna is installed ~11.0 m above 
the mean water level, and the receiver was set at a 1-Hz sampling rate. As the station VPSP was 
installed specifically for GNSS-R, it is positioned towards the south direction in order to maximize 
the number of satellite tracks (Figure 1c).  

VPSP is also equipped with Rittmeyer high-precision pressure gauge MPW2Q sensors. MPW2Q 
provides hydrostatic or pneumatic pressure measurements every 1 min. MPW2Q reports high-
precision water levels (WL) with a resolution better than 1 mm [21]. 

An example of SNR observations of a rising arc at VPSP station is shown in Figure 2. The 
protected/encrypted signals (P(Y)) on both the L1 and L2 bands are ignored, as they produce nosier 
SNR fringes [12]. It can be seen that SNR fringes are very clear for all the seven signals, especially for 
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the highest direct power, as no military signal is planned for L5 [11]. Third, there are up to 10-dB 
different direct power levels between the strongest (GS5Q) and the weakest (RS2P) signals. 

Figure 1. Vianden-pumped storage plant (a) (courtesy of the SEO, [20]), global navigation satellite
system (GNSS) station VPSP at the Vianden pumped storage plant (b), and (c) occurrences of GS1C first
Fresnel zones (FFZs) of July 2018 at the VPSP. Each color depicts each GPS satellite, and the location of
the GNSS station is shown as a yellow pin.

2. Experiment Setup

The Vianden power station that is located north of Vianden in Diekirch District, Luxembourg is a
pumped storage power station that is used to store excess energy and generate peak current. The first
four sets of pump generators in the Vianden pumped storage plant were commissioned in the winter of
1962/1963 [20]. The second phase of work was completed in 1964 by installing another five reversible
turbine-pump generators. At times when the power consumption is low, water is pumped into the
upper reservoir from the lower reservoir dam at VPSP. When the energy demand increases, the stored
water is used to generate a peak current. The elevation difference between the upper and lower
reservoirs is 282.8 m [20]. The VPSP hydroelectric plant generates an average of 1650 gigawatt-hours
electricity every year. The upper reservoir with the total capacity of 7,340,000 m3 is equipped with ten
pump-turbine generators. The 1st to 9th reversible turbine-pump generators with the turbine-runner
diameter of 2.45 m can discharge 39.5 m3/s of water when electricity is generated. The 10th machine
with a diameter of 4.40 m has a water flow of 77 m3/s and 74 m3/s in the turbine operation and pumping
mode, respectively [20]. The 11th pump generator with the turbine capacity of 200 megawatts was
commissioned in December 2014.

The GNSS station VPSP (latitude: 49.94◦, longitude: 6.18◦, altitude: 561.96 m) was installed in
late-June 2017 at VPSP. It was equipped with a Septentrio PolaRx5 receiver and a Trimble TRM59800.00
antenna with no external radome (Figure 1b). The antenna is installed ~11.0 m above the mean water
level, and the receiver was set at a 1-Hz sampling rate. As the station VPSP was installed specifically
for GNSS-R, it is positioned towards the south direction in order to maximize the number of satellite
tracks (Figure 1c).

VPSP is also equipped with Rittmeyer high-precision pressure gauge MPW2Q sensors.
MPW2Q provides hydrostatic or pneumatic pressure measurements every 1 min. MPW2Q reports
high-precision water levels (WL) with a resolution better than 1 mm [21].

An example of SNR observations of a rising arc at VPSP station is shown in Figure 2.
The protected/encrypted signals (P(Y)) on both the L1 and L2 bands are ignored, as they produce nosier
SNR fringes [12]. It can be seen that SNR fringes are very clear for all the seven signals, especially for
low-elevation angle observations, i.e., observations below a 20◦ elevation angle. Second, GS5Q have
the highest direct power, as no military signal is planned for L5 [11]. Third, there are up to 10-dB
different direct power levels between the strongest (GS5Q) and the weakest (RS2P) signals.
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Figure 2. Signal-to-noise ratio (SNR) observations for a rising arc at VPSP for two different epochs
when the reservoir had different water levels. Top panel is for decimal year 2018.0024 when the energy
demand increased, and bottom panel shows SNR observations for decimal year 2018.0034 when the
power consumption was low.

3. GNSS-R Data Processing

SNR observations can be decomposed into a trend (tSNR) that is a monotonically increasing
function of the elevation angle (e) and detrended interference fringes (dSNR). The detrended
interference fringes that are superimposed on the trend can be expressed in terms of the detrended
interference fringes’ amplitude (aSNR) and reflection excess phase (φi) with respect to the direct
phase [22]:

dSNR = aSNR cosφi (1)

The interferometric phase is a function of the coupled surface-antenna properties (φX),
geometric interference component (φI), and right-handed circularly polarized (RHCP) antenna
phase pattern evaluated in the direct path (ΦR

d ) [23]:

φi = φX + φI −ΦR
d (2)

The compositional component of the interferometric phase can be expressed as a function of the
complex-valued Fresnel reflection coefficients for same-

(
RS

)
and cross-sense circular polarization

(
RX

)
and antenna complex vector effective length (L) [11,22]:

φX = arg(RSLR
r + RXLL

r ) (3)

The geometric component of the interferometric phase can be modeled as a function of the
wavenumber (k):

φI = kτi (4)

Assuming a flat and smooth surface, the interferometric propagation delay (τi) can be modeled as
a function of the satellite elevation angle and an a priori reflector height (H)—the vertical distance
between the GNSS antenna phase center and the reflecting surface [11]:

τi = 2H sin e (5)
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As the GNSS antenna surroundings (i.e., water level) are an unknown condition, the GNSS-R
inverse model is parameterized by a few biases assuming a priori values for the physical parameters.
Therefore, the tSNR and dSNR in the electromagnetic forward model are defined as tSNR

(
K−2 + K−2B2

)
and dSNR

(
K−2
|B|−1

)
, respectively. The real-valued noise power K and complex-valued interferometric

bias B with magnitude |B|2 = 10BdB/10 and phase φB are introduced for the interferometric model
as [12]:

KdB =
n∑

j=0

K( j)
dB sin j e (6)

BdB =
n′∑

j=0

B( j)
dB sin j e (7)

φB =
n′′∑
j=0

φ( j)sin je (8)

where the superscript in parentheses is an index; otherwise, it is a power exponent. While the direct and
interferometric power biases are introduced only to improve the sinusoid fit to the SNR observations,
the interferometric phase bias is used to retrieve the reflector height.

The inverse model can use the forward model internally to simulate SNR observations to estimate
parameter corrections by fixing them to their a priori values and corresponding covariance matrices.
For more details, the reader is referred to [12] and [23]. Therefore, the interferometric phase can be
updated in the forward model as:

φi = φi −φ
(0)
B −φ

(1)
B sin e . . . (9)

Finally, the linear phase bias can be used to estimate the total reflector height:

Htotal = H −φ(1)
B λ/4π. (10)

where λ is the carrier wavelength.
After inversion, a number of post-processing measures are applied to detect and reject outliers

resulting from unexpected situations (i.e., secondary reflections, diminished interferometric powers)
of each individual GNSS signal. However, SNR observations should be first clustered so retrieved
biases will be compared under comparable environmental conditions. To do that, SNR observations
are partitioned into satellite tracks, between rising/setting near the horizon, and culmination near the
zenith. The satellite tracks are then clustered by taking advantage of GNSS ground tracks repeatability.
Therefore, satellite tracks are discriminated by whether the satellite is ascending or descending near
the same azimuth. Intra-signal and intra-cluster quality control (QC) compare the estimated linear
phase biases within each individual cluster using robust estimators and statistical intervals and reject
outliers resulting from anomalous conditions [9]. In the next step, as phase biases are highly correlated
to one another, the constrained least-squares (LS) adjustment is implemented to retrieve constrained
constant phase biases to improve the precision of the water level estimates [6].

The water level at VPSP abruptly changes with time. Therefore, the estimated water levels must
be corrected for the dynamic water surface level [16]. The interferometric phase rate can be defined as
a function of the stationary surface height (H) and height rate correction (∂H/∂kz):

∂φi/∂kz = H + kz∂H/∂kz (11)
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where kz = 2k sin e is the vertical wavenumber [6]. The vertical velocity of the water surface level
is an important correction, as the water level at VPSP varies up to 17 m every 4–8 h. Therefore,
the height-rate correction can be modeled as:

∂H/∂kz =
.

H tan e/
.
e +

..
H∆t tan e/

.
e (12)

The first term on the right-hand side represents the angular delay rate, and the second is the
integrated delay rate. The height rate and velocity rate can be solved iteratively using the centered
finite differences [6]. The elevation angel rate (∂e/∂t) is derived from the GNSS precise ephemerides.
The authors of [6] reported a height rate and velocity rate of about 40 cm/h and 20 cm/h2, respectively,
for a GNSS station with about 3-m daily tidal envelopes. Therefore, the height-rate correction cannot
be neglected especially at VPSP; otherwise, GNSS-R water levels would be biased. It should be noted
that vertical acceleration would be also beneficial, especially when sub-hourly water levels (10 min)
with such a window width (2 h) are reported [6].

Tropospheric delays as a function of the satellite elevation angle and the reflector height were
found as an important source of error in GNSS-R studies [19,24]. Therefore, here, the estimated water
levels are corrected for atmospheric refraction after intra-signal and intra-cluster QC. The Vienna
Mapping Function 3 (VMF3) that is based on the ray-traced delays of the ray-tracer RADIATE,
together with the Global Pressure and Temperature 3 model (GPT3) on a 1◦ × 1◦ global grid that
represents a comprehensive troposphere model [25], is used to estimate the tropospheric delay
corrections. Using the minimum and maximum elevation angle observations of each individual
satellite track, the along-path tropospheric delays can be estimated as:

Ht = 2H(n− 1)/sine (13)

where n is the index of refraction along the instantaneous excess delay path [19,24].
All cluster-by-cluster tracks are combined to produce a regularly spaced signal-specific

epoch-by-epoch water level time series together with their respective uncertainties based on a
weighted moving average. The moving average returns water levels every 10 min using a 2-h window
width [6]. It should be noted that the moving regression is not a simple moving average, as it also
estimates the height and velocity rates. Finally, sub-hourly water level time series are reported using the
signal-specific variance factors. The statistical inter-signal combination that offers a single multi-GNSS
time series was found to improve the precision of geodetic GNSS-R retrievals [12]. The post-inversion
algorithm of the water level retrieval at VPSP is summarized in Figure 3.
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Before we combined all the independent GNSS-R water levels to provide a single multi-GNSS
water level time series, first we compared all the signal-dependent water levels together. Here, the
GS1C water level time series is used to evaluate the inter-signal consistency among all the GNSS-R
retrievals. A systematic error at a decimeter level between the GPS-L1 and GPS-L2 signal water-surface
level retrievals was reported in [26]. In this study, we found linear relationships between different
GNSS-R water level estimates and GS1C, with correlations that exceeded 0.98 (Figure 4).
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4. Results

Figure 5 shows the tropospheric delays at station VPSP. Due to the variations of the water-surface
level, the atmospheric delay changes with respect to the satellite elevation angle. The tropospheric
delay difference between the two modes of VPSP when the water-surface level is at its minimum and
its maximum is 29.40 cm. The regression slope 0.984 m/m ± 0.001 m/m between the GNSS-R water
level time series and WL records are statistically significant vis-à-vis its 95% confidence interval if the
tropospheric delay corrections are neglected.

SNR observations from a GNSS station in Sweden, [17] demonstrated that GS2W and RS2P should
be avoided for GNSS-R water level studies. The authors of [12] found that legacy GPS signals are
worse in terms of accuracy, while modernized GPS and GLONASS signals are comparable. Therefore,
signal-specific variance factors are used to report multi-GNSS GNSS-R time series, together with their
formal errors (Figure 6).

The GNSS-R water level time series are compared with those of the WL records. First, the WL
records are interpolated at the GNSS sampling epochs and vice versa by disabling the interpolations
across the data outage periods. The RMSE error between the sub-hourly GNSS-R time series and
WL records is 7.0 cm. The agreement between the WL records and GNSS-R water level retrievals is
excellent, with a correlation coefficient that exceeds 0.999 (Figure 7).
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There is no scale error between the GNSS-R water level time series and WL records that can be
seen in the van de Casteele diagram in Figure 8. The x-axis presents the difference between geodetic
GNSS-R water levels as the test sensor, and the y-axis represents the WL records as the reference sensor.
The two water levels deviate by −0.27% from a one-to one relationship. The authors of [4] reported a
scale error of 0.84% for a GNSS site with ~2.5-m tidal amplitudes. We found that the RMS reduction at
VPSP is 49% when the vertical acceleration is applied. In addition, the GNSS-R water level time series
would be deviated by 1.97% from the WL records if they were only corrected for the height rate.
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and van de Casteele diagrams for the GNSS-R water levels over 1 year at the VPSP (b).
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We also compared the sub-hourly maximum and minimum GNSS-R water level retrievals and
water level gauge records (Figure 9). The RMSE between the maximum GNSS-R retrievals and
water level records is 6.5 cm, but it is 11.1 cm between the minimum GNSS-R estimates and water
level measurements.
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and water level gauge.

Carrying out a regression between maxima measurements from the two sensors, the intercept
−0.03 m± 0.16 m and regression slope 0.99 m/m± 0.03 m/m are not statistically significant vis-à-vis their
95% confidence intervals. The regression intercept of the minima GNSS-R retrievals and water level
records is −0.02 m ± 0.19 m, and the regression slope is 1.01 m/m ± 0.02 m/m. While the median offset
between the maximum measurements is 0.5 cm, it is 4.7 cm for the minimum retrievals. On one hand,
GNSS-R retrievals are less precise than those of the water level. On the other hand, the resolution of
the Rittmeyer high-precision pressure gauge sensor is 10 times higher than the GNSS-R, and GNSS-R
retrievals are averaged over the FFZs over 10 min. In addition, the offset error between minimum
retrievals can be the result of the ramp slope of the dam. When electricity is generated, the water
level goes down. Therefore, the vertical and horizonal distances between the GNSS antenna and
water surface increase. There would be reflections from the ramp slope for higher elevation angle
observations where FFZs are close to the antenna.

5. Conclusions

The geodetic GNSS-R is used to estimate water levels at the Vianden pumped storage plant
(VPSP), where the water-surface level changes vertically ~17 m several times a day to generate a
peak current. The retrieved heights are corrected for tropospheric delay using VMF3/GPT3 models
before signal-specific water levels are estimated based on a weighted moving average using a 10-min
post-spacing and a 2-h averaging window width. The inter-cluster combination is implemented in a
way to take the dynamic state of the sea surface into account by correcting the retrieved heights for the
velocity and vertical velocity corrections. Finally, GNSS-R sub-hourly time series are reported using
the signal-specific variance factors. The standard deviation between the sub-hourly GNSS-R water
levels and co-located tide gauge records for about one year at the VPSP is 7.0 cm, with a correlation
coefficient exceeding 0.999.

The results confirm that GNSS-R can detect sudden and large water surface changes. Therefore,
geodetic GNSS-R can be used to study water-surface changes caused by nonastronomical forces such as
hurricanes or storm surges. The performance of GNSS-R water levels can be improved in terms of
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temporal sampling by tracking all GNSS signals from other global navigation systems (i.e., Russian
GLONASS, European Galileo, and the Chinese BeiDou global). In the future, the atmospheric bias in
he -R water levels will be solved using an atmospheric ray-tracing procedure [24].
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