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Abstract: The Rarh Bengal region in West Bengal, particularly the eastern fringe area of the
Chotanagpur plateau, is highly prone to water-induced gully erosion. In this study, we analyzed the
spatial patterns of a potential gully erosion in the Gandheswari watershed. This area is highly affected
by monsoon rainfall and ongoing land-use changes. This combination causes intensive gully erosion
and land degradation. Therefore, we developed gully erosion susceptibility maps (GESMs) using
the machine learning (ML) algorithms boosted regression tree (BRT), Bayesian additive regression
tree (BART), support vector regression (SVR), and the ensemble of the SVR-Bee algorithm. The gully
erosion inventory maps are based on a total of 178 gully head-cutting points, taken as the dependent
factor, and gully erosion conditioning factors, which serve as the independent factors. We validated
the ML model results using the area under the curve (AUC), accuracy (ACC), true skill statistic (TSS),
and Kappa coefficient index. The AUC result of the BRT, BART, SVR, and SVR-Bee models are 0.895,
0.902, 0.927, and 0.960, respectively, which show very good GESM accuracies. The ensemble model
provides more accurate prediction results than any single ML model used in this study.

Keywords: gully erosion susceptibility mapping; storm monsoon rainfall; machine learning methods;
ensemble of SVR-Bee; West Bengal
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1. Introduction

The origin and development of gullies are related to water-induced soil erosion and are treated
as a major global problem. The formation of gullies and their gradual expansion significantly alter
the shape of the earth’s surface [1]. Therefore, gully formation that gradually changes the shape of
the earth’s surface is often associated with the formation of badland geomorphic features, which is
particularly impeding in production activities, the construction of road networks, and associated
activities [2]. As a result, land degradation in the form of gully erosion is the major cause of loss
of productive soil surface, affecting nearly 1 billion hectares globally [3,4]. Therefore, this type of
hazardous phenomenon causes environmental degradation, threatening to the lives of others, as well
as loss of economic activity. Therefore, to understand the formation and development of gullies
and associated erosional activities, and to overcome this global problem in a sustainable way it is
necessary to perform gully erosion susceptibility (GES) mapping. In general, gully formation is
a complex phenomenon that depends mainly on extreme precipitation events and improper land use
utilization, as well as lack of proper planning [5]. Basically, a gully can be defined as a permanent
water channel with a temporary flow of water during phases of heavy rainfall, in which the sediment
is carried down the slope. The formation of gully erosion is a combination of different sub-processes,
and these are the retreat of sloping land through head-cut, piping, fluting, crack development by
tensional activity, and mass wasting [6]. In general, gullies are classified into three categories based on
depth, namely grooves (<0.3 m), shallow gullies (0.3 to 2 m), and deep gullies (>3 m) [5]. The origin
and development of gullies are widely responsible for the extensive hot and dry periods followed
by heavy rainfall, together with human land-use practices, particularly in the monsoon dominated
hot-dry climatic area. There are two groups of factors for the occurrence of gullies, which are physical
factors (topography, climate, soil texture, vegetation cover, etc.) and anthropogenic factors (over
grazing, deforestation, land utilization in an unplanned way, etc.) [7]. It is also a very well-known fact
that similar factors are not responsible for the occurrence of gullies throughout the several regions
in this world. Therefore, depending on the unique topographical, climatological, and hydrological
characteristics, the pattern of gullies occurrence, their morphology, and erosional activities vary from
place to place.

As stated in the aforementioned paragraphs, soil erosion causes a huge amount of economic
losses and is treated as a global threat. The economic losses caused by soil erosion in South Asia are
nearly USD 5400 million caused by a loss of soil productivity affecting 36 million tons annually [8].
The phenomenon of land degradation caused by soil erosion in the form of gully erosion is a critical
hazard that has already affected approximately 3.975 million hectares (Mha) of land across India [9].
According to the various reports, such as the Ministry of Agriculture (MoA) (in 1994) and the National
Bureau of Soil Survey and Land Use Planning (NBSS and LUP) (in 2004), the land degradation rate in
India is estimated to be 107.4 and 146.8 Mha, respectively [10,11]. According to the Government of
India’s Ministry of Environment and Forestry’s (2011) report, water erosion is responsible for about
10.21% of the land degradation in India. The unique climatic characteristics in India, i.e., heavy rainfall
during the monsoon season and temperature fluctuations throughout the year, are responsible for
the formation of gullies and increase the erosional potential and sedimentation. Our study area in
the Gandheswari river basin is enormously affected by land degradation through gully erosion as
it is located in the extended part of the Chotanagpur plateau with a sub-tropical Indian climatic
condition. In addition to these two aspects, agricultural activities, destruction of the soil structure
through fertilizers, increasing deforestation, and a lack of proper drainage systems are also responsible
for the formation and development of rill-gullies in this area. Therefore, it is necessary to prevent
and mitigate the gully formation processes by ascertaining their spatial extent and evaluating their
controlling factors. GES mapping is an appropriate tool to carry out this task in a sustainable and
perspective way.

In general, qualitative and quantitative methods have been applied to analyze gully erosion and to
perform GESM [12]. Basically, a qualitative analysis requires a geomorphological and heuristic approach
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and skilled persons’ knowledge, while quantitative methods are based on a perfect relationship among
the gully erosion conditioning factors (GECFs) and numerical values representing the occurrence of
gullies [13]. Over time, GESM has been carried out using various techniques and models. Initially,
it was done using remote sensing, geographic information system (GIS), and statistical models [14].
Different types of statistical models including the frequency ratio, analytical hierarchical process
(AHP) [15], certainty factor (CF) [16], weight of evidence (WoE) [17], and evidential belief function
(EBF) [18] have been applied to assess GESM approaches. Then, machine learning (ML) algorithms
have been used for their ability to handle a big dataset and discover the complex relationships
among the various conditioning factors used in GESM. The most widely applied ML algorithms in
GESM are the artificial neural network (ANN) [19], support vector machine (SVM) [19], random forest
(RF) [20], boosted regression trees (BRT) [21], alternating decision tree (ADTree) [22], and the multi-layer
perception approach (MLPC) [23]. More recently, ensemble techniques, i.e., an amalgamation of two or
more statistical or ML models, have been used for GESM. Basically, ensemble models have been used
to remove the shortcomings of individual statistical or ML models [24]. Therefore, keeping in view the
fact of widely acceptance of ML algorithms among several research groups of people, due to their high
accuracy assessment in the prediction result, in this study we also used three popular ML algorithms
namely boosted regression tree (BRT), Bayesian additive regression tree (BART), support vector
regression (SVR), and the ensemble of the SVR-Bee models, and as we know, the ensemble has a greater
accuracy assessment than any single stand-alone ML model. It is also stated that in several literature
studies as well as to the best of our knowledge, there is no such research work which is based on
the ensemble of SVR-Bee model and BART algorithm on GESM. Therefore, the ensemble of SVR-Bee
algorithm and their comparison with the three aforementioned ML models is the novelty of this research
work for optimal prediction analysis of GESM. The literature study shows that various ML algorithms
as well as statistical approacheshave been widely used in GESM by Ghosh and Guchhait [8,25],
Hembrem et al. [26], Roy et al. [23], and Chakrabortty et al. [27,28] in the surrounding of the present
research area, i.e., the extended part of Chotanagpur plateau region of Rarh Bengal in the eastern part
of India. However, until now, no research work has been carried out in the present study area through
the aforementioned ML methods used in the current research work. Therefore, we have also compared
the prediction result produced by the current research work and another established research work’s
result, which is based on other ML models, except the ML models used in this research study area
for understanding the suitable and better accuracy performances of ML algorithms. In this research,
we assessed the GESM of a sub-tropical watershed of the Gandheswaririver in West Bengal, India.

The main aim in this research study is to assess gully erosion susceptibility mapping. As we
know, the foremost step for sustainable management of land degradation through gully-induced soil
erosion is to prepare GESM in an accurate way. It is indeed necessary to map future gully erosion
prone areas in order to minimize the adverse effect of gully-induced soil erosion and for the proper
management of agricultural land, road networks, etc. Thus, to do so in this study, we have prepared
gully erosion susceptibility maps through theensemble approach of SVR-Bee model and three other
ML algorithms. Therefore, for progress in our research work, here we have chosen twenty favorable
conditioning factors for the occurrence of gullies in this region. Alongside, several statistical indices
were used for experimental analysis of the input data, i.e., several gully erosion conditioning factors
(GECFs), and the validation and accuracy assessment of the prediction result produced by ML models.
Finally, it is concluded that the main strategy in this research work is to map gully erosion susceptibility
in an optimal way through applying three stand-alone ML algorithms and the ensemble approach.
The final output result of gully erosion susceptibility maps can help planners and land management
authorities make the best use of land resources for sustainable development within this particular
basin area.
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2. Materials and Methods

2.1. Description of the Study Area

The Gandheswari river is a left-sided tributary in the upper course of the Dwarakeshwar river.
This river originates near the Santuri Community Development Block (C.D. Block) of Purulia district
of West Bengal [29]. The confluence point of the two rivers Dwarakeshwar and Gandheswari is at
Bhutshahor, Bankura district of West Bengal, India. The total length of this river is 50.3 km from
source to mouth and it covers an area of 392.69 sq. km. between latitudes 23◦13′17′′ and 23◦31′27′′ N
and longitudes 86◦53′12′′ and 87◦08′03′′ E (Figure 1). The general direction of the slope in this basin
area is towards the south-east [30]. The topography is undulating with the presence of several tiny
rivulets [23]. Geologically, this study area is in the extended part of the Chotanagpur plateau along
with the Rarh plains of Bengal [31]. Lateritic with mottled clay along with red, brown, and colluvial
soils are found in the entire basin area. The climate is a sub-tropical monsoon with an average annual
rainfall of about 1030 mm, whereby this mostly occurs in the monsoon season. The highest summer
and lowest winter temperatures are about 42 and 10◦C, respectively. The vegetation in this area is thin,
with the most common plant species being several kinds of cacti and bushes along with Palas and
Kusum hardwood trees.
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Figure 1. (a) Location of the study area (b) gully inventory map.

In addition, the river basin is a unique region in terms of different physical characteristics such
as the undulating plain of Chotanagpur plateau fringe, unconsolidated rock structure of Rajmahal
formation, and the lateritic rocks and soil structure. In the hot-dry and seasonal moist climatic region,
red lateritic soil has formed with a concentration of iron-aluminum oxides and the composition is very
hard in nature. However, when the exposed hard lateritic comes in contact with rain water during the
wet season, rocks are eroded by the head cut erosion. The overall parallel drainage systems over the
plateau fringe dissect the lateritic Rarh Bengal into several patches. Some patches have been found as
a bad land with extensive rill gully and ravine erosion. Due to the monsoonal rainfall, this region is
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facing several water-induced gully erosions, which has been reported in the literature [23,25,32,33].
In the present study area of Gandheswari river basin, a mainly elongated round head and steep
wall with V shaped gully types have been found. Therefore, the land degradation problem has been
noticed in this river basin, which affects agriculture, forestry, deformation of the land surface, etc.
The major land use types in this region are single and double agricultural land, agro-forestry, very few
patches of deciduous broadleaf forest, Shurbland, bare soil surface, and built-up land. In this area,
no such protection measurement has been taken yet for controlling gully erosion, only the plantation
of social-forestry has been adopted to control the same. Keeping in view the above fact, it has been
observed that the rate of gully-induced soil erosion is very high in this area.

2.2. Methodology

The objective of this research work was completed in the following five steps (Figure 2).Remote Sens. 2020, 11, x FOR PEER REVIEW 6 of 40 
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Figure 2. Flow chart showing the methodology adopted in this study.

a. A total of 178 (89 each for gully and non-gully) gully erosion points were used to prepare a gully
erosion inventory map. A total of 20 GECFs were used for the different GESMs.

b. The variance inflation factor (VIF) and tolerance (TOL) techniques were used for multi-collinearity
(MC) analysis.

c. The importance of several GECFs was determined using the random forest (RF) algorithm and
step-wise weight assessment ratio analysis (SWARA).

d. GESMs wereprepared based on the boosted regression tree (BRT), Bayesian additive regression
tree (BART), support vector regression (SVR), ML models and the SVR-Bee ensemble model.
All of these ML models and the ensemble approach were run in MATLAB and the ‘R’ statistical
programming package by using the respective algorithms.

e. Every model was validated using the receiver operating characteristic curve with the area
under curve (ROC-AUC), accuracy (ACC), true skill statistic (TSS), and the Kappa coefficient
index analysis.
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The methodology used in this study is described in detail as follows:
First, 178 randomly selected gully erosion points along with 20 GECFs were used to produce

different gully erosion susceptibility maps. When researchers apply any linear statistical-based
model, the multi-collinearity of the variables may decimate the accuracy of the model’s result [34].
Before applying the gully erosion susceptibility models, we checked the potential linear dependencies
among the variables to avoid multi-collinearity among variables. When the TOL value is above 0.2,
and the VIF value is below 10, there is no multi-collinearity among the variables. The GES maps in
this study area were prepared using the ML algorithms of boosted regression tree (BRT), Bayesian
additive regression tree (BART), support vector regression (SVR), and the ensemble of the SVR-Bee
model. Due to some specific advantages, we used the abovementioned four models to analyze the
GESMs. The advantage of the BRT model is that it is a non-parametric method used for measuring the
relationships among the dependent and independent variables to forecast the analysis [35]. BART is
a tree ensemble method that explains the variance of output product variables in a given dataset [20].
SVR is a supervised ML algorithm that is widely used in a complex dataset because it measures several
curved boundaries. Any single ML model will have pros and cons in terms of susceptibility mapping
and an ensemble method may potentially overcome some limitations. Therefore, we developed
an ensemble SVR model with Bee algorithm methods for this study. The Bee algorithm generally helps
solve the big data problems through modification and by calculating the fitness of the model [36].
The validation of the gully erosion susceptibility maps (GESMs) is an important step in the assessment of
gully erosion susceptibility models. Previous researchers have used the receiver operating characteristic
(ROC) curve with the area under the curve (AUC), accuracy (Acc), true skill statistic (TSS), and the
Kappa index for the quantitative validation of GESMs prepared based on the BART, BRT, SVR, and the
ensemble model [37–39]. The ROC curve is the most common technique used to quantitatively assess
the model performance and the AUC of ROC has been used to measure the diagnostic ability of the
model. Finally, all the models were validated using an ACC, ROC-AUC, TSS, and the Kappa coefficient
index analysis.

2.2.1. Gully Erosion Inventory Map (GEIM)

Geomorphologists have used hypothesis criteria using different statistical analyses and predicting
several natural hazard phenomena. In addition, this prediction is determined based on the past events,
and an associated future prediction will be estimated through a functional relationship in the given
datasets for various conditioning factors [18]. In GESM, it is very important to collect data that represent
the dependent variables to make predictions using any model. In this study, we identified gully
head-cut erosion points from Google Earth satellite imagery and intensive field surveys conducted with
GPS to prepare an accurate GEIM. In general, the GEIM is used to evaluate the relationship between
the distribution of gully head-cuts and several conditioning factors. Basically, the formation of gully
head-cuts depends on topographical, lithological, climatic, and various other factors. Consequently,
predicting the occurrence of gully head-cuts is largely dependent on the abovementioned factors.
We identified a total of 89 gully head-cuts and included them in our GEIM. Of the total number
of identified gully head-cuts, 70% (62 gully head-cut points) were selected for training the dataset,
and the remaining 30% (27 gully head-cut points) were used to test the dataset. Similarly, 89 non-gully
points were selected and divided to be used in training and testing the dataset (Figure 1). Some field
photographs of gully head-cut points are shown in Figure 3.
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2.2.2. Gully Erosion Conditioning Factors (GECFs)

The first step in predicting the GESM is to select several suitable GECFs. Basically, GECFs have been
divided into conditioning and triggering factors including environmental, topographical, geological,
hydrological, climatological factors, etc. Despite this, there is no universal regulation for selecting the
most appropriate GECFs. Therefore, we based our selection of GECFs on the geographical condition,
variations in gully head-cut occurrences, and the models used in our analysis. To fulfill the objective of
this research, we selected a total of 20 conditioning factors for GESM. These factors are the slope, aspect,
elevation, profile curvature, plan curvature, topographic wetness index (TWI), stream power index
(SPI), drainage density (DD), distance from river, rainfall, land use land cover (LULC), normalized
difference vegetation index (NDVI), soil texture, soil erodibility, geology, geomorphology, bare soil
index (BSI), ferrous mineral index (FMI), iron oxide, and normalized difference water index (NDWI)
(Figure 4a–t). Different data sources were used to obtain these conditioning factors. We used the
ALOSPALSAR DEM with a 12.5 m resolution, which was freely available on the Alaska Satellite
Facility (ASF) website, to prepare the topographic and hydrological factors. We also used Sentinel
2A satellite images with a 10 m resolution to prepare the LULC map. Furthermore, we employed
a Landsat 8 OLI image, a topographical map at a scale of 1:50,000 from the Survey of India (SOI),
and a geological map at a scale of 1:2,500,000 from the Geological Survey of India (GSI). Table 1
shows details of the several data sources used in this study. We divided the conditioning factors into
five categories by using Jenk’s natural break methods in the ArcGIS platform. The reason behind
the classification of each conditioning factor into five categories is described as follows. During the
time of gully erosion susceptibility modelling, we used the training gully and non-gully points for
extraction of respective point values from each of the causative factor of gully erosion (such as slope,
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TWI, and NDVI). Thus, each of the gully and non-gully points contains different respective values in
every gully conditioning factor. Therefore, to understand the spatial distribution of values in gully
causative factors, we have divided several factors into five categories to indicate the five data ranges
such as very high, high, moderate, low, and very low zones, since the stretched range (in the ArcGIS
platform) is only given the highest and lowest value, The established research studies have presented
the factors in a categorized way, such as five, four, and three [40,41]. The GECFs used in this research
are discussed in the following section.Remote Sens. 2020, 11, x FOR PEER REVIEW 13 of 40 
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Figure 4. Gully erosion conditioning factors used in this study: (a) Slope, (b) aspect, (c) elevation,
(d) profile curvature, (e) plan curvature, (f) topographic wetness index (TWI), (g) stream power index
(SPI), (h) drainage density, (i) distance to river, (j) rainfall, (k) LULC, (l) normalized difference vegetation
index (NDVI), (m) soil texture, (n) soil erodibility, (o) geology, (p) geomorphology, (q) bare soil index
(BSI), (r) ferrous minerals index (FMI), (s) iron oxide, (t) normalized difference water index (NDWI).

Table 1. Sources of data used in this study.

Sl. No. GECFs Source Time Spatial
Resolution/Scale

1 Slope ALOSPALSAR DEM 2011 12.5 m
2 Aspect ALOSPALSAR DEM 2011 12.5 m
3 Elevation ALOSPALSAR DEM 2011 12.5 m
4 Profile Curvature ALOSPALSAR DEM 2011 12.5 m
5 Plan Curvature ALOSPALSAR DEM 2011 12.5 m
6 TWI ALOSPALSAR DEM 2011 12.5 m
7 SPI ALOSPALSAR DEM 2011 12.5 m
8 Drainage Density ALOSPALSAR DEM 2011 12.5 m
9 Distance to River ALOSPALSAR DEM 2011 12.5 m

10 Rainfall India Meteorological Department (IMD) January to December, 2019 -
11 LULC Sentinel 2A satellite image October, 2019 10 m
12 NDVI Landsat 8 OLI satellite image September, 2019 30 m

13 Soil Texture National Bureau of Soil Survey and
land use planning (NBSS & LUP) 1991 1:500,000

14 Soil Erodibility National Bureau of Soil Survey and
land use planning (NBSS & LUP) 1991 1:500,000

15 Geology Geological Survey of India (GSI) 1995 1:2,500,000
16 Geomorphology Geological Survey of India (GSI) 1995 1:2,500,000
17 BSI Landsat 8 OLI satellite image September, 2019 30 m
18 FMI Landsat 8 OLI satellite image September, 2019 30 m
19 Iron Oxide Landsat 8 OLI satellite image September, 2019 30 m
20 NDWI Landsat 8 OLI satellite image September, 2019 30 m

Slope

The slope of an area is highly affected by the runoff pattern, infiltration rate, drainage pattern,
and drainage density, which ultimately affects the erosional activities [42]. In areas with a steep slope,
the infiltration rate is low, and the runoff is high, which regulates the initiation of gully formation.
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Gently sloping areas are highly susceptible to flow accumulation and gully development [43]. It is very
well known that gullies develop specifically in the gently sloping areas of a river catchment. The slope
map was derived from the DEM and divided into five categories, i.e., 0 to 1.01, 1.01 to 3.38, 3.38 to 5.75,
5.75 to 15.24 and 15.24 to 43.18 degree (Figure 4a).

Aspect

Different parameters such as the duration of sunlight, vegetation cover and its distribution,
evapotranspiration and moisture retention capacity largely depend on the slope aspect of the area.
Therefore, this factor indirectly affects gully erosion processes. The structural configuration of an area
is highly dependable on the slope aspect [44]. The aspect map in this study area was classified into
nine categories (Figure 4b).

Elevation

Elevation is an important topographic attribute, and it controls the process of gully erosion along
with the spatial distribution of gully occurrences (Conoscenti et al., 2014). The density and vegetation
cover types, as well as precipitation, are affected by the elevation. The elevation map we obtained
from the DEM was classified into five categories, i.e., 11 to 55, 55 to 80, 80 to 141, 141 to 246, and 246 to
383 m (Figure 4c).

Profile Curvature

The profile curvature is parallel to the direction of the highest slope. It affects the flow pattern
on the surface through the acceleration or deceleration rate. A negative value indicates a convex
surface, while a positive value indicates a concave surface within a particular cell. A value of zero
indicates a horizontal surface. The profile curvature map in this study is categorized into five categories,
i.e., −3.32 to −0.90, −0.90 to −0.34, −0.34 to 0.28, 0.28 to 0.84, and 0.84 to 2.61 (Figure 4d).

Plan Curvature

The plan curvature is the intersection of a horizontal plane with the surface plane [45]. It is useful
for analyzing the land morphology. In a down slope area, the converging and diverging flow patterns
of water are affected by the plan curvature and impact the soil erosion processes. The plan curvature
map is classified into five categories, i.e., −3.18 to −0.91, −0.91 to −0.33, −0.33 to 0.26, 0.26 to 0.86,
and 0.86 to 2.96 (Figure 4e).

Topographic Wetness Index (TWI)

The TWI is a water-related topographic factor which specifically quantifies the hydrological process
affecting the terrain [46]. The TWI is used to measure the runoff velocity, discharge rate, transportation
capacity etc. i.e., in a nutshell, it is used to assess the erosive power of runoff. The following equation
is used to measure the TWI [47].

TWI = Ln(e)
(

As

tanβ

)
(1)

where, As is the catchment area in m2 and β is the gradient of the slope in radians. The value of TWI
ranges from 6.94 to 27.78 and is classified into five classes, i.e., 6.94 to 10.54, 10.54 to 12.01. 12.01 to
14.05, 14.05 to 17.24 and 17.24 to 27.78 (Figure 4f)
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Stream Power Index (SPI)

The SPI is used to measure the erosional capacity of a stream. Therefore, it is an important factor
for GESM. A high SPI value indicates a high erosional capacity and vice-versa [48]. The SPI value were
calculated by using the following equation.

SPI = As ∗ tanβ (2)

where As represents the upslope area, and tanβ represents the slope angle. The SPI map was classified
into the classes of 0.34 to 4.22, 4.22 to 5.67, 5.67 to 7.57, 7.57 to 10.69 and 10.69 to 19.75 (Figure 4g).

Drainage Density (DD)

A higher DD represents a highersurface runoff and associated erosional capacity, and vice-versa.
The DD is the total length of stream in a particular area. Many factors contribute to the development of
DD, including geological structure, soil texture, vegetation coverage, slope etc. The DD was calculated
as follows.

DD =

∑n
i=1 Si

a
(3)

where,
∑n

i=1 Si is the total length of a stream in kilometers and a is total area of the basin in sq. km.
The DD value map of the study area was classified into the classes of 0 to 0.66, 0.66 to 1.87, 1.87 to 3.09,
3.09 to 4.35 and 4.35 to 6.73 (km/km2) (Figure 4h).

Distance from River

The drainage system of a watershed is highly correlated with gully head-cut erosion and its retreat.
The formation and on-going erosion of a gully head-cut is significantly related to the distance from the
river and positively correlated with the drainage system [49]. The Euclidean distance buffering was
used to prepare the distance from river map in GIS. The distance from river map is shown in Figure 4i
and classified as 0 to 446.36, 446.36 to 937.36, 937.36 to1473, 1473 to 2172.30, 2172.30 to 3794.09 m.

Rainfall

Rainfall is one of the most important factors for GESM. In general, high intensity rainfall and
longer rainfall periods cause more intense gully erosion, whereas light rainfall or short duration has
less of an effect. After a long dry period, a short but high-intensity rainfall may have high erosive power
and facilitate gully formation and erosion. In this study area, we applied the inverse distance weighted
(IDW) method to prepare the rainfall map. The rainfall map was classified into the following five
categories: 515.62 to 519.48, 519.48 to 522.17, 522.17 to 526.28, 526.28 to 531.32 and 531.32 to 537.03 mm
(Figure 4j).

Land Use Land Cover (LULC)

The land use of an area significantly influences on the slope stability and gully formation [50].
Basically, an area covered with dense vegetation is less prone to erosion, whereas an area of barren
or sparsely vegetated land is more prone to gully formation and soil erosion. Therefore, LULC is
a significant factor in GESM. We used Sentinel 2A satellite data along with a topographic map to
prepare the LULC map and determine five LULC types, i.e., crop land, built-up land, shrubland,
water bodies and deciduous broadleaf forest (Figure 4k).

Normalized Difference Vegetation Index (NDVI)

The NDVI is widely used to detect the spatio-temporal variation of vegetation cover [51].
It is a measurement of the surface reflectance along with vegetation growth and biomass [52].
Therefore, to understand the vegetation cover and its impact on gully erosion, this factor has been
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widely used in GESM. The vegetation cover influences erosion through the trees root system, which holds
the surrounding soil together. Landsat 8 OLI satellite data was used to calculate the NDVI map using
the following equation.

NDVI =
ρNIR − ρR

ρNIR + ρR
(4)

where, ρNIR is the reflectance of the near infrared band and ρR is the reflectance of the red band.
The NDVI map of the present study area was classified into five classes, i.e., −0.10 to 0.05, 0.05 to 0.09,
0.09 to 0.12, 0.12 to 0.15 and 0.15 to 0.31 (Figure 4l).

Soil Texture

The soil texture of an area plays a vital role on gully erosion as it determines the rate of infiltration,
surface and sub-surface runoff, and soil resistance [53]. The soil textures have been used to determine
the tunnel erosion or piping, which ultimately form into gullies due to the subsidence of the roofs
covering the tunnel. We used the soil texture factor for GESM and has previously also been widely
used by several researchers. We classified the study area into the five soil texture units of urban area,
gravelly loam, fine loamy sandy, fine loamy, fine clay (Figure 4m).

Soil Erodibility

Soil erodibility largely depends on the soil texture. A sandy, loamy soil texture is more prone to
erodibility than gravelly clay loam, for example. Therefore, soil erodibility significantly influences
gully erosion, which is why we chose it as a conditioning factor. The soil erodibility map for this area
was classified into the classes of 0.00 to 0.13, 0.13 to –0.14, 0.14 to 0.20, 0.20 to 0.32 and 0.32 to 0.38
(Figure 4n).

Geology

The geological structure of an area affects the occurrence of gully erosion. The intensity of
weathering largely depends on the geological structures, and it influences the erosional processes.
Therefore, it is important to know which rock type is exposed or close to the earth’s surface and
potentially influencing gully erosion. In this study area, we found four rock types, namely unclassified
metamorphics, the Chotanagpur gneissic complex, fluvial sediments, and the gabbro and anorthosite
complex (Figure 4o).

Geomorphology

Geomorphology is the physical features of the earth’s surface and correlates with the geological
structures of that area. The erosional pattern of an area is largely dependent on the geomorphological
features. Therefore, in this study, we used geomorphology as an important factor for GESM. Seven types
of geomorphological features were found on the ISRO’s Geoportal Bhuvan website, and these are river,
ponds, water bodies, older flood plain, active flood plain, pediment pediplain complex and dissected
denudational hills and valleys (Figure 4p).

Bare Soil Index (BSI)

The BSI was introduced to differentiate between the bare soil surface from vegetated land
area [54]. This index has been widely used to understand the vegetation cover and canopy density
of an area [55,56]. We used the BSI as a GECF to evaluate the GESM for better prediction analysis.
The following equation was used to obtain the BSI.

BI =
(ρSWIR + ρR) − (ρNIR + ρB)

(ρSWIR + ρR) + (ρNIR + ρB)
(5)
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where, ρSWIR represents the reflectance of the short wave infrared band, ρR represents the reflectance of
the red band, ρNIR represents the reflectance of the near infrared band and ρB represents the reflectance
of the blue band. In our study area, the BSI map value ranges from −1016 to 897 and was classified
into five categories (Figure 4q).

Ferrous Minerals Index (FMI)

Ferrous minerals are iron-bearing materials that originate from granite rocks through weathering
processes. Basically, this mineral is commonly found in the lateritic soil. In this study, we used FMI as
an important GECF for predicting gully susceptibility mapping. The following equation was used to
calculate the FMI.

FMI =
SWIR
NIR

(6)

where SWIR is the shortwave infrared band, and NIR is the near infrared band of the electromagnetic
spectrum. The FMI map in this study area was classified into the five categories of 0.95 to 1.11, 1.11 to
1.138, 1.138 to 1.16, 1.16 to 1.18 and 1.18 to 1.28 (Figure 4r).

Iron Oxide

Iron oxide is known as ferric oxide, and it is an inorganic compound. Iron oxide is formed
through weathering of granitic rocks. Hard outcrops made up of iron minerals are found in lateritic
soil. This material indirectly influences erosion through the weathering process. Areas with larger
quantities of iron oxide are more susceptible to erosion, and vice-versa. The iron oxide levels in the soil
were calculated using the following equation.

Iron oxide =
Red band
Blue band

(7)

The amount of iron oxide in the soil was classified into the five groups of 0.77 to 1.14, 1.14 to 1.23,
1.23 to 1.29, 1.29 to 1.38 and 1.38 to 2.04 (Figure 4s).

Normalized Difference Water Index (NDWI)

The NDWI is used to determine the plant water content. It is essential for understanding the
changes in water content and vegetation canopies [57]. In this study, we used the NDWI as a GECF to
identify the vegetation health because the state of vegetation health influences the vulnerability to
erosion in an area. The NDWI was calculated as follows [57].

NDWI =
ρNIR − ρSWIR

ρNIR + ρSWIR
(8)

where ρNIR represents the reflectance of the near infrared band and ρSWIR represents the reflectance of
the short wave infrared band. The NDWI map values range from −0.41 to 0.43 (Figure 4t).

2.2.3. Multi-Collinearity (MC) Analysis

The linear relationship between two or more variables in a dataset is known as
multi-collinearity [58]. The multi-collinearity analysis is based on the linear dependency among
several variables. In general, the MC analysis is carried out when two or more independent variables
in a regression model are correlated. The MC analysis indicates a lack of orthogonality among the
variables in a dataset. Orthogonal means that there is no linear relationship between the variables [59].
It is well known that even a small MC can create big problems in the dataset and, therefore, prediction
results may become inaccurate. Several conditioning factors were used in the GESM. Therefore, it is
necessary to identify the perfect relationship among the variables through the MC test. In general,
MC occurs when there is a high correlation among the variables in a dataset, in which case it is
necessary to remove those particular variables, otherwise, the prediction accuracy will be reduced.
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In this study, the MC test was carried out using the tolerances (TOL) and variance inflation factors
(VIF) techniques. These two techniques were calculated as follows:

TOL = 1−R2
j (9)

VIF =
1

TOL
(10)

where R2
j indicates the regression value of j on added variables in a given dataset. The threshold value

of MC occurrence in a dataset is when VIF is >5 and TOL is <0.1.

2.2.4. Importance of GECFs by Random Forest (RF) and SWARA Weight

Random Forest (RF)

The RF is a non-parametric multivariate statistical method. It is a popular ML algorithm which is
defined as an ensemble of binary decision trees [60]. This algorithm was developed by Breiman [61] in
2001. Decision trees are incorporated into the RF algorithm by a random selection from the training
dataset. During the formation of decision trees, the selection of features is important in the RF
algorithm because the RF always tries to choose the most significant features [62]. The decision trees
were produced independently during the training phase using the bagging approach [61]. In general,
the bagging approach indicates that one sample got chances for more than one time, and others may not
for at least one time [63]. The basic function of the RF algorithm is a random vector, i.e., ik, here GECF,
is created separately and distributed among all the trees. Thereafter, using the training dataset
every tree is grown. Finally, the tree structures of the random vector (ik) classifiers represented by
h(X, ik), k = 1, 2, . . . n are combined for an input vector, i.e., X [64]. In general, the number of decision
trees (Ntree) and number of variables (Mtry) are required parameters for RF classifiers [63]. The RF
algorithm and its generalization error can be expressed as follows:

GE = Px,y(mg(x, y) < 0) (11)

mg(x, y) = avkI(hk(x) = y) −max j,yavkI(hk(x) = j) (12)

where x and y represent GECFs that specify the probability over the x and y space, mg indicates the
marginal function, i.e., the conditional probabilities of the model, and I(∗) represents the indicator
function, i.e., described as a set X that indicates the membership of an element in a subset N of X,
where the value of 1 indicates all elements of X in N and the value of 0 indicates all elements of X not
in N [61]. Furthermore, two types of errors have been calculated in the RF model: The mean decrease
in accuracy (MDA) and mean decrease in gini (MDG). The MDA is obtained from the calculation
of the out-of-bag (OOB) error, conversely, the MDG is the measurement of the contribution of each
variable to the homogeneity of the nodes and leaves. Both MDA and MDG have been used widely in
many fields for ranking the variables’ importance and the selection of variables [46,65]. In this study,
the average of MDA and MDG has been used to measure the relative importance of gully causative
factors, where the OOB error obtained is now 12% so that the model is also 88% accurate to predict the
relative important variables.

Step-Wise Weight Assessment Ratio Analysis (SWARA)

Weight assessment is an important technique often applied to solving many problems in different
fields of the decision analysis study. In the past few decades, several weight assessment techniques
have been developed such as the analytical hierarchy process (AHP) [66], analytical network process
(ANP) [67], entropy [68], etc. In 2010, a new multi-criteria decision making method, called SWARA,
was introduced. It is a step-by-step weight assessment procedure. In the SWARA approach, an expert
opinion is much more important for determining the weights in each criterion. Here, an expert opinion
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was used to select criteria and rank them based on the experts’ inherent knowledge, experience,
information, and understanding. Thus, the most important criterion was given the highest rank,
and the least important criterion was given the lowest rank [69]. The weighting parameters were
evaluated using the SWARA method [70]. The SWARA method was carried out in the following
steps [71,72]:

i. Ordering the criteria based on expert opinion.
ii. Endow with relative importance among the criteria. An expert gives the importance of the jth

criteria with respect to the previous ( j− 1) criteria according to the average value (s j) ratio.
iii. Determining the coefficient k j:

k j =

{
1 j = 1

s j + 1 j > 1
(13)

iv. Computation of the recalculated weight w j:

w j =

 1 j = 1
x j−1
k j

j > 1 (14)

v. Computation of the final weights of the criteria:

q j =
w j∑n

k=1 w j
(15)

2.2.5. Gully Erosion Susceptibility Modelling (GESM)

Boosted Regression Tree (BRT)

The BRT is a ML algorithm that makes use of both statistical and data mining techniques. The main
objective of this model is to improve the effectiveness by combining several fitting models [35].
Two different algorithms are used in this model, namely boosting and regression, whereby boosting
is used to combine several fitting models, and regression is related to the algorithm of classification
and regression tree (CART) class [73]. Boosting is a very dominant ML method for improving the
model accuracy, and regression is used to categorize the classification system based on the decision
trees group [74,75]. The primary disadvantage of using a single decision tree is that it categorizes
the training dataset based on a single tree. Therefore, in this case, there is a probability to loss of
information and a very weedy accuracy assessment in the result. Thus, boosting techniques were
applied in the BRT model to remove the weakness of the single tree model [76]. Three parameters
namely the number of boosting tree iterations, the tree depth interaction, and the shrinkage were used
to run the BRT algorithm model [77]. The shrinkage parameter is needed to control the complexity of
the model. The tree depth interaction in a BRT model is determined in the course of contributing the
trees [78]. The algorithm used in the BRT model can be explained in the following way: BRT is based
on prediction variables of X = {x1, . . . . . . xn} and the variable of response by y, in which the training
sample of

{
yi, Xi

}
, i = 1, . . .N of the known y and X values. By analyzing this, a function of F ∗ (X) is

determined that basically maps X to y. According to Friedman [79], of all the values of (y, X), the loss
function may be minimized by using the following equation:

F∗(X) = ψ(y, F(X)) (16)

The Gradient boosting approximates F(X) may be calculated as follows:

F(X) =
M∑

m=0

Fm(X) =
M∑

m=0

βmg(X;αm) (17)
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where, g(X;αm) represents the regression tree of a particular node, αm represents the tree parameters,
and βm represents the coefficients.

Thereafter, the BRT model can be run using the following equation:

F
(
X; [βmαm]

m0
)
=

M∑
m=0

βmh(X; am) (18)

where h(x; m) represents the function of a classification with α parameters along with x variables,
m represents several stages of the model of variables, and βm represents the coefficient in the stage of
m. The BRT model of GESM has been developed using the gbm package in the R statistical software.
The gbm.step function was used to fit the model, and the model was simplified by the gbm.simplify
function reducing the number of explanatory variables. The BRT also depends on the number of
regression trees generated, as in the RF process. Finally, the gully erosion probability was calculated
for every pixel of the study area and then the database was formatted to make the map in the Arc
GIS environment.

Bayesian Additive Regression Tree (BART)

The framework of the BART model is a nonparametric statistical method that determines the
covariates relationship in a dataset. In recent times, this model has performed admirably in the
predictive analysis with both continuous and binary datasets. In general, the tree-based ensemble
method is used in the BART model, which is basically a Bayesian version of ML techniques [80].
The tree-based ensemble method has an advantage in regression analysis, which isthe fact that this
method can fit the nonlinear functional relationship. Therefore, in addition to the aforementioned
advantage, the BART model also includes an uncertainty measurement in the prediction results.
This model also surpasses several ML algorithms such as random forest, boosting, neural nets, lasso,
etc. In this research, we used the BART model to evaluate the reasonable predictive performance
along with its uncertainty measurement through prediction intervals [81]. Response variables can
be predicted in the BART model by using the Bayesian classification and regression tree (CART)
methods [82]. This model also has the capacity to deal with a nonlinear relationship in a variable
which is responsible for that model. Furthermore, when irrelevant regression variables are added to
this model, it also maintains an excellent predictive result [81]. The following equation can be used to
express the BART model:

Yk =
m∑

j=1

g(xk; T j, M j) + εk (19)

where, Yk represent the tree ensemble model of variables Y, g
(
xk; T j, M j

)
is the decision tree of CART,

T j is the decision tree j = 1 . . . . . . n (n = sum total number of trees in this model), M j is the parameter
of the terminal node of T j, and εk ∼ N

(
0, σ2

)
in which, σ2 is the residual variance.

The Bayesian model is formed by prior distribution in a dataset. Chipman et al. [82] used the
following prior distribution to form the Bayesian model:

p(M1, . . . . . . , Mn, T1, . . . . . . , Tn, σ) ∝

∏
j

∏
i

p
(
µi j

∣∣∣T j
)
p(T j)

p(σ) (20)

where, µi j indicates the parameters of the terminal node of a known tree T j and their prior distribution
is represented as follows:

µi j
∣∣∣T j ∼ N

(
0, σ2

0

)
(21)

where, σ0 = 0.5
e
√

m
and e indicates a hyper-parameter i.e., marginalization of several terminal

node parameters.
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The combination of Equations (19) and (20) can be used to obtain the posterior distribution of the
BART model,

p(T, M, σ|X, Y) ∝ p(Y|X, T, M, σ) ×

∏
j

∏
i

p
(
µi j

∣∣∣T j
)
p(T j)

p(σ) (22)

where p(Y|X, T, M, σ) indicates the likelihood for the sum of trees and T indicates every tree in

a given dataset such as T = (T1, . . . ., Tn). This is obtained by calculating p
(
T j

∣∣∣R j, σ
)
αp

(
T j

)
p
(
R j

)∣∣∣∣T j, σ
)
,

for accepting and rejecting a new tree from the whole tree system and creating a new set of terminal
node parameters for the new tree by applying p

(
M j

∣∣∣T j, R j, σ
)
.

Therefore, the concluding algorithm for the BART model can be described as follows:

p
(
R j

∣∣∣T j, σ−2
)
=

b j∏
i=1

∫ +∞

−∞

p(Ri j|µi j, σ−2) × p
(
µi j

)
p
(
σ−2

)
dµi j. (23)

where R j indicates a vector of partial residuals in this model excluding tree j. In the current work,
with the aid of the R programme and R packages, the Bayesian additive regression trees were
constructed. This typically results in a complicated decision tree that needs to be “pruned” to express
only the most relevant data. The gully and non-gully data have been divided as nominal data, such as
1 and 0, and formed the regression tree for each raster pixel. Thus, the binary predictor of BART was
converted into GESM in the Arc GIS environment.

Support Vector Regression (SVR)

The SVR model is a supervised ML algorithm primarily developed by Vapnik et al. [83],
and it is widely used by several research groups throughout the world. The SVR algorithm is
an adaptation of the newly developed ML algorithm based on support vector machines classification [84].
In general, this model is used to develop structure and control complex functions in a system.
Additionally, in a training dataset, the SVR model can maximize the nominal margin through the
optimal regression task [85]. The SVR model is generally applied when the dataset is too complex,
and this algorithm has the capacity to solve this problem by creating numerous curved margins [86].
In the SVR model, the relationship between input and output variables can be recognized through the
structural risk minimization (SRM) norm [87]. Therefore, the calculation of SRM is necessary, and it is
done using the following Equations (13) and (14):

y = k(z) = v∅(z) + c (24)

where the input data is represented by z = (z1, z2, . . . zn) and the resultant value is represented by
yb ∈ Rl. In addition, v ∈ Rl indicates the weight factor, c ∈ Rl indicates the constant number of the
mathematical function, and l represents the dataset size in the model. ∅(z) indicates the non-linear
function to map the input dataset. The following equation can be used to define v and c, and was
developed based on the SRM principles:

Minimize :

1
2
||v||2 + P

1∑
b=1

(ζb + ζ∗b)


Subject to :


yb − (v∅(zb) + cb) ≤ ε+ ζb
(v∅(zb) + cb) − yb ≤ ε+ ζ∗b

ζb, ζ∗b ≥ 0
(25)
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where the penalty factor is P, which balances the model flatness and its risk, ζb, ζ∗b indicates
slack variables within the model, and ε represents the optimized performance of the model [88].
The Lagrangian function can be used to solve the optimization problem using the following equation:

L
(
v, c, ζb, ζ∗b, βb, β∗b, δb, δ∗b

)
=

1
2
|

∣∣∣∣∣∣∣v|v|2 + P
l∑

b=1

(ζb + ζ∗b

−

l∑
b=1

βb(ζb + ε− yb + v∅(zbz) + c)

−

l∑
b=1

β∗b
(
ζ∗b + ε+ yb − v∅(zbz) − c

)
−

l∑
b=1

(δbζb

+ζ∗bδ
∗

b

)

(26)

In which the Lagrangian multipliers are represented by δb, δ∗b, βb and β∗b
Thereafter, SVR can be calculated by:

K(z) =
l∑

b=1

(βb − β
∗

b)m(z, zb) + c (27)

where the kernel function may be expressed by m(z, zb) =
〈
φ(z), φ(zb)

〉
. SVR models require that

a vector of real numbers can represent any environmental parameter. The GECFs were derived and
converted by GIS into a cell raster. To transfer the grid raster into the data format, an interface program
has been developed by LibSVM. The binary classification has only provided the outputs 0 and 1, so we
selected the primitive outputs of the core programme for Gaussian distribution.

Bee Algorithm (BA)

The BA was developed to understand the foraging behavior of honeybees, and it is an optimization
algorithm generally used to determine the optimal solution [89,90]. The BA considers three kinds
of bees, namely the employed bees, onlooker bees, and scout bees. The BA algorithm is completed
in five phases, i.e., the phases of initialization, employed bee, onlooker bee, scout bee, and, finally,
memorization [91]. The food source information such as the place and amount of food is carried by
employed bees to onlooker bees. After that, onlooker bees select the attractive food sources based on
nectar contents and fitness, which they calculate. On the other side, scout bees seek new food sources
and search several areas. In a nutshell, it can be said that the role of employed and onlooker bees is
exploiting while the role of scout bees is exploring [91]. In BA, the possible solution of a problem can
be solved through searching for food sources. Here, food sources are D-dimensional vectors in which
D represents a number of variables. The fitness of the model is determined by the amount of nectar at
a given food source. The following equation is used to calculate the fitness and its limitation:

f =
min
θi

(100
V∗1 −V1

V∗1
)

2

+
S∑

s=2

1
hs
(50

Vhs

V1
)

2
; i = 1, 2, . . . . . . , S (28)

Subject to,
0 ≤ θi ≤

π
2

(29)

where V∗1 represents the fundamental harmonic, S represents switching the angles number, and hs

indicates the Sth harmonic variables at the three-phase multilevel output.
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Ensemble of SVR and Bee Algorithm

Multiple single models that may be statistical or machine learning have been merged to develop
the overall performance, which is known as theensemble approach. In machine learning, the ensemble
approach has the capability to improve the prediction accuracy than any single stand-alone model.
Thus, keeping in view the advantages of the ensemble approach, it has been widely used for
a comprehensive analysis of several hazard-related problems. Several established research works
have been used in various ensemble approaches for gully erosion studies with a high prediction
accuracy [37,92]. Therefore, in this study, we have also applied the ensemble approach of SVR and
the Bee algorithm. Many types of kernel functions were used in the SVR model. In this ensemble
model, the Bee algorithm functions have been used instead of the primary kernel function with the
SVR model. The ensemble approach in this study was carried out in the ‘R’ statistical programming
package, which is freely available and is the most popular software. This ensemble approach is more
optimal than the stand-alone machine learning algorithm used in this study for GESM.

2.2.6. Validation and Accuracy Assessment

We carried out a validation and accuracy assessment of several predictive outcomes of the ML
models used in this study using the accuracy (ACC) assessment, receiver operating characteristic
(ROC) area with the under the curve (AUC), true skill statistic (TSS), and the Kappa coefficient index
analysis. All these validation techniques are described in the following section.

The ACC assessment is used to estimate the number of pixels of hazards and non-hazards
in an area, in our study, it is used to determine the gully head-cut and non-gully head-cut pixels.
The following four indices of true positive (TP), true negative (TN), false positive (FP), and false
negative (FN) were used to assess the ACC [93]. Among the aforementioned four indices, TP and FP
correctly represented the gully head-cut and non-gully head-cut pixels, while TN and FN incorrectly
represented the gully head-cut and non-gully head-cut pixels [94]. The ACC result can be calculated
using the equation:

ACC =
TP + TN

TP + TN + FP + FN
(30)

The success of a model, be it a statistical or ML model, can be predicted through the ROC-AUC
analysis as it estimates the occurrence and non-occurrence of gully head-cuts on an X and Y axis [93,95],
whereby the X axis signifies the sensitivity of the true positive rate (TPR) and the Y axis signifies
1-specificity of the false positive rate (FPR). The sensitivity and 1-specificity were correctly classified as
gully head-cuts and non-gully head-cuts susceptibility zones. In a ROC-AUC analysis, training and
validation datasets were used to verify the model goodness and prediction ability, respectively [96].
The lower and higher values of a ROC-AUC analysis are 0.5 and 1, whereby the lower (0.5) value
indicates poor performance and the higher (1) value indicates a very good performance of the model.
The ROC-AUC can be calculated by:

TPR =
TP

TP + FN
(31)

FPR =
TN

FP + TN
(32)

AUC =
(
∑

TP +
∑

TN)

(P + N)
(33)

where P and N represent the presence and absence of gully head-cuts, respectively.
TSS is a statistical threshold dependent assessment matrix [97]. This validation method is based

on the equal proportions of the events and non-events phenomenon in a validation dataset. The value
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of TSS ranges from +1 to −1, whereby +1 represents a good performance of the model and a value of
less than zero indicates a poor performance of the model. TSS was estimated by:

TSS = TPR− FPR (34)

The reliability of several ML models used in GESM was validated through the Kappa coefficient
index. When the Kappa value is close to −1, then the model is unreliable, and if the Kappa value is close
to +1, then the model is reliable. In this model, the relationship between the estimated and observed
values is poor when the Kappa value is <0 [98]. The overall Kappa value ranges can be divided
into the following five groups: Slight (0–0.2), fair (0.2–0.4), moderate (0.4–0.6), substantial (0.6–0.8),
and conditions (0.8–1) [99]. The following equation was used to calculate the Kappa coefficient index:

Kappa =
Pa − Pexp

1− Pexp
(35)

Pa =
TP + TN

TP + TN + FN + FP
(36)

Pexp =
(TP + FN)(TP + FP) + (FP + TN)(FN + TN)√

(TP + TN + FN + FP)
(37)

3. Results

3.1. Multi-Collinearity Analysis

To stay within the VIF and TOL limit, the 20 gully causative factors that showed no MC were
selected and the three variables (distance to road, topographic ruggedness index, and distance from
fault) that had co-linearity problems were removed. The selected variables and their multi-collinearity
results are shown in Table 2. The ranges of the TOL of the selected variables are 0.244 to 0.886, and the
maximum and minimum VIF are 4.16 and 1.12, which indicate no multi-collinearity between the
conditioning factors of gully erosion.

Table 2. VIF and TOL of the Gully causative factors.

Row Variable Tolerance VIF

1 Slope 0.735 1.3601633
2 Aspect 0.261 3.8378052
3 Elevation 0.240 4.1678048
4 Profile Curvature 0.553 1.8092101
5 Plan Curvature 0.447 2.2355713
6 TWI 0.277 3.6039329
7 SPI 0.383 2.6086181
8 Drainage Density 0.407 2.4592634
9 Distance to River 0.244 4.0997097

10 Rainfall 0.375 2.6667942
11 LULC 0.886 1.1289734
12 NDVI 0.372 2.6892045
13 Soil Texture 0.266 3.7618335
14 Soil Erodibility 0.859 1.1639245
15 Geology 0.769 1.3011402
16 Geomorphology 0.621 1.6098024
17 BSI 0.287 3.4843206
18 FMI 0.781 1.2803682
19 Iron Oxide 0.353 2.8344049
20 NDWI 0.368 2.7173913
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3.2. Exploratory Data Analysis

A total of 20 gully formation variables were scrutinized for this gully erosion susceptibility
modelling. Each variable was filtered by the multi-collinearity analysis. Figure 5 presents the
association between the training dataset (gully and non-gully data) and each variable. The slope mainly
varies between 0 and 43 degrees in the Gandheswari watershed, but the gully locations are mainly
located in the under 5-degree slope areas. The north, northeast, east, and southeast slope direction
are the most prone to gully erosion. There is a significant effect of the topographic elevation on gully
erosion, whereby the moderate elevation of 11 to 141 m was found to have the highest concentration of
gullies. The flat profile curvature with low convex and concave (0 to 0.8 and −0.8) slope areas is also
associated with gully locations. In terms of the plan curvature, about 50% of the training gully locations
belong to the flat to slightly convex or concave plan curvature (0 to 1.28 and −1.28). Although the
TWI ranges from 7 to 28, 90% of the gully locations lie within the TWI range of 9 to 18. The low to
medium (2 to 10) SPI is associated with most of the gully locations. The 48 training gully locations
are located in the very low drainage density (0 to 1 km2) regions, and the rest of the gullies fall into
the 1 to 4 sq. km drainage densities. Most of the gullies are found near the river, and the gullies
slowly decrease with the increasing distance to the drainages. Being a small watershed, the variation
of rainfall is a minute and gullies are found in the different rainfall ranges, but a low rainfall is mostly
associated with gully locations. The NDVI value of 0.06 to 0.17 is found at about 80% of the gully
locations, which means that the sparse vegetation areas are strongly associated with gully erosion.
The moderate iron oxide (1.2 to 1.3), FMI (1.10 to 1.23), NDWI (0.06 to 0.24), and BSI (−5 to 9) areas of
the watershed were found to contain most of the gullies. The severe soil erodibility (0.24 to 0.39) areas
have most of the gullies. The qualitative variables of gully erosion are geology, geomorphology, LULC,
and soil texture. The Gandheswari watershed is mainly situated on the geological formation of the
Chotanagpur gneissic complex, and all the gullies were found in this formation. Ninety-six percent of
the gullies were found in the geomorphological unit of the pediment pediplain complex. In addition,
the cropland and the gravelly loam soil textural class are associated with most of the gully locations.
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3.3. Spatial Mapping of Gully Erosion Susceptibility

Gully erosion susceptibility maps were created by applying the machine learning and the ensemble
models for the Gandheswari watershed. The gully erosion susceptibility maps from all the mentioned
models are presented in Figure 5. The maps have been divided into five different susceptibility zones
using the natural break methods, and the same symbol is used for each zone of maps. These are
veryhigh, high, medium, low, and verylow. All the models have shown consistency between the
different susceptibility zones in the four models. The coverage of the very high, high, medium,
low, and very low gully erosion susceptibility areas of the BRT model are 21.37, 19.95, 19.79, 19.50,
and 19.39% (Figures 6a and 7). The coverage of the very high, high, medium, low, and very low gully
erosion susceptibility areas in the BART model are 19.82, 21.50, 19.67, 19.54, and 19.46% (Figures 6b
and 7). The BRT and BART model showed more or less the same areal coverage of the gully erosion
susceptibility zones. In the case of the SVR model, the coverage for very high, high, medium, low,
and very low susceptibility areas are 9.21, 22.19, 30.03, 26.44, and 12.13%, respectively (Figures 5c and
7). The maximum portion of the gully erosion susceptibility area are occupied by the medium and
high zone, while the very low and very high zones are occupied by the small portion of the study area.
In the ensemble model, the coverage of the very low, low, medium, high, and very high gully erosion
susceptibility areas is 13.70, 27.21, 28.93, 21.14, and 9.02%, respectively (Figures 6d and 7). In addition,
the maximum portion of the study area is occupied by the low, medium, and high susceptible zones.
All the maps showed the upper part of the watershed to be highly susceptible to gully erosion, while the
southern part and the mouth of the basin indicated low gully erosion susceptibility.
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3.4. Model Evaluation Performance Result

The AUC ranges from 0.5 to 1, whereby values closer to 0.1 indicate that the model has provided
a perfect prediction, while values closer to 0.5 indicate that there is a problem with model fitting.
Other model diagnostic tools such as Acc, TSS, and Kappa have also been used to find a suitable robust
gully erosion susceptibility model (Figure 8). In this study, the models were evaluated by both the
training and validation datasets of gully and non-gully locations to measure the success and prediction
performance of the model. The evaluation result of the model performances in the training stage and
testing stage for all the machine learning and the ensemble model are summarized in Figure 8. All the
evaluation results indicated that the BAR, BART, SVR, and ensemble models perform well and that
the data were sufficient for training and validating the gully data. The ensemble model is the most
robust model in this study and yielded the highest AUC, Acc, TSS, and Kappa in the training (AUC,
0.960; Acc, 0.850; TSS, 0.590; Kappa, 0.641) and validation stage (AUC, 0.917; Acc, 0.801; TSS, 0.607;
Kappa, 0.541). The AUC value of the ensemble model when considering the gully training points
is 0.960, which indicates a high success capacity. The rest of the models also yielded the optimal
accuracy, coming close to that of the ensemble model. The AUC of the SVR, BART, and BRT is 0.927,
0.902, and 89.5, respectively (Figure 9a). When we considered the validation dataset, the prediction
rate capacity of ROC indicates the same trend of model robustness (Figure 9b). The values of Acc in
the ensemble, SVR, BART, and BRT for the training datasets are 0.85, 0.792, 0.751, and 0.684 and the
Acc values for the validation datasets are 0.801, 0.721, 0.674, and 0.622, respectively. The evaluation
results of TSS and Kappa also showed the same trend of AUC and Acc in the training and testing stage.
Therefore, it can be concluded that both predictions, the (testing dataset) and success (training dataset)
rate showed little variation of results and a good accuracy of the models, which were deemed to
produce realistic and accurate gully erosion susceptibility maps for delineating the gully erosion areas.
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Figure 10 shows the two-dimensional graphical presentation of the observed gully erosion and
the predictive gully erosion susceptibility for the BRT, BART, SVR, and ensemble models on a Taylor
diagram. The diagram summarizes the multiple statistical aspects of the model performance in a single
diagram (Taylor, 2001). The Taylor diagram represents the connection between the predicted and
observed gully erosion in the Gandheswari watershed. All the machine learning and the ensemble
models are similar in their ability to predict the gully erosion, but the ensemble models yielded the
highest correlation and lowest standard deviation. Therefore, the ensemble gully erosion susceptibility
model is the most robust model.
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3.5. Relative Importance of the Variables

The predisposing factors of gully erosion susceptibility modelling have been selected by
considering the various available literature and physical characteristics of the study area, and then the
multi-collinearity analysis for these factors was carried out. The assessment of important variables
of gully erosion was done through the mean decrease accuracy, using the RF model, as shown in
Table 3. The high mean decrease in accuracy represents the high importance of the input variables
of the gully erosion susceptibility in this RF calculation. According to Table 3, the most important
variables for the formation and development of gullies in this basin are the NDVI (22.62) followed
by plan curvature (20.24). The other relative important factors of gully formation are SPI (16.48),
geology (15.41), drainage density (14.51), geomorphology (13.21), and elevation (10.02). The relative
importance value showed a strong relationship between the above parameters and gully erosion.
On the other hand, the iron oxide (0.42), FMI (0.94), TWI (1.13), aspect (1.32), profile curvature (1.49),
NDWI (1.76), and BSI (1.84) are the least significant variables in terms of gully erosion. In addition,
the rest of the variables, i.e., rainfall (8.68), slope (7.51), LULC (5.42), soil texture (3.24), distance to river
(3.06), and soil erodibility (2.13) are moderately important variables.

Table 3. Relative importance value of the gully causative factors.

Row Variable Importance

1 Slope 7.51

2 Aspect 1.32

3 Elevation 10.02

4 Profile Curvature 1.49

5 Plan Curvature 20.24

6 TWI 1.13

7 SPI 16.48

8 Drainage Density 14.51
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Table 3. Cont.

Row Variable Importance

9 Distance to River 3.06

10 Rainfall 8.68

11 LULC 5.42

12 NDVI 22.62

13 Soil Texture 3.24

14 Soil Erodibility 2.123

15 Geology 15.41

16 Geomorphology 13.21

17 BSI 1.84

18 FMI 0.94

19 Iron oxide 0.42

20 NDWI 1.76

3.6. Relative Importance of Sub-Classes of the Variables

Many gully erosion susceptibility studies showed only the assessment of important variables
affecting gully erosion, but it is also significant to identify the sub-factors or sub-classes of each
conditioning factor of gully erosion. The relationships of gully erosion with each sub-factor of gully
conditioning factors were obtained from the SWARA weight analysis and are shown in Table 4.
The SWARA weights of the sub-factors of each conditioning factor show that the high (5.75 to 15.24)
slope areas are associated with a higher weight (0.41) and very likely prone to gully erosion. A very
high slope (15.24 to 43.18) was not associated with gully formation, but the weight decreased with
medium to very low slope areas. In terms of the aspect, all directions of the slope are associated with
gully formation except the flat (0.05), west (0.06), and northeast (0.06) slope directions. The medium
elevation class (80 to 141 m) was weighted as 0.61, which means it is strongly associated with the
occurrence of gullies in the study area. Higher (0.28 to 0.84) classes of profile curvature are associated
with an increased likelihood to affect gully erosion based on the weighting of 0.40. The five classes of
plan curvature are associated with a high probability to affect gully formation, and the very high (0.86
to 2.96) class has the highest weight (0.36). High classes of TWI (14.05 to 17.24) and SPI (7.57 to 10.69)
are associated with the maximum probability of gully erosion, and the weights of the components are
0.41 and 0.52, respectively. The very low drainage density (0 to 0.66 km/sq.km) class has a very high
(0.36) probability of gully erosion, while the highest class of distance to the river (2172.30 to 3794.09 m)
has a high SWARA weight (0.43). A low and medium rainfall (515.62 to 522.17 mm) is most favorable
for gully formation, and gully erosion and the weights of the two classes are 0.37 and 0.39, respectively.
The shrubland areas are prone to gully erosion because shrubland is often associated with barren land
and the SWARA weight of the shrubland is 0.56. The NDVI is the most important factor affecting gully
erosion, and in our study area, the NDVI ranges from −0.10 to 0.31 with the very high class being
the most favorable to gully erosion with a weight of 0.34. Most of the area (96% of the study area)
is covered by the Chotanagpur gneissic complex geological formation, so this geological formation
has received the highest weight. The gravelly loam soil texture group with very low soil erodibility
(0.00–0.13) has high weights (0.42 and 0.79), meaning that these areas are most favorable for gully
erosion. Therefore, the dissected denudational hills and valleys are an effective geomorphological unit
for probable gully erosion. Accordingly, low to very high FMI (0.95 to 1.28) and high to very high (1.29
to 2.04) iron oxide classes are considered being more favorable to gully erosion. The medium BSI covers
99% of the study area, so this class automatically receives the highest weight (1.0). The low NDWI
(−0.41 to 0.10) class received a higher SWARA weight (0.31), so it is associated with gully erosion.
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Table 4. Importance value of sub classes of the variables.

Conditioning Factor Class No. of Pixel Pixel (%) No. of
Gully Point

Percentage of
Gully Point SWARA Weight

Slope (In degree)

0 to 1.01 458,112 18.23 10 16.13 0.18
1.01 to 3.38 1,326,437 52.78 28 45.16 0.17
3.38 to 5.75 577,799 22.99 17 27.42 0.24

5.75 to 15.24 137,842 5.48 7 11.29 0.41
15.24 to 43.18 12,941 0.51 0 0.00 0.00

Aspect Flat 263,299 10.48 3 4.84 0.05
North 243,704 9.70 10 16.13 0.18

Northeast 302,795 12.05 7 11.29 0.10
East 265,277 10.56 11 17.74 0.19

Southeast 335,165 13.34 8 12.90 0.11
South 275,716 10.97 9 14.52 0.15

Southwest 306,121 12.18 7 11.29 0.10
West 240,232 9.56 3 4.84 0.06

Northwest 280,822 11.17 4 6.45 0.06

Elevation (m)

11 to 55 744,812 29.64 6 9.68 0.11
55 to 80 1,025,400 40.80 22 35.48 0.28

80 to 141 730,786 29.08 34 54.84 0.61
141 to 246 7224 0.29 0 0.00 0.00
246 to 383 4909 0.20 0 0.00 0.00

Profile Curvature

−3.32 to −0.90 22,376 0.89 0 0.00 0.00
−0.90 to −0.34 700,738 27.88 17 27.42 0.32
−0.34 to 0.28 1,043,997 41.54 23 37.10 0.29
0.28 to 0.84 722,010 28.73 22 35.48 0.40
0.84 to 2.61 24,010 0.96 0 0.00 0.00

Plan Curvature

−3.18 to −0.91 31,580 1.26 1 1.61 0.20
−0.91 to −0.33 450,581 17.93 9 14.52 0.13
−0.33 to 0.26 1,527,599 60.78 38 61.29 0.16
0.26 to 0.86 467,912 18.62 12 19.35 0.16
0.86 to 2.96 35,459 1.41 2 3.23 0.36

TWI

6.94 to 10.54 896,095 35.66 21 33.87 0.16
10.54 to 12.01 846,419 33.68 15 24.19 0.12
12.01 to 14.05 528,698 21.04 13 20.97 0.17
14.05 to 17.24 197,434 7.86 12 19.35 0.41
17.24 to 27.78 44,486 1.77 1 1.61 0.15

SPI

0.34 to 4.22 833,825 33.18 9 14.52 0.08
4.22 to 5.67 862,326 34.31 24 38.71 0.21
5.67 to 7.57 578,440 23.02 15 24.19 0.19
7.57 to 10.69 198,164 7.89 14 22.58 0.52

10.69 to 19.75 40,376 1.61 0 0.00 0.00

Drainage Density
(km/sq.km)

0 to 0.66 1,401,389 55.76 45 72.58 0.36
0.66 to 1.87 512,310 20.39 6 9.68 0.13
1.87 to 3.090 309,690 12.32 7 11.29 0.26
3.09 to 4.35 183,664 7.31 4 6.45 0.25
4.35 to 6.730 106,078 4.22 0 0.00 0.00

Distance from River
(m)

0 to 446.360 771,695 30.71 15 24.19 0.11
446.36 to 937.36 720,846 28.68 9 14.52 0.07

937.36 to 1473.00 585,113 23.28 18 29.03 0.17
1473.00 to 2172.300 344,412 13.70 13 20.97 0.21
2172.30 to 3794.09 91,065 3.62 7 11.29 0.43

Rainfall (mm)

515.62 to 519.48 1,129,207 44.93 25 40.32 0.24
519.48 to 522.17 727,191 28.94 25 40.32 0.37
522.17 to 526.28 327,188 13.02 12 19.35 0.39
526.28 to 531.32 178,568 7.11 0 0.00 0.00
531.32 to 537.03 150,977 6.01 0 0.00 0.00

LULC Crop land (2) 2,158,587 85.89 44 70.97 0.11
Built-up area (3) 110,573 4.40 0 0.00 0.00

Shrubland (4) 119,196 4.74 12 19.35 0.56
Water bodies (5) 21,557 0.86 0 0.00 0.00

Deciduous
Broadleaf forest (1) 103,219 4.11 6 9.68 0.32

NDVI

−0.10 to 0.05 58,303 2.32 0 0.00 0.00
0.05 to 0.09 330,550 13.15 4 6.45 0.12
0.09 to 0.12 1,035,882 41.22 27 43.55 0.26
0.12 to 0.15 909,469 36.19 25 40.32 0.28
0.15 to 0.31 178,927 7.12 6 9.68 0.34

Soil texture

Urban area 38,904 1.55 1 1.61 0.15
Gravelly loam 55,662 2.21 4 6.45 0.42

Fine loamy-sandy 4071 0.16 0 0.00 0.00
Fine loamy 1,994,650 79.37 33 53.23 0.10
Fine clay 419,844 16.71 24 38.71 0.33
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Table 4. Cont.

Conditioning Factor Class No. of Pixel Pixel (%) No. of
Gully Point

Percentage of
Gully Point SWARA Weight

Soil erodibility

0.00 to 0.13 55,601 2.21 5 8.06 0.79
0.13 to 0.14 35,051 1.39 0 0.00 0.00
0.14 to 0.20 38,904 1.55 0 0.00 0.00
0.20 to 0.32 4064 0.16 0 0.00 0.00
0.32 to 0.38 2,379,512 94.68 57 91.94 0.21

Geology

Unclassified
Metamorphics 57,209 2.28 0 0.00 0.00

Chotanagpur
Gneissic Complex 2,423,383 96.43 62 100.00 1.00

Fluvial sediments 30,930 1.23 0 0.00 0.00
Gabbro and
Anorthosite

Complex
1608 0.06 0 0.00 0.00

Geomorplogyho

River 21,787 0.87 0 0.00 0.00
pond 17,422 0.69 0 0.00 0.00

Water bodies 13,582 0.54 0 0.00 0.00
Older flood plain 5954 0.24 0 0.00 0.00
Active flood plain 39 0.00 0 0.00 0.00

Pediment
Pediplain Complex 2,422,453 96.39 57 91.94 0.13

Dissected
Denudational Hills

and Valleys
31,894 1.27 5 8.06 0.87

BSI

−1016 to −391 948 0.04 0 0.00 0.00
−391 to −82 5079 0.20 0 0.00 0.00
−82 to 86 2,501,714 99.55 62 100.00 1.00
86 to 406 4466 0.18 0 0.00 0.00
406 to 897 924 0.04 0 0.00 0.00

FMI

0.95 to 1.11 122,659 4.88 3 4.84 0.20
1.11 to 1.138 504,745 20.08 7 11.29 0.11
1.138 to 1.160 737,875 29.36 19 30.65 0.21
1.16 to 1.18 711,738 28.32 19 30.65 0.22
1.18 to 1.28 436,114 17.35 14 22.58 0.26

Ironoxide

0.77 to 1.14 97,282 3.87 1 1.61 0.08
1.14 to 1.23 595,379 23.69 12 19.35 0.16

1.23 to 1.290 1,169,281 46.53 26 41.94 0.18
1.29 to 1.38 536,239 21.34 19 30.65 0.29
1.38 to 2.04 114,949 4.57 4 6.45 0.28

NDWI

−0.41 to 0.10 41,513.00 1.65 2.00 3.23 0.31
0.10 to 0.17 314,512.00 12.51 8.00 12.90 0.16
0.17 to 0.21 914,621.00 36.39 21.00 33.87 0.15
0.21 to 0.28 1,046,142.00 41.63 24.00 38.71 0.15
0.28 to 0.43 196,343.00 7.81 7.00 11.29 0.23

4. Discussion

The gully erosion susceptibility assessment is crucial for the preparation of erosion control and
mitigation measures [100]. To obtain reliable and highly accurate maps of gully erosion susceptibility
is a challenge for planners and managers [101]. To overcome the challenges, researchers have tried
to propose novel susceptibility models and tested them in gully prone regions around the world.
Different approaches, procedures, and models for the spatial prediction of natural hazards and disasters
have been developed, and these models have been implemented around the world. The aims of all
these methods are the same in all approaches [41]. For the past decades, many statistical and heuristic
susceptibility methods have been used to understand different environmental hazards [38,102,103].
However, these above-mentioned susceptibility models have some limitations in their ability to analyze
the multifarious connection between predictors and response, and, very recently, data mining/machine
learning ensemble models have been developed for gully erosion susceptibility modelling [48,104,105].
In this paper, we proposed and evaluated three machine learning models and one ensemble model
for gully erosion susceptibility modelling with the highest possible precision and suggested the
most suitable model for the Gandheswari watershed. The proposed models are the BRT, BART,
SVR, and the ensemble model of the Bee and SVR algorithm. Prediction, categorization, clustering,
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and elaboration of environmental hazards’ data were assessed in the application of the machine
learning approaches [41,106].

Gully erosion is controlled by several geo-environmental factors [107]. Therefore, the variables of
the gully erosion susceptibility modelling have been incorporated based on suggested approaches in
similar published research and the geo-environmental characteristics of the study area. The topographic,
hydrological, geological, and anthropogenic (land use) attributes are the most important variables for
the development of gullies around the world [107–109].

The spatial resolution of the input variables greatly affects the output result, and many
topographical factors were derived from the DEM. We used a 12.5 m spatial resolution ALOS
PALSAR DEM [109]. We selected the 20 individual gully conditioning factors based on the outcome of
the multi-collinearity assessment. The multi-collinearity assessment of factors based on the TOL and
VIF is the best method to check for a collinearity between the variables because this multi-collinearity
check can increase the accuracy of the model [23]. According to the relative importance variables based
on the mean decrease accuracy (MDA), the NDVI is the most important factor followed by the plan
curvature. Other factors such as SPI, geology, drainage density, geomorphology, and elevation are
responsible for gully erosion in this watershed. We examined the various available literature regarding
the gully erosion susceptibility model and previous authors suggest that the relative importance
of conditioning factors for gully erosion are area-specific and are thus, not transferable to other
regions [100]. For some examples from eastern India, Saha et al. [41] identified the elevation, rainfall,
NDVI, LULC, and slope as the most important factors, whereas Gayen et al. [110] reported that the
LULC, drainage density, elevation, soil type, and distance from lineament are the most effective factors
contributing to gully erosion. The SWARA weight is one of the methods used to define the weight of
the sub-classes of the factors that play a dominant role in the modelling process [69]. The role of each
individual class of each causal gully erosion factor is shown in Table 4.

To analyze the multifunction connection between the response (gully) and the predictors (gully
conditioning factors), machine learning ensemble approaches were used for their ability to produce
robust gully erosion susceptibility models [91]. The BRT models used two algorithms, i.e., boosting and
regression, and, in this study, we used it for the spatial prediction of the gully erosion, but it has
also been applied for many environmental hazards. Zabihi et al. [111] found that the BRT model
is better for gully erosion susceptibility than the multivariate adaptive regression spline (MARS)
model.BART, which is a newly invented tree classifier approach, provides admirable performance
in both binary and continuous datasets and was successfully applied in this study [112]. The other
interesting supervised machine learning algorithm is SVR, which is widely used in many susceptibility
models, such as landslide susceptibility and groundwater potentiality [36,113]. In this study, the SVR
model successfully predicts gully erosion. We applied the Bee algorithm with the SVR model and
established a novel ensemble model, which yielded the best accuracy compared to the gully erosion
susceptibility models based on the three stand-alone machine learning algorithms.

Furthermore, to compare the performance and robustness of the model, several researchers
applied the AUC of ROC curve, accuracy, TSS, and Kappa index [37–39]. Each gully susceptibility
model was evaluated by the above model evaluator in the training and testing stage. The results
demonstrated that all the models performed well, but that the ensemble models have provided the
best prediction of gully erosion. Several gully erosion susceptibility studies found that the ensemble
algorithm of the machine learning model is the most suitable model [18,114]. A previous gully erosion
susceptibility study in the Gandheswari watershed indicates that the multi-layer perception approach
(MLPC) and its ensembles (MLPC-Bagging, MLPC-Dagging, and MLPC-Decorate) yielded the best
result, but that the MLPC-Decorate is the best ensemble model with an AUC of ROC curve of 0.906 [23].

5. Conclusions

Various types of soil erosion processes can accelerate land degradation, and have a negative impact
on agriculture. There are various types of soil erosion processes occurring at the surface, which are
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sheet erosion, rills, gullies, ravines, etc. Globally, gully erosion, or the development of gullies, is one of
the most destructive processes of land degradation. In this study, the objective was the gully erosion
susceptibility modelling and mapping for the Gandheswari watershed. Stand-alone and ensemble
classifier models with gully inventory datasets and gully conditioning factors were successfully used
to assess the gully erosion susceptibility. The AUC of ROC curve, accuracy, TSS, and Kappa index
were employed to assess and compare the gully erosion susceptibility models. The results of the
model evaluation from the training and validation gully inventory datasets have shown that the gully
susceptibility models prepared based on the BRT, BART, SVR, and ensemble approaches performed
best in terms of fitting and the prediction capability of the model. The output susceptibility maps
and the model performance evaluation result indicate that the ensemble of the SVR-Bee model is
the best-fit model, and it is most capable of predicting the occurrence of gullies in the study area.
The relative importance result of the gully causative factors and their sub-classes showed that the
NDVI and plan curvature are the most important factors. All four gully erosion susceptibility maps
reveal a good consistency between the spatial zones of the different susceptibilities of gully erosion.
Furthermore, the most valuable outcomes of the study are the gully susceptibility maps, which will
help the local administrators, decision-makers, and planners manage land degradation and land use
planning. In addition, the new susceptibility methods may help further research addressing various
environmental hazards such as landslides, flooding, and soil erosion. Since no study is without any
limitations, we need to emphasize that this study has not included the full hydrological modelling of
gully systems, which is a challenging task for future studies.

Author Contributions: Conceptualization, I.C., S.C.P., and A.A.; methodology, I.C., S.C.P., and A.A.; software, I.C.,
S.C.P., and A.A.; validation, I.C., S.C.P., A.S., and A.A.; formal analysis, I.C., S.C.P., and A.A.; investigation, I.C.,
S.C.P., A.A., and R.C.; resources, I.C., S.C.P., and A.A.; data curation, I.C., S.C.P., and A.A.; writing—original draft
preparation, I.C., S.C.P., A.S., B.P., R.C., and A.A.; writing—review and editing, I.C., S.C.P., A.S., B.P., R.C., A.A.,
T.B., and S.S.B.; supervision, A.A. and T.B.; funding acquisition, T.B. All authors have read and agreed to the
published version of the manuscript.

Funding: Open Access was funded by the Austrian Science Fund (FWF) through the Doctoral College GIScience
(DK W 1237-N23) at the University of Salzburg.

Acknowledgments: Open Access Funding by the Austrian Science Fund (FWF).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Billi, P.; Dramis, F. Geomorphological investigation on gully erosion in the Rift Valley and the northern
highlands of Ethiopia. Catena 2003, 50, 353–368. [CrossRef]

2. Saha, A.; Ghosh, M.; Pal, S.C. Understanding the Morphology and Development of a Rill-Gully: An Empirical
Study of Khoai Badland, West Bengal, India. In Gully Erosion Studies from India and Surrounding Regions;
Springer International Publishing: Cham, Switzerland, 2020; pp. 147–161.

3. Lal, R. Offsetting global CO2 emissions by restoration of degraded soils and intensification of world
agriculture and forestry. Land Degrad. Dev. 2003, 14, 309–322. [CrossRef]

4. Poesen, J.; Nachtergaele, J.; Verstraeten, G.; Valentin, C. Gully erosion and environmental change: Importance
and research needs. Catena 2003, 50, 91–133. [CrossRef]

5. Valentin, C.; Poesen, J.; Li, Y. Gully erosion: Impacts, factors and control. Catena 2005, 63, 132–153. [CrossRef]
6. Imeson, A.C.; Kwaad, F.J.P.M.; Mucher, H.J. Hillslope processes and deposits in forested areas of Luxembourg.

In Timescales in Geomorphology; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 1980; pp. 31–42.
7. Poesen, J. Soil erosion in the Anthropocene: Research needs. Earth Surf. Process. Landf. 2018, 43, 64–84.

[CrossRef]
8. Ghosh, S.; Guchhait, S.K. Geomorphic threshold estimation for gully erosion in the lateritic soil of Birbhum,

West Bengal, India. Soil Discuss. 2016, 1–29. [CrossRef]
9. Sinha, D.; Joshi, V.U. Application of Universal Soil Loss Equation (USLE) to recently reclaimed badlands

along the Adula and Mahalungi Rivers, Pravara Basin, Maharashtra. J. Geol. Soc. India 2012, 80, 341–350.
[CrossRef]

http://dx.doi.org/10.1016/S0341-8162(02)00131-5
http://dx.doi.org/10.1002/ldr.562
http://dx.doi.org/10.1016/S0341-8162(02)00143-1
http://dx.doi.org/10.1016/j.catena.2005.06.001
http://dx.doi.org/10.1002/esp.4250
http://dx.doi.org/10.5194/soil-2016-48
http://dx.doi.org/10.1007/s12594-012-0152-6


Remote Sens. 2020, 12, 3620 33 of 38

10. Bhattacharyya, T.; Babu, R.; Sarkar, D.; Mandal, C.; Dhyani, B.L.; Nagar, A.P. Soil loss and crop productivity
model in humid subtropical India. Curr. Sci. 2007, 93, 1397–1403.

11. Sharda, V.N.; Dogra, P.; Prakash, C. Assessment of production losses due to water erosion in rainfed areas of
India. J. Soil Water Conserv. 2010, 65, 79–91. [CrossRef]

12. Kachouri, S.; Achour, H.; Abida, H.; Bouaziz, S. Soil erosion hazard mapping using Analytic Hierarchy
Process and logistic regression: A case study of Haffouz watershed, central Tunisia. Arab. J. Geosci. 2015, 8,
4257–4268. [CrossRef]

13. Achour, Y.; Boumezbeur, A.; Hadji, R.; Chouabbi, A.; Cavaleiro, V.; Bendaoud, E.A. Landslide susceptibility
mapping using analytic hierarchy process and information value methods along a highway road section in
Constantine, Algeria. Arab. J. Geosci. 2017, 10, 194. [CrossRef]

14. Kheir, R.B.; Wilson, J.; Deng, Y. Use of terrain variables for mapping gully erosion susceptibility in Lebanon.
Earth Surf. Process. Landf. 2007, 32, 1770–1782. [CrossRef]

15. Arabameri, A.; Rezaei, K.; Pourghasemi, H.R.; Lee, S.; Yamani, M. GIS-based gully erosion susceptibility
mapping: A comparison among three data-driven models and AHP knowledge-based technique.
Environ. Earth Sci. 2018, 77, 628. [CrossRef]

16. Azareh, A.; Rahmati, O.; Rafiei-Sardooi, E.; Sankey, J.B.; Lee, S.; Shahabi, H.; Ahmad, B.B. Modelling
gully-erosion susceptibility in a semi-arid region, Iran: Investigation of applicability of certainty factor and
maximum entropy models. Sci. Total Environ. 2019, 655, 684–696. [CrossRef] [PubMed]

17. Arabameri, A.; Cerda, A.; Tiefenbacher, J.P. Spatial Pattern Analysis and Prediction of Gully Erosion Using
Novel Hybrid Model of Entropy-Weight of Evidence. Water 2019, 11, 1129. [CrossRef]

18. Arabameri, A.; Pradhan, B.; Rezaei, K.; Yamani, M.; Pourghasemi, H.R.; Lombardo, L. Spatial modelling of
gully erosion using evidential belief function, logistic regression, and a new ensemble of evidential belief
function-logistic regression algorithm. Land Degrad. Dev. 2018, 29, 4035–4049. [CrossRef]

19. Band, S.S.; Janizadeh, S.; Chandra Pal, S.; Saha, A.; Chakrabortty, R.; Shokri, M.; Mosavi, A. Novel Ensemble
Approach of Deep Learning Neural Network (DLNN) Model and Particle Swarm Optimization (PSO)
Algorithm for Prediction of Gully Erosion Susceptibility. Sensors 2020, 20, 5609. [CrossRef]

20. Arabameri, A.; Yamani, M.; Pradhan, B.; Melesse, A.; Shirani, K.; Tien Bui, D. Novel ensembles of COPRAS
multi-criteria decision-making with logistic regression, boosted regression tree, and random forest for spatial
prediction of gully erosion susceptibility. Sci. Total Environ. 2019, 688, 903–916. [CrossRef]

21. Arabameri, A.; Pradhan, B.; Lombardo, L. Comparative assessment using boosted regression trees,
binary logistic regression, frequency ratio and numerical risk factor for gully erosion susceptibility modelling.
Catena 2019, 183, 104223. [CrossRef]

22. Arabameri, A.; Chen, W.; Loche, M.; Zhao, X.; Li, Y.; Lombardo, L.; Cerda, A.; Pradhan, B.; Bui, D.T.
Comparison of machine learning models for gully erosion susceptibility mapping. Geosci. Front. 2020, 11,
1609–1620. [CrossRef]

23. Roy, P.; Chakrabortty, R.; Chowdhuri, I.; Malik, S.; Das, B.; Pal, S.C. Development of Different Machine
Learning Ensemble Classifier for Gully Erosion Susceptibility in Gandheswari Watershed of West Bengal,
India. Mach. Learn. Intell. Decis. Sci. 2020, 1–26. [CrossRef]

24. Chen, W.; Panahi, M.; Khosravi, K.; Pourghasemi, H.R.; Rezaie, F.; Parvinnezhad, D. Spatial prediction of
groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based
optimization. J. Hydrol. 2019, 572, 435–448. [CrossRef]

25. Ghosh, S.; Guchhait, S.K. Estimation of geomorphic threshold in permanent gullies of lateritic terrain in
Birbhum, West Bengal, India. Curr. Sci. (00113891) 2017, 113, 478–485. [CrossRef]

26. Hembram, T.K.; Saha, S. Prioritization of sub-watersheds for soil erosion based on morphometric attributes
using fuzzy AHP and compound factor in Jainti River basin, Jharkhand, Eastern India. Environ. Dev. Sustain.
2020, 22, 1241–1268. [CrossRef]

27. Chakrabortty, R.; Pal, S.C.; Chowdhuri, I.; Malik, S.; Das, B. Assessing the Importance of Static and
Dynamic Causative Factors on Erosion Potentiality Using SWAT, EBF with Uncertainty and Plausibility,
Logistic Regression and Novel Ensemble Model in a Sub-tropical Environment. J. Indian Soc. Remote Sens.
2020, 48, 1–25. [CrossRef]

28. Chakrabortty, R.; Pal, S.C.; Sahana, M.; Mondal, A.; Dou, J.; Pham, B.T.; Yunus, A.P. Soil erosion potential
hotspot zone identification using machine learning and statistical approaches in eastern India. Nat. Hazards
2020, 104, 1259–1294. [CrossRef]

http://dx.doi.org/10.2489/jswc.65.2.79
http://dx.doi.org/10.1007/s12517-014-1464-1
http://dx.doi.org/10.1007/s12517-017-2980-6
http://dx.doi.org/10.1002/esp.1501
http://dx.doi.org/10.1007/s12665-018-7808-5
http://dx.doi.org/10.1016/j.scitotenv.2018.11.235
http://www.ncbi.nlm.nih.gov/pubmed/30476849
http://dx.doi.org/10.3390/w11061129
http://dx.doi.org/10.1002/ldr.3151
http://dx.doi.org/10.3390/s20195609
http://dx.doi.org/10.1016/j.scitotenv.2019.06.205
http://dx.doi.org/10.1016/j.catena.2019.104223
http://dx.doi.org/10.1016/j.gsf.2019.11.009
http://dx.doi.org/10.1007/978-981-15-3689-2_1
http://dx.doi.org/10.1016/j.jhydrol.2019.03.013
http://dx.doi.org/10.18520/cs/v113/i03/478-485
http://dx.doi.org/10.1007/s10668-018-0247-3
http://dx.doi.org/10.1007/s12524-020-01110-x
http://dx.doi.org/10.1007/s11069-020-04213-3


Remote Sens. 2020, 12, 3620 34 of 38

29. Ghosh, D.; Mandal, M.; Karmakar, M.; Banerjee, M.; Mandal, D. Application of geospatial technology for
delineating groundwater potential zones in the Gandheswari watershed, West Bengal. Sustain. Water Resour.
Manag. 2020, 6, 14. [CrossRef]

30. Chakrabortty, R.; Pal, S.C.; Malik, S.; Das, B. Modeling and mapping of groundwater potentiality zones using
AHP and GIS technique: A case study of Raniganj Block, Paschim Bardhaman, West Bengal. Model. Earth
Syst. Environ. 2018, 4, 1085–1110. [CrossRef]

31. Das, B.; Nandy, M. Tectono-stratigraphic studies of the supra-crustal rocks at the southern contact of the
Chhotanagpur Granite Gneiss with Proterozoic Mobile Belt in Bankura and Purulia districts West Bengal.
Rec. Geol. Surv. India 1997, 129 Pt 3.

32. Shit, P.K.; Nandi, A.S.; Bhunia, G.S. Soil erosion risk mapping using RUSLE model on jhargram sub-division
at West Bengal in India. Model. Earth Syst. Environ. 2015, 1, 28. [CrossRef]

33. Shit, P.K.; Maiti, R.K. Mechanism of Gully-Head Retreat—A Study at Ganganir Danga, Paschim Medinipur,
West Bengal. Ethiop. J. Environ. Stud. Manag. 2012, 5, 332–342. [CrossRef]

34. Lay, U.S.; Pradhan, B.; Yusoff, Z.B.M.; Abdallah, A.F.B.; Aryal, J.; Park, H.-J. Data Mining and Statistical
Approaches in Debris-Flow Susceptibility Modelling Using Airborne LiDAR Data. Sensors 2019, 19, 3451.
[CrossRef]

35. Aertsen, W.; Kint, V.; Van Orshoven, J.; Özkan, K.; Muys, B. Comparison and ranking of different modelling
techniques for prediction of site index in Mediterranean mountain forests. Ecol. Model. 2010, 221, 1119–1130.
[CrossRef]

36. Panahi, M.; Gayen, A.; Pourghasemi, H.R.; Rezaie, F.; Lee, S. Spatial prediction of landslide susceptibility
using hybrid support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with
various metaheuristic algorithms. Sci. Total Environ. 2020, 741, 139937. [CrossRef]

37. Arabameri, A.; Chen, W.; Lombardo, L.; Blaschke, T.; Tien Bui, D. Hybrid computational intelligence models
for improvement gully erosion assessment. Remote Sens. 2020, 12, 140. [CrossRef]

38. Arabameri, A.; Pradhan, B.; Bui, D.T. Spatial modelling of gully erosion in the Ardib River Watershed using
three statistical-based techniques. Catena 2020, 190, 104545. [CrossRef]

39. Pourghasemi, H.R.; Gayen, A.; Haque, S.M.; Bai, S. Gully Erosion Susceptibility Assessment Through the
SVM Machine Learning Algorithm (SVM-MLA). In Gully Erosion Studies from India and Surrounding Regions;
Springer International Publishing: Cham, Switzerland, 2020; pp. 415–425.

40. Arabameri, A.; Saha, S.; Mukherjee, K.; Blaschke, T.; Chen, W.; Ngo, P.T.T.; Band, S.S. Modeling Spatial Flood
using Novel Ensemble Artificial Intelligence Approaches in Northern Iran. Remote Sens. 2020, 12, 3423.
[CrossRef]

41. Saha, S.; Roy, J.; Arabameri, A.; Blaschke, T.; Tien Bui, D. Machine Learning-Based Gully Erosion Susceptibility
Mapping: A Case Study of Eastern India. Sensors 2020, 20, 1313. [CrossRef]

42. Conforti, M.; Aucelli, P.P.; Robustelli, G.; Scarciglia, F. Geomorphology and GIS analysis for mapping gully
erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Nat. Hazards 2011, 56,
881–898. [CrossRef]

43. Rahmati, O.; Pourghasemi, H.R.; Zeinivand, H. Flood susceptibility mapping using frequency ratio and
weights-of-evidence models in the Golastan Province, Iran. Geocarto Int. 2016, 31, 42–70. [CrossRef]

44. Conoscenti, C.; Agnesi, V.; Angileri, S.; Cappadonia, C.; Rotigliano, E.; Märker, M. A GIS-based approach
for gully erosion susceptibility modelling: A test in Sicily, Italy. Environ. Earth Sci. 2013, 70, 1179–1195.
[CrossRef]

45. Wilson, J.P.; Gallant, J.C. Terrain Analysis: Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA,
2000; ISBN 978-0-471-32188-0.

46. Rahmati, O.; Pourghasemi, H.R.; Melesse, A.M. Application of GIS-based data driven random forest and
maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran. Catena
2016, 137, 360–372. [CrossRef]

47. Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital terrain modelling: A review of hydrological,
geomorphological, and biological applications. Hydrol. Process. 1991, 5, 3–30. [CrossRef]

48. Kadavi, P.R.; Lee, C.-W.; Lee, S. Application of Ensemble-Based Machine Learning Models to Landslide
Susceptibility Mapping. Remote Sens. 2018, 10, 1252. [CrossRef]

http://dx.doi.org/10.1007/s40899-020-00372-0
http://dx.doi.org/10.1007/s40808-018-0471-8
http://dx.doi.org/10.1007/s40808-015-0032-3
http://dx.doi.org/10.4314/ejesm.v5i4.2
http://dx.doi.org/10.3390/s19163451
http://dx.doi.org/10.1016/j.ecolmodel.2010.01.007
http://dx.doi.org/10.1016/j.scitotenv.2020.139937
http://dx.doi.org/10.3390/rs12010140
http://dx.doi.org/10.1016/j.catena.2020.104545
http://dx.doi.org/10.3390/rs12203423
http://dx.doi.org/10.3390/s20051313
http://dx.doi.org/10.1007/s11069-010-9598-2
http://dx.doi.org/10.1080/10106049.2015.1041559
http://dx.doi.org/10.1007/s12665-012-2205-y
http://dx.doi.org/10.1016/j.catena.2015.10.010
http://dx.doi.org/10.1002/hyp.3360050103
http://dx.doi.org/10.3390/rs10081252


Remote Sens. 2020, 12, 3620 35 of 38

49. Conoscenti, C.; Angileri, S.; Cappadonia, C.; Rotigliano, E.; Agnesi, V.; Märker, M. Gully erosion susceptibility
assessment by means of GIS-based logistic regression: A case of Sicily (Italy). Geomorphology 2014, 204,
399–411. [CrossRef]

50. Zakerinejad, R.; Maerker, M. An integrated assessment of soil erosion dynamics with special emphasis on
gully erosion in the Mazayjan basin, southwestern Iran. Nat. Hazards 2015, 79, 25–50. [CrossRef]

51. Malik, S.; Pal, S.C.; Das, B.; Chakrabortty, R. Assessment of vegetation status of Sali River basin, a tributary
of Damodar River in Bankura District, West Bengal, using satellite data. Environ. Dev. Sustain. 2020, 22,
5651–5685. [CrossRef]

52. Wu, Y.; Li, W.; Wang, Q.; Liu, Q.; Yang, D.; Xing, M.; Pei, Y.; Yan, S. Landslide susceptibility assessment using
frequency ratio, statistical index and certainty factor models for the Gangu County, China. Arab. J. Geosci.
2016, 9, 84. [CrossRef]

53. Deng, L.; Zeng, G.; Fan, C.; Lu, L.; Chen, X.; Chen, M.; Wu, H.; He, X.; He, Y. Response of rhizosphere
microbial community structure and diversity to heavy metal co-pollution in arable soil. Appl. Microbiol.
Biotechnol. 2015, 99, 8259–8269. [CrossRef]

54. Abd-El Monsef, H.; Smith, S.E. A new approach for estimating mangrove canopy cover using Landsat
8 imagery. Comput. Electron. Agric. 2017, 135, 183–194. [CrossRef]

55. Malik, S.; Pal, S.C.; Das, B.; Chakrabortty, R. Intra-annual variations of vegetation status in a sub-tropical
deciduous forest-dominated area using geospatial approach: A case study of Sali watershed, Bankura,
West Bengal, India. Geol. Ecol. Landsc. 2019, 1–12. [CrossRef]

56. Pal, S.C.; Chakrabortty, R.; Malik, S.; Das, B. Application of forest canopy density model for forest cover
mapping using LISS-IV satellite data: A case study of Sali watershed, West Bengal. Model. Earth Syst. Environ.
2018, 4, 853–865. [CrossRef]

57. Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from
space. Remote Sens. Environ. 1996, 58, 257–266. [CrossRef]

58. Alin, A. Multicollinearity. Wires Comput. Stat. 2010, 2, 370–374. [CrossRef]
59. Jensen, D.R.; Ramirez, D.E. Revision: Variance inflation in regression. Adv. Decis. Sci. 2013, 2013, 671204.

[CrossRef]
60. Ravì, D.; Bober, M.; Farinella, G.M.; Guarnera, M.; Battiato, S. Semantic segmentation of images exploiting

DCT based features and random forest. Pattern Recognit. 2016, 52, 260–273. [CrossRef]
61. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
62. Sevgen, E.; Kocaman, S.; Nefeslioglu, H.A.; Gokceoglu, C. A novel performance assessment approach using

photogrammetric techniques for landslide susceptibility mapping with logistic regression, ANN and random
forest. Sensors 2019, 19, 3940. [CrossRef]
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