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Abstract: In general, early detection and timely management of plant diseases are essential for
reducing yield loss. Traditional manual inspection of fields is often time-consuming and laborious.
Automated imaging techniques have recently been successfully applied to detect plant diseases. However,
these methods mostly focus on the current state of the crop. This paper proposes a gated recurrent unit
(GRU)-based model to predict soybean sudden death syndrome (SDS) disease development. To detect
SDS at a quadrat level, the proposed method uses satellite images collected from PlanetScope as the
training set. The pixel image data include the spectral bands of red, green, blue and near-infrared (NIR).
Data collected during the 2016 and 2017 soybean-growing seasons were analyzed. Instead of using
individual static imagery, the GRU-based model converts the original imagery into time-series data.
SDS predictions were made on different data scenarios and the results were compared with fully
connected deep neural network (FCDNN) and XGBoost methods. The overall test accuracy of classifying
healthy and diseased quadrates in all methods was above 76%. The test accuracy of the FCDNN and
XGBoost were 76.3–85.5% and 80.6–89.2%, respectively, while the test accuracy of the GRU-based model
was 82.5–90.4%. The calculation results show that the proposed method can improve the detection
accuracy by up to 7% with time-series imagery. Thus, the proposed method has the potential to predict
SDS at a future time.

Keywords: soybean disease; sudden death syndrome; gated recurrent unit; remote sensing;
satellite imagery; disease detection

1. Introduction

Soybean (Glycine max L. Merrill) diseases can have a significant impact on production and
profits [1]. During the years from 2015 to 2019, soybean diseases were responsible for losses of
around 8.99% of the production potential in the U.S., which equates to an average of USD 3.8 billion
annually [2]. Sudden death syndrome (SDS) is one of the most damaging soybean diseases found
throughout most of the soybean production area in the United States. SDS is caused by a soilborne
fungus Fusarium virguliforme (Fv) that causes root rot and foliar symptoms that typically become
visible during reproductive stages [3]. Visual assessment of SDS requires intensive crop scouting that
is time-consuming and labor-intensive. Therefore, an automated method for the detection of SDS
is necessary.
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Timely detection and management of plant diseases are essential for reducing yield loss.
Remote sensing technology has proven to be a practical, noninvasive tool for monitoring crop growth
and assessing plant health [4,5]. Sensing instruments can record radiation in various parts of the
electromagnetic spectrum, including ultraviolet, visible, near-infrared (NIR) and thermal infrared,
to name a few [6]. Healthy and diseased plant canopies absorb and reflect incident sunlight differently
due to changes in leaf and canopy morphology and chemical constituents [7,8]. These changes can
alter the optical spectra, such as a decrease in canopy reflectance in the near-infrared band and an
increase in reflectance in the red band [7]. Some widely used methods include thermography [9–11],
fluorescence measurements [12–14] and hyperspectral techniques [15–17].

In the past few years, several studies have been conducted for the detection of plant diseases [18–20].
For example, Durmus et al. [18] used red, green and blue (RGB) cameras for disease-detection on
tomato leaves. In another study, Gold et al. [19] used lab-based spectroscopy to detect and differentiate
late and early blight diseases on potato leaves. Specific to SDS, Bajwa et al. [21] and Herrmann et al. [3]
used handheld and tractor-mounted sensors, respectively, for SDS detection. These successful applications
help ease the demand for expert resources and reduce the human errors in the visual assessment and,
eventually, management of plant diseases.

However, most of these methods are near-sensing techniques that focus on individual plants.
In practice, it is more reasonable and efficient to diagnose plant diseases such as SDS from the
quadrat level. There are several options for collecting imagery for the detection of plant diseases at
the quadrat level, including unmanned aerial vehicles (UAV) [22,23], tractor-mounted tools [3] and
satellite imagery [24]. Satellite imagery is typically less expensive, covers a wide ground swath and
can provide temporal flexibility because the fields can be continuously monitored non-destructively.
The frequency of image collection is determined by the number of satellites that pass that field [25].
Although the imagery from UAVs and tractor-mounted tools is often higher resolution at the quadrat
level, these tools are cumbersome for farmers to operate and maintain in a commercial system and
often lack spatial information. Satellite imagery, on the other hand, contains spatial information, comes
preprocessed and continuously improves in resolution.

In addition to quality data, efficient and accurate analysis of the sensor data is essential for accurate
detection of plant diseases. For the analysis of visible sensing information, several machine learning
methods have been used. Common methods that have been used in plant disease diagnosis using images
are convolutional neural networks (CNNs) and random forest. Different from full connected neural
networks, CNNs have two special layer types. The convolutional layers extract features from the input
images. The pooling layers reduce the dimensionality of the features. Dhakate et al. [26] used a CNN
for the recognition of pomegranate diseases with 90% overall accuracy. Ferentinos [27] developed
CNN models to classify the healthy and diseased plants with 99.5% success. Polders et al. [28] used
fully convolutional neural networks to detect potato virus in seed potatoes. However, in our case,
the resolution of satellite imagery was 3 m × 3 m, which means the satellite imagery of each generalized
quadrat only contained several pixels. CNNs or other methods are less suitable for this task. How to
deal with low-pixel-level remote sensing data is important for improving classification accuracy.
Random forest was also used for disease detection and classification [29]. Samajpati et al. [30] used
a random forest classifier to classify different apple fruit diseases. Chaudhary et al. [31] proposed
an improved random forest method, which achieved 97.8% for a multi-class groundnut disease dataset.
Although random forest is popular for its easy implementation and high efficiency on large datasets,
its performance is influenced by the hyperparameter choices, such as random seeds and the number of
variables [32].

Most of the current plant disease identification methods use field images at a single time-point
to identify the contemporary status of the disease. The use of temporal image sequences can help
improve detection accuracy. For example, a recurrent neural network (RNN) was designed for
solving the multivariate time-series prediction problem [33]. However, RNN is faced with gradient
vanishing/exploding problems [34]. As an improved version of RNN, the long short-term memory



Remote Sens. 2020, 12, 3621 3 of 20

model (LSTM) is used for its successful application to natural language modeling [35]. Compared with
RNN, LSTM has more gates that can control the reset of the memory and the update of the hidden
states. Turkoglu et al. [36] proposed an LSTM-based CNN for the detection of apple diseases and
pests, which scored 96.1%. Namin et al. [37] utilized a CNN-LSTM framework for plant classification
of various genotypes as well as the prediction of plant growth and achieved an accuracy of 93%.
Navarro et al. [38] proposed an LSTM method for the prediction of low temperatures in agriculture and
obtained a determination coefficient (accuracy) of 99%. Although LSTM has alleviated the gradient
vanishing/exploding problem of RNNs, the training speed of LSTM is much slower due to the increased
number of parameters. To solve this issue, Chung et al. [39] introduced the gated recurrent unit (GRU)
in 2014. Since GRU only has two gates (i.e., reset gate and update gate) and uses the hidden state to
transfer information, its training speed is much faster. Jin et al. [40] used a deep neural network which
combined CNN and GRU to classify wheat hyperspectral pixels and obtained an accuracy of 0.743.

The objective of this paper is to detect SDS in soybean quadrats using 3m x 3m resolution satellite
imagery which contains RGB and NIR information. The GRU-based model was compared in different
scenarios (i.e., percentage of diseased quadrats) to the most popular neural network and tree-based
methods, namely, a fully connected deep neural network (FCDNN) and XGBoost.

This paper is organized as follows. Section 2 introduces the dataset and methods used. Section 3
includes a case study, the calculation results and comparisons of the three methods. The paper
concludes with the summary, findings and future research directions in Section 4.

2. Materials and Methods

Data were collected in 2016 and 2017 from an ongoing soybean field experiment located at the
Iowa State University Marsden Farm, in Boone County, Iowa (Figure 1) [29,41–43]. This study site was
chosen because soybean plots in this experiment have consistently displayed a range of SDS levels
since 2010 [44]. In the trial site, there were three cropping systems, 2-year, 3-year and 4-year crop
rotations, which are represented by using one-hot encoding, i.e., “100”, “010” and “001”, respectively.
In the 2-year cropping rotation, corn and soybean were planted in rotation with synthetic fertilizers at
the conventional rate. In the 3-year cropping rotation, corn, soybean, oat and red clover were planted in
rotation with composted cattle manure and synthetic fertilizers at reduced rates. In the 4-year cropping
rotation, corn, soybean, oat and alfalfa were planted in rotation with composted cattle manure and
synthetic fertilizers at reduced rates. More information about the experiment can be found in these
studies [29,41–43]. In each year, 240 soybean quadrats (3 m wide × 1.5 m long) were marked to collect
disease data. The soybean variety (Latham L2758 R2, maturity group 2.7) remained the same for
all seasons.
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Figure 1. Experimental layout of the Marsden Farm located in Boone County, Iowa. The experiment
was designed using a randomized complete block design with four blocks and each block has nine
main plots. Each soybean plot was divided into 20 quadrats (8 m × 9 m, shown as square grids).
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2.1. Data Processing

Figure 2 illustrates our method for data collection, data processing and analysis for the detection
of SDS in this study. This methodology has been explained in detail.
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Figure 2. Flow diagram of the data collection, processing and analysis we employed in this study for
sudden death syndrome (SDS) detection. We divided our methodology into four major steps including
data collection, data processing, data visualization and analysis.

Satellite images were collected on 5 July 2016, 9 July 2016, 20 July 2016, 5 August 2016, 21 August 2016,
31 August 2016, 5 July 2017, 9 July 2017, 20 July 2017, 2 August 2017, 18 August 2017 and 23 August 2017.
In addition to spectral information, the dataset also included ground-based crop rotation information that
is an explanatory variable. The data source of satellite imagery is PlanetScope (https://www.planet.com/)
satellite operated by Planet Labs (San Francisco, CA), a private imaging company. PlanetScope satellite
imagery comes with four bands, including red (590–670 nm), green (500–590 nm), blue (455–515 nm)
and NIR (780–860 nm). Soybean quadrats were generalized to large quadrats (8.6 mW × 9.1 mL) for data
extraction from images and subsequent data analysis. As such, the imagery of each quadrat has 6–9 pixels.

The number of total plants and plants showing foliar symptoms of SDS was counted in each
quadrat to calculate the disease incidence on a 0 to 100% scale, based on the percentage of diseased plants.
The distribution of SDS incidence is shown in Figure 3. It can be observed that in 2016, SDS incidence
in more than half of the 240 quadrats was less than 5% and the SDS incidence of the rest quadrats
ranged from 5% to 100%. In 2017, the SDS incidence of most quadrats was below 5%. In this paper,
if a quadrat had an SDS incidence above 5%, it was considered as diseased (positive); otherwise,
it was considered as healthy (negative). The inspection dates used for the analysis were 27 July 2016,
5 August 2016, 22 August 2016 and 29 August 2016. Since the visual disease scores on 27 July 2016
were all zeros, all the imagery collected before that date was labeled as healthy. The human visual
ratings recorded on 5 August 2016 were mapped to the imagery collected on the same date. The visual
score on 22 August 2016 was mapped to the imagery collected on 21 August 2016, while the SDS rating
recorded on 31 August 2016 was mapped to the imagery collected on 29 August 2016 Similarly, in 2017,
the human visual ratings recorded on 17 August 2017 were mapped to the imagery collected on 18 Aug
and the human visual ratings recorded on 24 August 2017 were mapped to the imagery collected on
23 August 2017. There was only one diseased quadrat on 5 August 2016. In 2016, all quadrats were

https://www.planet.com/
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healthy before 5 August 2016. In 2017, all quadrats were healthy before 17 August 2017. The aim was
to determine whether the quadrat had SDS or not.
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Figure 3. Distribution of sudden death syndrome (SDS) incidence in soybean quadrats (Inc.: Incidence)
at Marsden Farm.

The mean and variance of the normalized RGB, normalized difference vegetation index (NDVI)
and NIR information of each quadrat were used as predictors for two reasons. First, the number
of pixels varied from quadrat to quadrat. Second, the SDS rating represented the entire quadrat.
Some information could be lost if each pixel were used separately. The crop rotation information was
used as a categorical variable encoded by one-hot method. Therefore, there were a total of 12 variables
for each quadrat, which included the year, crop rotation, the mean values and the variance values of
RGB and NIR bands and NDVI. The NDVI is calculated as Equation (1).

NDVI =
NIR−Red
NIR + Red

(1)

The box plots of RGB and NIR of diseased quadrats and healthy quadrats are shown in Figure 4.
Since all quadrates were healthy on the other dates, only the results on later dates have been plotted.
It can be noticed that the RGB values of diseased quadrats were lower than those of healthy quadrats,
while the NIR values of diseased quadrats were greater than those of healthy quadrats. This indicates
that SDS does influence light emissions of leaves. As such, one of the objectives of this paper is to
use these predictors to detect the SDS-infected quadrats. To avoid mutual interference between data
samples collected in a quadrat at different time points, the dataset was divided into a training and
a testing dataset according to quadrat number. For the experiment in each year, we randomly selected
200 quadrats (83% of the dataset) as the training dataset and 40 quadrats (17% of the dataset) as the
testing dataset of the total 240 quadrats.
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Figure 4. Differences in red, green, blue and near-infrared (NIR) values between healthy and diseased
quadrats (Inc=0: Healthy; Inc=1: Diseased). (a) Difference in red values between healthy and diseased
quadrats; (b) Difference in green values between healthy and diseased quadrats; (c) Difference in blue
values between healthy and diseased quadrats; (d) Difference in NIR values between healthy and
diseased quadrats.
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2.2. Measurements

Three indices, including overall accuracy, precision and recall, as calculated in Equations (2)–(4),
were measured to evaluate the performance of models. The definitions of true positive (TP),
true negative (TN), false positive (FP) and false negative (FN) are shown in Table 1.

OverallAccuracy =(TP + TN)/Total (2)

Recall = TP/(TP + FN) (3)

Precision = TP/(TP + FP) (4)

Table 1. Definitions of true positive (TP), false positive (FP), true negative (TN) and false negative (FN).

Predicted
Actual

Positive Negative

Positive TP FP
Negative FN TN

2.3. Methods

Three methods were investigated in this paper. The first is the GRU-based method. The second is
XGBoost, which is the representative of tree-based methods. The third is an FCDNN, which is the
most widely used deep learning method. As for comparisons, both XGBoost and the FCDNN used
individual images while the GRU-based method used time-series images.

2.3.1. Gated Recurrent Unit (GRU)-Based Method

Most of the existing methods use one individual spectral measurement to predict the corresponding
SDS [3]. Nevertheless, the multiple images at different times of the same quadrat may help improve
the prediction accuracy of the model. Thus, a method that can handle time-series imagery is needed.
Recurrent neural networks (RNNs) are suitable for non-linear time-series processing [45]. As shown in
Figure 5, the RNN consists of an input layer x, a hidden layer h and an output layer y. When dealing
with time-series data, the RNN can be unfolded as the right part. The output and hidden layers can be
calculated according to Equation (5) and Equation (6), respectively.

yt = g
(
st ∗why

)
(5)

st = f (xt ∗wsx + st−1 ∗wss) (6)
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Despite its popularity as a universal function approximator and easy implementation, the RNN
method is faced with the gradient vanishing/exploding problem. In the training process of RNNs,
gradients are calculated from the output layer to the first layer of the RNN. If the gradients are
smaller than 1, the gradients of the first several layers will become small through many multiplications.
On the contrary, the gradients will become very large if the gradients are larger than 1. Therefore,
it sometimes causes the gradients to become almost zero or very large when it reaches the first layers
of RNNs. Consequently, the weights of the first layers will not get updated in the training process.
Therefore, simple RNNs may not be suitable for some complex problems.

In this paper, a GRU-based method is proposed to deal with the multivariate time-series imagery
data that will solve the vanishing gradient problem of a standard RNN [39]. As shown in Figure 6,
based on the previous output ht−1 and the current input xt, a reset gate is used to determine which part
of information should be reset, as calculated in Equation (7), while an update gate is used to update the
output of the GRU ht, as calculated in Equation (8). The candidate hidden layer is calculated according
to Equation (9). The current output can be obtained according to Equation (10). The gates, namely, zt

and rt, and parameters, namely, Wz, Wr and W, of the GRU were updated in the training process.

zt = σ(Wz•[ht−1, xt]) (7)

rt = σ(Wr•[ht−1, xt]) (8)

ht
′ = tan h(W•[rt ∗ ht−1, xt]) (9)

ht = (1− zt) ∗ ht−1 + zt ∗ ht
′ (10)
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2.3.2. Fully Connected Deep Neural Network (FCDNN)

FCDNN is a class of methods that use multiple layers to extract information from the input
data [46]. The basic layers are a fully connected layer and an activation layer. The fully connected
layer consists of multiple neurons. Each neuron in a fully connected layer connects to all neurons in
the next layer. The output of a fully connected layer is calculated as Equation (11).

y = Wx + b (11)

The fully connected layer can only deal with a linear problem. To add the non-linear characteristic
to the model, the concept of activation layers was introduced. Some widely used activation functions
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include sigmoid function, hyperbolic tangent function (Tanh) and rectified linear unit (ReLU) function.
In this paper, ReLU is used as Equation (12).

y = max(0, x) (12)

The loss function is used to measure the performance of models. In this paper, binary cross-entropy
loss function is used, which can be calculated as Equation (13),

L = −
1
N

N∑
i=1

(yilog(p(yi)) + (1− yi)log(1− p(yi))) (13)

where N is the total number of the samples, i is the index of the sample, yi is the label of the ith sample
and p(yi) is the predicted probability of the sample belonging to the class.

The most common training method is stochastic gradient descent which calculates the gradients
and then updates the weights and biases iteratively. The final goal of training is to minimize
the loss function. FCDNNs can deal with large datasets and execute feature engineering without
explicit programming.

2.3.3. XGBoost

The XGBoost method is a popular tree-based method for classification tasks [47]. A decision
tree consists of three parts: branches, internal nodes and leaf nodes. The internal nodes are a set of
conditions that can divide the samples into different classes. The branches represent the outcome
of internal nodes. The leaf nodes represent the label of the class. A decision-tree can break down
a complex classification problem into a set of simpler decisions at each stage [48].

One of the most famous tree-based methods is random forest. Random forest is an ensemble
method that grows many trees and outputs the class based on the results of each individual tree.
Given a training set X with labels Y, it randomly selects samples with replacement of the training
set and train the trees, b1, b2, b3, . . . , bB. After training, for sample x’, the prediction can be made
by averaging the predictions of each tree or using the majority voting method. Since the bootstrap
sampling method can reduce the variance of the model without increasing the bias, the model can
have better generalization performance. Since each tree is trained separately, it can be implemented
in parallel, which can save a lot of time. Another merit of random forest is that it can deal with
high-dimensional dataset and identify the importance of each variable. Different from a random
forest algorithm, which generates many trees at the same time, XGBoost is trained in an additive
manner. In each iteration of XGBoost training, a new decision tree that minimizes the prediction
error of previous trees will be added to the model. The prediction of a sample can be calculated by
summarizing the scores of each tree. XGBoost also includes a regularization term in the loss function,
which can further improve the generalization ability of the model. The specific details are given in [47].

3. Results

To validate the proposed technique, numerical calculations were conducted. The Python code can
be found in the Supplementary Materials.

3.1. Model Parameters

The FCDNN consists of six fully connected layers which include 12, 8, 8, 8, 4 and 1 neurons,
respectively. After each fully connected layer, a ReLU layer and a dropout layer are included. The dropout
rate is 0.2. The binary cross-entropy function is used as the loss function of the model. The optimizer is
stochastic gradient descent. To avoid overfitting, the dropout technique was also used for each fully
connected layer. The learning rate was set as 0.008. The batch size was 100. The maximum number of
iterations was set to 300.
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For XGBoost, the max number of leaves was set as 40. The max depth was set as 10. The objective
is the binary cross-entropy function. The maximum number of iterations was 300.

For the proposed model, two GRU layers were stacked. The first GRU layer coverts each input
sequence to a sequence of 50 units. Then, the second GRU layer converts the sequences of 50 units to
sequences of 25 units. Then, a fully connected layer is used to transform the 25 variables to one output.
The learning rate was set as 0.012. The batch size was 100. The maximum number of iterations was set
to 300. All three models used the cross-entropy loss function as Equation (13).

3.2. Calculations in Different Scenarios

To determine the effectiveness of the GRU-based method in different scenarios (i.e., the percentage
of diseased quadrats), four analyses have been conducted. Since both the dataset of 2016 and that of
2017 had six pairs of imagery and human visual ratings, the dates of each year were numbered from 1
to 6. All the soybean plants at time points 1 to 3 in 2016 and time points 1 to 4 in 2017 were healthy;
therefore, to reduce the influence of imbalanced data, we targeted to predict SDS at time points 3 to
6 in 2016 and 5 to 6 in 2017.

The specific settings of each calculation are shown in Table 2. In calculation I, the target was
to predict SDS at time points 3 to 6 in 2016 and time points 5 and 6 in 2017. In the training of the
GRU-based model, the imagery collected at time points 1 and 2 was added to construct the time-series
imagery samples. The sequence length was set as three. Thus, four sequences of satellite imagery
(i.e., 1-2-3, 2-3-4, 3-4-5 and 4-5-6) can be generated for each quadrat in the experiment of 2016 and two
sequences of satellite imagery (i.e., 3-4-5 and 4-5-6) can be generated for each quadrat in the experiment
of 2017. In the training of XGBoost and the FCDNN, only labeled satellite imagery at time points 3, 4,
5 and 6 was used to train the model. For the three methods, since there were 200 quadrats for training
and 40 quadrats for testing in each year, the number of training samples was 1200 (200 × 6) and the
number of testing samples was 240 (40 × 6).

Table 2. Settings of different calculations (N1: Number of training samples; P1: Percentage of diseased
samples in the train set; N2: Number of testing samples P2: Percentage of diseased samples in the test
set).

No. Methods Input (Target) N1 P1 N2 P2

I

GRU 2016: 1-2-3 (3), 2-3-4 (4), 3-4-5 (5), 4-5-6 (6)
2017: 3-4-5 (5), 4-5-6 (6)

1200 14.92% 240 19.58%XGBoost 2016: 3 (3), 4 (4), 5 (5), 6 (6); 2017: 5 (5), 6 (6)

FCDNN 2016: 3 (3), 4 (4), 5 (5), 6 (6); 2017: 5 (5), 6 (6)

II

GRU
2016: 1-2-3-4 (4), 2-3-4-5 (5),

3-4-5-6 (6)
2017: 2-3-4-5 (5), 3-4-5-6 (6)

1000 17.90% 200 23.50%
XGBoost 2016: 4 (4), 5 (5), 6 (6); 2017: 5 (5), 6 (6)

FCDNN 2016: 4 (4), 5 (5), 6 (6); 2017: 5 (5), 6 (6)

III

GRU 2016: 1-2-3-4-5 (5), 2-3-4-5-6 (6)
2017: 1-2-3-4-5 (5), 2-3-4-5-6 (6)

800 22.25% 160 29.38%XGBoost 2016: 5 (5), 6 (6); 2017: 5 (5), 6 (6)

FCDNN 2016: 5 (5), 6 (6); 2017: 5 (5), 6 (6)

IV

GRU 2016: 1-2-3-4-5-6 (6)
2017: 1-2-3-4-5-6 (6)

400 30% 80 40.00%XGBoost 2016: 6 (6); 2017: 6 (6)

FCDNN 2016: 6 (6); 2017: 6 (6)

In calculation II, the target was SDS at the time points 4, 5 and 6 in 2016 and time points 5 and 6 in 2017.
In the training of the GRU-based model, the sequence length was set as four. Thus, three sequences of
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satellite imagery (i.e., 1-2-3-4, 2-3-4-5 and 3-4-5-6) can be generated for each quadrat in the experiment of
2016 and two sequences of satellite imagery (i.e., 2-3-4-5 and 3-4-5-6) can be generated for each quadrat
in the experiment of 2017. The number of training samples was 1000 (200 × 5) and the number of testing
samples was 200 (40 × 5).

In calculation III, the target was SDS at the time points 5 and 6 in 2016 and time points 5 and 6 in 2017.
In the training of the GRU-based model, the sequence length was set as five. Thus, two sequences of
satellite imagery (i.e., 1-2-3-4-5 and 2-3-4-5-6) can be generated for each quadrat in the experiment of 2016
and two sequences of satellite imagery (i.e., 1-2-3-4-5 and 2-3-4-5-6) can be generated for each quadrat in
the experiment of 2017. The number of training samples was 800 (200 × 4) and the number of testing
samples was 160 (40 × 4).

In calculation IV, the target was SDS at the time point 6 in 2016 and time point 6 in 2017. In the
training of the GRU-based model, the sequence length was set as six. Thus, one sequence of satellite
imagery (i.e., 1-2-3-4-5-6) can be generated for each quadrat in the experiment of 2016 and one sequence
of satellite imagery (i.e., 1-2-3-4-5-6) can be generated for each quadrat in the experiment of 2017.
The number of training samples was 400 (200 × 2) and the number of testing samples was 80 (40 × 2).

The results are shown in Table 3. In calculation I, the three methods had the same test precision.
However, the test recall of GRU was 9% and 51% greater than that of XGBoost and the FCDNN,
respectively. The reason why the test recall of the FCDNN is much less is that the model was overfitted
and most of the samples were predicted as healthy. In calculation II, the test accuracy of GRU was
2% greater than that of XGBoost and 0.5% greater than that of the FCDNN owing to the improved
test precision. It means that most of the positive predictions were accurate. In calculation III, the test
accuracy of GRU was 1.8% and 5% greater than that of XGBoost and the FCDNN, respectively.
In calculation IV, the test accuracy of GRU was 1.2% and 6% greater than that of XGBoost and the
FCDNN, respectively. It can be observed that the training accuracy of GRU was lower in the four
calculations; however, the test accuracy of GRU is the highest among the three methods in the four
calculations. It proves the good generalization performance of the GRU-based method. The test
precision of GRU was highest in the four calculations, which was about 80–95%. In terms of test
recall, the FCDNN outperformed the other two methods in calculations II, III and IV. However, its test
accuracy was lower because the proportion of positives that are correctly identified was lower.

Table 3. Comparisons among the three methods in different calculations.

No. Methods Training Accuracy Test Accuracy Test Precision Test Recall

I
GRU 0.909 0.904 0.800 0.681

XGBoost 0.947 0.892 0.800 0.596
FCDNN 0.903 0.829 0.800 0.170

II
GRU 0.885 0.860 0.890 0.532

XGBoost 0.928 0.840 0.742 0.489
FCDNN 0.929 0.855 0.855 0.638

III
GRU 0.865 0.856 0.800 0.681

XGBoost 0.931 0.838 0.784 0.617
FCDNN 0.905 0.806 0.643 0.766

IV
GRU 0.820 0.825 0.950 0.594

XGBoost 0.865 0.813 0.905 0.594
FCDNN 0.853 0.763 0.697 0.719

The confusion matrices are shown in Figure 7. In calculation I, although GRU has the lowest number
of true predictions for healthy quadrats, it has more true predictions for diseased quadrats than the other
two methods. For the FCDNN, the opposite is the case, since 230 quadrats were classified as healthy and
only 10 quadrats were classified as diseased. The reason is that the FCDNN is more likely to predict
samples as healthy. In calculation II, GRU made more true predictions for healthy quadrats. In calculation
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III, Both GRU and XGBoost classified 105 healthy quadrats correctly; however, GRU had more true
predictions for diseased quadrats than XGBoost. In calculation IV, the performance of GRU was similar
to that of XGBoost; the difference was only one healthy quadrat. The FCDNN did not perform well in
the classification of healthy quadrats. In conclusion, the calculation results show that prediction accuracy
can be improved by using a sequence-based model, i.e., GRU, with time-series imagery.
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3.3. Data Imbalance

The number of healthy samples was much larger than that of diseased samples (Table 2). This is
a typical example of a data imbalance issue. One possible consequence is that the learning models will
be guided by global performance, while the minority samples may be treated as noise [49]. For example,
for a dataset consisting of 90 negative examples and 10 positive samples, a classifier that predicts
all samples to be positive can achieve an overall accuracy of 90%. However, the classifier does not
have the ability to predict positive examples. In our case, the training processes of the models were
guided by the cross-entropy loss function. To reduce the loss, models were more likely to predict the
samples as healthy since healthy samples were the majority. This pattern can be observed from the
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results shown in Table 3. In most of the situations, the test precision was 10–20% greater than the
test recall. There are two common approaches to address the issue of data imbalance. One way is to
eliminate the data imbalance by using sampling methods [50]. Over-sampling methods create more
new minority classes while under-sampling methods discard some samples in the majority class [51,52].
Another way is to increase the costs for the misclassification of minority class samples [53]. Since the
number of samples was limited, the second way was adopted to test model performance by assigning
different weights to the minority class samples. The results are shown in Figure 8. In calculation I
(Figure 8a), when the weight of the ‘disease’ class was increased from 1 to 1.2, the results did not
change. When the class weight was between 1.2 and 2.8, with the increase in class weight, the recall
of diseased samples increased from 0.681 to 0.830. However, the overall test accuracy and the test
precision dropped by 15% and 35%, respectively. In calculation II (Figure 8b), when the weight was
1.8, the test recall achieved 0.830. After that, the model performance deteriorated with the increase
in the class weight. In calculation III (Figure 8c), the best test recall was achieved when the class
weight was increased to 2.6. The overall test accuracy and the test precision dropped by 20% and
34%, respectively. In calculation IV (Figure 8d), the test recall can be improved to 0.8. In summary,
the increase in minority class weight can help improve the classification accuracy of diseased samples.
However, the improvement was at the cost of overall accuracy and precision. Therefore, the value of
the class weight should be adjusted according to the practical need. If the objective is to detect as many
diseased quadrats as possible, a larger value of class weight should be used; otherwise, a smaller value
should be used.
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3.4. Forecast of the Soybean Sudden Death Syndrome (SDS)

Since the GRU-based method is a time sequence prediction model, it should forecast SDS
occurrence in the future. To measure the prediction performance, calculations of four different scenarios
have been conducted, as shown in Table 4. The first method was named as GRU_Current, which is
the same as the proposed method in Section 3.2. The second was named as GRU_Next, which uses
time-series imagery to predict SDS at the next time point. The results have been compared with the
results in Table 3. Take calculation A as an example; the target was SDS at time points 3, 4, 5 and 6 in
2016 and time points 5 and 6 in 2017. The sequence length of GRU_Next was two. The sequences were
1-2, 2-3, 3-4 and 4-5 in 2016 and 3-4 and 4-5 in 2017. The sequence length of GRU_Current was three.
The sequences were 1-2-3, 2-3-4, 3-4-5 and 4-5-6 in 2016 and 3-4-5 and 4-5-6 in 2017. The two methods
have the same target, i.e., SDS at the time points 3, 4, 5 and 6 in 2016 and at time points 5 and 6 in 2017.

Table 4. Input imagery sequence and target dates of the two methods. The values in parenthesis
indicate target dates.

No. Input (target) of GRU_Current Input (target) of GRU_Next

A 2016: 1-2-3 (3), 2-3-4 (4), 3-4-5 (5), 4-5-6 (6)
2017: 3-4-5 (5), 4-5-6 (6)

2016: 1-2 (3), 2-3 (4), 3-4 (5), 4-5 (6)
2017: 3-4 (5), 4-5 (6)

B
2016: 1-2-3-4 (4), 2-3-4-5 (5),

3-4-5-6 (6)
2017: 2-3-4-5 (5), 3-4-5-6 (6)

2016: 1-2-3 (4), 2-3-4 (5),
3-4-5 (6)

2017: 2-3-4 (5), 3-4-5 (6)

C 2016: 1-2-3-4-5 (5), 2-3-4-5-6 (6)
2017: 1-2-3-4-5 (5), 2-3-4-5-6 (6)

2016: 1-2-3-4 (5), 2-3-4-5 (6)
2017: 1-2-3-4 (5), 2-3-4-5 (6)

D 2016: 1-2-3-4-5-6 (6)
2017: 1-2-3-4-5-6 (6)

2016: 1-2-3-4-5 (6)
2017: 1-2-3-4-5 (6)

The results are shown in Table 5. In calculations A, B and C, the test accuracy of GRU_Current
was 1–3% greater than that of GRU_Next. In terms of test precision and test recall, GRU_Current also
outperformed GRU_Next. However, with the increase in the sequence length, the gap between the test
accuracy of the two methods becomes smaller. In calculation D, although the train accuracies were
slightly different, the test accuracy, recall and precision of the two methods were the same. It indicates
that the proposed model can be used to predict the SDS at the next time point when enough historical
images are available, which will bring benefits to the prediction of the future development of the
plant diseases.

Table 5. Comparisons between two methods.

Methods No. Train Accuracy Test Accuracy Test Precision Test Recall

GRU_Current A 0.909 0.904 0.800 0.681
GRU_Next A 0.885 0.875 0.718 0.596

GRU_Current B 0.885 0.860 0.890 0.532
GRU_Next B 0.871 0.830 0.760 0.404

GRU_Current C 0.865 0.856 0.800 0.681
GRU_Next C 0.864 0.844 0.789 0.638

GRU_Current D 0.820 0.825 0.950 0.594
GRU_Next D 0.830 0.825 0.950 0.594

4. Discussion

Remote sensing using satellite imagery can be a potentially powerful tool to detect plant diseases
at a quadrat or field level. Our results prove that the stress-triggered changes in the pattern of light
emission due to soybean SDS can be detected through high-resolution satellite imagery and the
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classification accuracy of diseased and healthy quadrats can be further improved by incorporating
time-series prediction. Our proposed method has manifested its ability to improve SDS detection
accuracy by incorporating time-series information.

A growing interest has been observed recently in the early detection of plant diseases.
Researchers have used different remote sensing tools for early detection and monitoring of plant
diseases at different spatial levels, such as leaf scale [54–59], plant canopy scale [3,60], plot-scale
based on aerial imagery [61,62] and field-wide-scale based on satellite imagery [29,63–65]. Although
many studies obtained remotely sensed data at different time points, none of them incorporated
time-series information in the analytical models.

Instead of only using individual static imagery, we proposed a model that treats the satellite
imagery, captured at different time points, as a time series for the detection of SDS. We compared
the SDS prediction results from our proposed GRU-based method with XGBoost and the FCDNN,
both non-sequence-based methods. Although the test accuracies of all three methods were above 76%,
accuracy improved by up to 7% after incorporating time-series prediction. This substantial improvement
in accuracy reveals that the GRU-based method uses the characteristic information of spectral bands,
ground-based crop rotation and time series in an optimal way. The main advantage of the GRU-based
method goes back to its workability of learning from history data. In the learning process, GRU can
determine the influence of images at different time points on the decision-making of the current status
through the reset gate and the update gate. Information from past images can help the model to
eliminate the effect of some noise, such as weather conditions.

In all calculation scenarios, the GRU-based method outperformed XGBoost and the FCDNN in
SDS prediction accuracy. Although XGBoost and the FCDNN are very powerful methods, they do
not incorporate time-based information. In our data, we found that reflectance values in the RGB
spectrum were lower for healthy quadrats than diseased quadrats, while this was the opposite in the
NIR spectrum. Moreover, this pattern became clearer near the end of the cropping season, which
indicates that incorporating time-based information for satellite images can add information to the
data analysis.

Besides accuracy, the GRU-based method also achieved greater precision (80–95%) for SDS
detection in all calculation scenarios, as compared to the XGBoost and FCDNN methods. This means
that soybean quadrats predicted either as diseased or healthy were assigned correctly 80% to 95% of
the time. However, in terms of recall, the FCDNN performed better than the GRU-based method and
XGBoost in three out of four calculation scenarios. This means that the FCDNN predicted diseased
soybean quadrats more accurately than the other two methods. However, its test accuracy was lower
because this method was not correctly predicting the healthy soybean quadrats. The reason is that
FCDNN was more likely to predict a sample as diseased, so the precision was sacrificed.

In the end, we made predictions of SDS at future time points (GRU_Next) based on previous
time-based imagery and we compared these results with the predictions made at time points included in
the training (GRU_Current). SDS prediction accuracy, precision and recall were greater in GRU_Current
models in small sequence scenarios. It is possible that this improved precision is because the models
in the GRU_Current scenarios can extract information from the imagery collected at the current
time point. On the other hand, in GRU_Next scenarios, we were predicting SDS using the history
data only. Moreover, in the last sequence scenario, accuracy, recall and precision of both GRU_Next
and GRU_Current models became equal, which indicates that the GRU-based method can predict SDS
in soybean quadrats with high accuracy when enough historical images are available.

A recent study [29] conducted at the same site detected SDS through satellite images with above
75% accuracy using the random forest algorithm. Contrary to our study, they used static images for
data analysis and predicted SDS on the 30% test subset from the same satellite images. In comparison,
we proposed a method that can predict SDS with high accuracy at future time points, based on
time-series satellite imagery.
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5. Limitations and Future Work

It should be noted that this proposed plant-disease recognition using a sequence-based model
with remote sensing is subject to a few limitations which suggest future research directions.

In the data collection, the number of images in our case study was limited because the PlanetScope
satellite can only take pictures of the locations every one or two weeks. More frequent observations of
SDS can help the model capture subtle changes along time. Some studies installed a camera system
around the canopies or plots so that they can monitor the real-time status of the plants. However,
since it requires a high intensity of cameras, the scalability of this method is limited. Another issue of
satellite imagery is that the collection frequency of the imagery may not correspond to the development
of diseases. As shown in the previous section, SDS development in June and July was slow, while it
was much faster at the end of August. So, ideally, it would have been better to collect images more
frequently in August. Besides, the locations of the quadrats of 2016 and 2017 were different. Therefore,
the time sequences of 2016 and 2017 were constructed separately. In the future, the experimental fields
should be evaluated consistently so that longer time sequences can be used to further improve the
prediction accuracy.

In terms of data preprocessing, this paper only used the mean values and variance values of the
pixels due to the resolution limitations. The importance of different pixels may be different due to
disease intensities. One alternative way is to construct a small-scale CNN to obtain features of each
image and then feed the extracted features to the GRU. Additionally, multi-band imagery can also be
used to improve the accuracy.

In some calculations, the percentage of diseased samples was very low, meaning that the data
were not balanced. In this paper, this issue was addressed by assigning weights to the diseased samples
in the calculation of loss of function. There are also some other methods to address data imbalance
problem. For example, the oversampling method can generate new diseased samples by recombining
the pixels of the diseased samples. In the future, we will compare the effectiveness of different methods.

Lastly, in this study, SDS is labeled as diseased (denoted as “1”) and not diseased (denoted as “0”),
using 5% as a threshold value which constitutes a classification problem. One concern is the influence
of the threshold value on the model performance. For example, in our case, quadrats with 5.1% and
99.1% incidence were categorized as diseased samples, which may influence the prediction precision of
the model. Therefore, the classification accuracy of the model will be tested using different threshold
values in the future. We can also test other time-series models, e.g., LSTM. These are reserved for
future research.

6. Conclusions

The development of sensing techniques has brought significant improvements to plant-disease
detection, treatment and management. However, there is a lack of research on detecting SDS using
pixel-level satellite imagery at the quadrat level. The major challenge is how to use limited information,
i.e., only a few pixels for each quadrat, to improve SDS prediction accuracy. Some traditional methods
for the analysis of near-sensing data are based on CNNs, which can efficiently extract the most
important features from thousands of RGB values and other information. In contrast, for the analysis
of low-pixel-level satellite imagery, additional information is required.

In this paper, a GRU-based model is proposed to predict SDS by incorporating temporality into
the satellite imagery. Instead of using individual static imagery, time-series imagery is used to train
the model. Different test case scenarios have been created for comparisons between the proposed
method and other non-sequence-based methods. The results show that compared to XGBoost and
the FCDNN, the GRU-based method can improve overall prediction accuracy by 7%. In addition,
the proposed method can potentially be adapted to predict future development of SDS.
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