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Abstract: Areas at risk of land subsidence in Jakarta can be identified using a land subsidence
susceptibility map. This study evaluates the quality of a susceptibility map made using functional
(logistic regression and multilayer perceptron) and meta-ensemble (AdaBoost and LogitBoost) machine
learning algorithms based on a land subsidence inventory map generated using the Sentinel-1 synthetic
aperture radar (SAR) dataset from 2017 to 2020. The land subsidence locations were assessed using
the time-series interferometry synthetic aperture radar (InSAR) method based on the Stanford Method
for Persistent Scatterers (StaMPS) algorithm. The mean vertical deformation maps from ascending
and descending tracks were compared and showed a good correlation between displacement patterns.
Persistent scatterer points with mean vertical deformation value were randomly divided into two
datasets: 50% for training the susceptibility model and 50% for validating the model in terms
of accuracy and reliability. Additionally, 14 land subsidence conditioning factors correlated with
subsidence occurrence were used to generate land subsidence susceptibility maps from the four
algorithms. The receiver operating characteristic (ROC) curve analysis showed that the AdaBoost
algorithm has higher subsidence susceptibility prediction accuracy (81.1%) than the multilayer
perceptron (80%), logistic regression (79.4%), and LogitBoost (79.1%) algorithms. The land subsidence
susceptibility map can be used to mitigate disasters caused by land subsidence in Jakarta, and our
method can be applied to other study areas.

Keywords: Jakarta; land subsidence susceptibility mapping; time-series InSAR; StaMPS processing;
machine learning

1. Introduction

Several cities in Indonesia suffer from degradation at the ground level of buildings, known as
land subsidence [1,2]. In Jakarta, this process has had a severe impact on urban infrastructure, leading
to cracks in buildings, roads and damage to drainage systems [3]. These conditions are problematic
because land subsidence may expand coastal flood areas due to sea-level rise [4]. Heavy monsoon
rainfall [5] has caused frequent river flooding; if this occurs again, Jakarta could be submerged entirely
underwater [1,4].

Recent studies of land subsidence in Jakarta have used various geodetic measurement methods,
such as leveling surveys [3] and a global positioning system (GPS) surveys [6,7]. These studies indicated
that excessive groundwater extraction is the leading cause of land subsidence and compaction to
the vulnerable aquifer system [8]. This compaction may be exacerbated by natural consolidation
since Jakarta’s landform mostly comprises young alluvial soils that cannot support the weight of
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human-made structures [9,10]. Therefore, it is essential to monitor land subsidence in Jakarta to predict
further possible occurrences and mitigate damage [11,12].

Over the last decade, land subsidence susceptibility maps have been generated using geological,
geomorphological, topographical, and hydrological data; these are considered the main factors
influencing land subsidence [11,13,14]. Various methods are used to generate land subsidence
susceptibility maps, including frequency ratios (FR) [12,15], weight of evidence (WOE) [16,17], logistic
regression (LR) [18], evidential belief functions [11], analytical hierarchy processes (AHP) [19], support
vector machines (SVM) [14,20], decision trees [21,22], fuzzy logic [12,23], adaptive neuro-fuzzy inference
systems (ANFIS) [24,25], and artificial neural networks (ANN) [26,27]. In general, using a single
modeling method leads to lower predictive accuracy than an ensemble method that uses a combination
of models and machine learning algorithms [13,28]. Machine learning algorithms have the advantage
of finding unpredictable relationships in datasets at multiple scales and have, thus, been recommended
to obtain accurate land subsidence susceptibility maps [22].

Another challenge in generating land subsidence susceptibility maps is the low availability of
land subsidence inventory maps. In this study, a land subsidence inventory map was generated via
time-series interferometry synthetic aperture radar (InSAR) analysis. This technique can be applied
to measure the displacement of the earth’s surface with an accuracy of up to millimeters per year
by improving the selection of coherent pixels and reducing atmospheric noise [29–33]. It has been
widely used to monitor land subsidence and generate land subsidence maps, for example, in large
cities in Mexico [33,34], Kurdistan, and Iran [35], in Yuncheng Basin, China [36], and in coastal
cities and areas such as Venice, Italy [37], New Orleans, United States [38], and Shanghai, China [39].
The InSAR algorithm has been successfully applied to earthquakes [40], volcanic activities [41,42], crustal
deformation [31], landslides [43], manmade deformations [44], excessive groundwater extraction [3],
mining activities [45], and natural consolidation of young alluvial soil [9].

The recent studies of monitoring land subsidence in Jakarta using interferometry synthetic aperture
radar (InSAR) techniques was conducted using the Small Baseline Subset (SBAS) algorithm from
2007 to 2009 [1] and using Geodesy and Earth Observing Systems-Persistent Scatterer Interferometry
(GEOS-PSI) algorithm from 2007 to 2010 [46]. Both studies utilized Advanced Land Observing Satellite
(ALOS) phased array type-L synthetic aperture radar (PALSAR) data to produce a land subsidence
map, and both compared their results with GPS survey data. However, Jakarta’s land subsidence map
requires updating as it has remained unchanged for the past 10 years, and research on land subsidence
susceptibility maps was not found in Jakarta.

Therefore, this study’s objective was to generate the updated land subsidence map in Jakarta
using the Stanford Method for Persistent Scatterers (StaMPS) with the Sentinel-1 synthetic aperture
radar (SAR) dataset from March 2017 to May 2020 in ascending track and March 2017 to April 2020 in
a descending track. The mean vertical deformation maps in ascending and descending tracks were
compared to validate Jakarta’s land subsidence location. After that, the land subsidence map obtained
with this method was used as an inventory map to generate a land subsidence susceptibility map in
Jakarta that predicted the areas at risk of land subsidence in the future. Two meta-ensemble machine
learning algorithms (adaptive boosting (AdaBoost) and Logit Boost), and two functional machine
learning algorithms (logistic regression and multilayer perceptron) were used. The result of the land
subsidence susceptibility map produced by these algorithms was evaluated to compare all models’
accuracy and reliability using receiver operating characteristic (ROC) curve analysis.

2. Study Area

Jakarta is Indonesia’s capital city (Figure 1a), located at 6◦17’ south (S) and 106◦82’ east (E), on
the northern coast of western Java. It is considered a lowland area, with an average altitude of ±7 m
above sea level [3,47]. In 2019, its population was 10.5 million, with a population growth rate of
about 1.19% per year. The population density was 15,900 people per km2, within a total land area
of 662.33 km2 [47]. Historically, the population of Jakarta gradually migrated to the other districts
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and municipalities that are part of the Jakarta Metropolitan Region (JMR), which covers a total area
of 5897 km2 and includes Bogor, Depok, Tangerang, and Bekasi [48] (Figure 1b). This migration to
Jakarta’s outskirts led to increased urban development that could cause land subsidence in these
areas [3]. Our study area covers the JMR; however, for simplicity, we refer to it as Jakarta. The three
administrative areas were chosen as study area due to land subsidence reported on those areas from
the recent study using GPS surveys, leveling surveys, and InSAR techniques. Training and testing data
in Figure 1b used in this study to generate a land subsidence susceptibility map were assessed from
the land subsidence inventory map.

Figure 1. (a) Study area location in Indonesia and (b) training and testing data sets from land subsidence
location within Jakarta Metropolitan Region (JMR) depicted from Sentinel-2 satellite imagery taken on
28 August 2020, divided into three administrative areas: Jakarta, Tangerang, and Bekasi.

The geological and geomorphological area in Jakarta lithologically was dominated by alluvium
landform (50.20%) and alluvium fans (19.66%), followed by Serpong form (7.03%) that dominated by
fragmented pumice sandstones, some limestone, and andesite. A volcanic pyroclastic flow formed
tuff Banten (6.77%) and upper Banten tuff (4.88%), Sandstone unit (4.05%), swamp deposit (1.75%),
Cihoe form (1.61%), beach ridge deposit (1.53%), and old alluvium (0.74%). Subang form (0.64%)
was dominated by layered claystone lithology with limestone and marl found locally, marine deposit
(0.52%), and young volcanic rocks (0.22%); Bojongmanik form (0.22%) was dominated by alternating
sandstones and claystone inserted by limestones and coastal deposit (0.13%); Parigi form (0.05%)
was dominated by medium limestone, lake (0.01%), and sandstone tuff (0.01%). The domination
of alluvium landform has a risk of land subsidence due to the compaction of natural consolidation
worsened by a human-made structure [3,9] covering the Jakarta area’s land use. Land use in Jakarta
was dominated by settlement area with 45.72% and followed by 39.79% of rice field, 5.94% of dryland
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agriculture, 4.75% of fish pond, 1.98% of shrub-mixed dryland farms, 0.84% of airport, 0.51% of swamp,
0.35% of estate crop plantation, 0.09% of barren land, 0.03% of secondary mangrove forest, and 0.004%
of swamp shrub.

Research on land subsidence in Jakarta has been conducted since 1982 using leveling surveys.
There were two main monitoring periods: (1) 1982–1991 and (2) 1991–1997. Land subsidence was found
in the period 1982–1991 in three regions with the highest accumulated subsidence value compared
to other regions, namely, two regions in the northwestern part (Cengkareng and Kalideres districts)
and the third in the northeastern part of Jakarta (Kemayoran-Sunter district); accumulated subsidence
was found in Kalideres district with up to 68.5 cm between 1982 and 1991 with an annual rate of
subsidence around 8 cm/year. Accumulated land subsidence was found in the Cengkareng district,
with up to 60 cm between 1982 and 1991, with an annual subsidence rate of around 7 cm/year.
Accumulated land subsidence was found in the Kemayoran-Sunter district, with up to 70 cm with
an annual subsidence rate of around 6 cm/year. The second period of monitoring land subsidence
using a leveling survey between 1991 and 1997 highlighted one region with the highest accumulated
subsidence value than other regions in the Kalideres district, with up to 154.1 cm with an annual
subsidence rate of around 23 cm/year [7].

Following this research, land subsidence in Jakarta was monitored using GPS surveys from 1997
to 2005, and two regions affected by land subsidence were reported in two stations: (1) Kwitang
district and (2) Pantai Mutiara district. The accumulated land subsidence was found in the Kwitang
district, with up to 48 cm with an annual rate of subsidence rate of 5 cm/year; accumulated land
subsidence in Pantai Mutiara district was around 50 cm with an annual rate of subsidence around
4.6 cm/year. [6]. Land subsidence in Jakarta measured using leveling and GPS surveys positively
correlated with excessive groundwater extraction and sea-level rise [6,7,49].

Land subsidence was also reported using InSAR techniques based on ALOS PALSAR satellite
data in 2007–2009 using the SBAS method, with land subsidence found in Pluit district with an annual
subsidence rate of 21.6 cm/year. Land subsidence was found in Cengkareng district with an annual
subsidence rate around 21.8 cm/year, in Bekasi district with an annual rate of subsidence of around
10.6 cm/year, and in Karawang district with an annual rate of around 16.4 cm/year [1]. Research was
also conducted with ALOS PALSAR satellite data within the period 2007–2010 using the GEOS-PSI
method, finding land subsidence in the coastal area and lowland area in northwestern Jakarta within
Penjaringan and Cengkareng districts with an annual subsidence rate of up to 26 cm/year, with
accumulated subsidence rates of up to 86.5 cm between 2007 and 2010. Land subsidence was observed
in the Bekasi district with an annual subsidence rate of up to 11.5 cm/year [46].

3. Material and Methods

3.1. SAR Datasets

A land subsidence inventory map for generating the land subsidence susceptibility map in Jakarta
was generated using Sentinel-1 SAR C-band data (5.5 cm wavelength) provided by the European Space
Agency (ESA). The SAR data were acquired from March 2017 to May 2020 (91 datasets in the ascending
track with path number 98 and frame number 1160, with vertical–vertical (VV) polarization) and in
the period of March 2017 to April 2020 (89 datasets in the descending track with path number 47
and frame number 614, with vertical–vertical (VV) polarization). The ascending and descending
datasets are listed in Tables 1 and 2, and the reference dates with zero delta day and zero perpendicular
baselines from the ascending track are shown on 15 October 2018, whereas those from the descending
track are shown on 16 November 2018; both reference dates are shown in bold text in table number 45.
A perpendicular baseline graph (generated from Tables 1 and 2 and shown in Figure 2) was used to
visualize the temporal baseline from the reference date.
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Table 1. Acquisition dates (format ddmmyyyy) of the Sentinel-1 synthetic aperture radar (SAR) datasets
in ascending track. Delta days = number of days between each acquisition date. B⊥ = perpendicular
baseline. The reference dates in ascending tracks are shown in bold text.

No. Acquisition Date
(ddmmyyyy) DeltaDays B⊥

(m) No.
Acquisition

Date
(ddmmyyyy)

DeltaDays B⊥
(m) No. Acquisition Date

(ddmmyyyy) DeltaDays B⊥
(m)

1 18032017 −576 77 32 30042018 −168 64 62 07052019 204 93
2 30032017 −564 65 33 12052018 −156 −2 63 19052019 216 16
3 11042017 −552 3 34 24052018 −144 28 64 31052019 228 20
4 23042017 −540 20 35 05062018 −132 127 65 12062019 240 166
5 05052017 −528 −25 36 17062018 −120 103 66 06072019 264 104
6 17052017 −516 17 37 11072018 −96 95 67 18072019 276 44
7 29052017 −504 110 38 23072018 −84 62 68 30072019 288 90
8 10062017 −492 21 39 04082018 −72 98 69 11082019 300 −9
9 22062017 −480 21 40 16082018 −60 75 70 23082019 312 1
10 04072017 −468 112 41 28082018 −48 61 71 04092019 324 46
11 09082017 −432 54 42 09092018 −36 60 72 16092019 336 106
12 21082017 −420 91 43 21092018 −24 55 73 28092019 348 −14
13 02092017 −408 50 44 03102018 −12 115 74 10102019 360 −110
14 14092017 −396 22 45 15102018 0 0 75 22102019 372 −125
15 26092017 −384 43 46 27102018 12 53 76 03112019 384 19
16 08102017 −372 48 47 08112018 24 85 77 15112019 396 −2
17 20102017 −360 72 48 20112018 36 85 78 27112019 408 38
18 01112017 −348 43 49 02122018 48 85 79 09122019 420 98
19 13112017 −336 91 50 14122018 60 142 80 21122019 432 87
20 25112017 −324 30 51 26122018 72 6 81 02012020 444 92
21 07122017 −312 140 52 07012019 84 74 82 14012020 456 40
22 19122017 −300 60 53 19012019 96 46 83 26012020 468 22
23 31122017 −288 135 54 31012019 108 40 84 07022020 480 36
24 12012018 −276 81 55 12022019 120 103 85 19022020 492 74
25 24012018 −264 78 56 24022019 132 29 86 02032020 504 93
26 05022018 −252 37 57 08032019 144 −26 87 14032020 516 31
27 17022018 −240 15 58 20032019 156 26 88 26032020 528 41
28 01032018 −228 30 59 01042019 168 8 89 07042020 540 40
29 13032018 −216 101 60 13042019 180 75 90 19042020 552 14
30 06042018 −192 139 61 25042019 192 −31 91 01052020 564 67
31 18042018 −180 126

Table 2. Acquisition dates (format ddmmyyy) of the Sentinel-1 Sentinel-1 synthetic aperture radar
SAR datasets in descending track. Delta days = number of days between each acquisition date. B⊥ =

perpendicular baseline. The reference dates in descending tracks are shown in bold text.

No. Acquisition Date
(ddmmyyyy) DeltaDays B⊥

(m) No. AcquisitionDate
(ddmmyyyy) DeltaDays B⊥

(m) No. Acquisition Date
(ddmmyyyy) DeltaDays B⊥

(m)

1 26032017 −600 22 31 02042018 −228 −20 61 27052019 192 24
2 07042017 −588 76 32 14042018 −216 40 62 08062019 204 0
3 19042017 −576 83 33 26042018 −204 0 63 20062019 216 −7
4 01052017 −564 60 34 08052018 −192 26 64 02072019 228 16
5 13052017 −552 0 35 20052018 −180 0 65 14072019 240 29
6 06062017 −528 0 36 13062018 −156 26 66 07082019 264 87
7 18062017 −516 48 37 25062018 −144 26 67 19082019 276 84
8 30062017 −504 0 38 31072018 −108 −42 68 31082019 288 −5
9 12072017 −492 0 39 24082018 −84 −1 69 12092019 300 0
10 24072017 −480 −10 40 17092018 −60 0 70 24092019 312 117
11 05082017 −468 41 41 29092018 −48 30 71 06102019 324 94
12 17082017 −456 0 42 11102018 −36 51 72 18102019 336 16
13 29082017 −444 57 43 23102018 −24 0 73 30102019 348 19
14 10092017 −432 0 44 04112018 −12 0 74 11112019 360 45
15 22092017 −420 −4 45 16112018 0 0 75 23112019 372 0
16 04102017 −408 0 46 28112018 12 −18 76 05122019 384 5
17 16102017 −396 16 47 10122018 24 3 77 17122019 396 54
18 28102017 −384 96 48 22122018 36 11 78 29122019 408 63
19 09112017 −372 0 49 03012019 48 0 79 10012020 420 35
20 21112017 −360 62 50 15012019 60 24 80 22012020 432 25
21 03122017 −348 −2 51 27012019 72 0 81 03022020 444 11
22 15122017 −336 −23 52 08022019 84 1 82 15022020 456 24
23 27122017 −324 −50 53 20022019 96 34 83 27022020 468 −8
24 08012018 −312 0 54 04032019 108 101 84 10032020 480 91
25 20012018 −300 0 55 16032019 120 23 85 22032020 492 72
26 01022018 −288 14 56 28032019 132 0 86 03042020 504 33
27 13022018 −276 39 57 09042019 144 −12 87 15042020 516 0
28 25022018 −264 0 58 21042019 156 133 88 27042020 528 0
29 09032018 −252 −36 59 03052019 168 82 89 09052020 540 0
30 21032018 −240 −68 60 15052019 180 42
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Figure 2. Perpendicular baseline graph from (a) ascending track and (b) descending track.

3.2. Land Subsidence Conditioning Factors

In total, 14 land subsidence conditioning factors consisting of geological, geomorphological,
topographical, and hydrological data were chosen as the conditioning factors (Table 3) in this study as
they are considered the main factors influencing land subsidence [11,13,14]. Each factor was classified
using the quantile method, and the factors with different cell size resolutions were resampled into
raster datasets with 30 m cell size from each conditioning factor to standardize each factor’s resolution.

Table 3. Land subsidence conditioning factors in the study area. DEM, digital elevation model; SRTM,
Shuttle Radar Topography Mission.

Category Factor Source

Hydrological factors Groundwater drawdown
Groundwater Conservation Center of

Indonesia, The Ministry of Energy
and Mineral Resources

Hydrological factors Rainfall intensity Meteorology, Climatology,
and Geophysical Agency of Indonesia

Land cover factors Road network Geospatial Information Agency of
Indonesia

Hydrological factors River network Geospatial Information Agency of
Indonesia

Geological factors Faults Geospatial Information Agency of
Indonesia

Land cover factors Land use The Ministry of Environment and Forestry
of Indonesia

Geological factors Lithology The Ministry of Energy and Mineral
Resources

Topographical factors Elevation DEM SRTM 1 Arc-Second Global
Topographical factors Slope DEM SRTM 1 Arc-Second Global
Topographical factors Aspect DEM SRTM 1 Arc-Second Global

Geomorphological factors Profile curvature DEM SRTM 1 Arc-Second Global
Geomorphological factors Plan curvature DEM SRTM 1 Arc-Second Global

Hydrological factors Topographic wetness index DEM SRTM 1 Arc-Second Global

A recent study in Jakarta found that the leading causes of land subsidence in Jakarta are
groundwater extraction, the load of buildings and construction, natural consolidation of alluvium
soil, and tectonic activities [3]. In this study, groundwater drawdown data were collected from
the Groundwater Conservation Center, The Ministry of Energy and Mineral Resources of Indonesia.
The observation of groundwater drawdown data is carried out periodically through an automatic
water level record (AWLR) system. The annual change in groundwater level from 2019 to 2020 was
calculated from 15 monitoring wells, and the map was constructed (Figure 3a) using the inverse
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distance weighting (IDW) interpolation method from the annual change in groundwater level data.
The obtained groundwater drawdown data in this study were insufficient compared to the study area
due to the limited monitoring wells over the study area. Although the available data are few, the use
of groundwater drawdown data is essential to determine the relationship between land subsidence
and groundwater extraction.
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Figure 3. Land subsidence conditioning factors: (a) groundwater drawdown; (b) rainfall intensity;
(c) distance to roads; (d) distance to rivers; (e) distance to faults; (f) drainage density; (g) land use;
(h) lithology; (i) elevation; (j) slope; (k) aspect; (l) profile curvature; (m) plan curvature; (n) topographic
wetness index.

The groundwater level can increase due to conditional factors indirectly associated with land
subsidence, such as rainfall, distance from a river, and river density, which can recharge the groundwater
level [13,50]. Four years of daily rainfall data (from 2017 to 2020) from seven weather stations were
acquired from the Indonesian Meteorology, Climatology, and Geophysical Agency of Indonesia, and the
annual rainfall intensity was calculated and interpolated using the IDW tool in geographic information
system (GIS) software (ArcGIS; ESRI, Redlands, CA, USA) (Figure 3b). However, the availability of
rainfall data was limited compared to the study area due to the cost and constraints of acquiring data.
Nevertheless, the utilization of the rainfall data in this study is important to correlate the topographical
factor related to the infiltration flow affecting the soil’s strength.

Road, river, and fault networks were acquired from the Geospatial Information Agency of Indonesia
from the main road map, main river map, and fault map at a scale of 1:250,000 of polygonal-shaped
data using the Atlas map of Indonesia. The information on the location of roads, rivers, and faults was
used to construct a distance map (Figure 3c, Figure 3d, and Figure 3e, respectively) using the Euclidean
distance tool, and the maps were classified using the quantile method to provide suitable classes
within a 30 m cell size. The drainage density or river map density was estimated using the kernel
density tool (Figure 3f). Distance to the road and land use are related to urban development in Jakarta,
which can affect land subsidence [3]. The land-use map (Figure 3g) was acquired from the Ministry
of Environment and Forestry of Indonesia that used Landsat data to generate a land cover map.
The geological parameters describe the spatial correlation of lithological landform and land subsidence
in Jakarta as being caused by the compaction of the alluvium soil landform [3]. The lithology map
(Figure 3h) was acquired from the Geological Atlas map of Indonesia from the Ministry of Energy
and Mineral Resources, and the polygonal-shaped map was converted into a raster map with 30 m cell
size using GIS tools.
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The topographical map, which includes elevation, slope, aspect, profile curvature, plan curvature,
and topographic wetness index (TWI) (Figure 3i, Figure 3j, Figure 3k, Figure 3l, Figure 3m, and Figure 3n,
respectively) data extracted from the digital elevation model (DEM) of the Shuttle Radar Topography
Mission (SRTM) [51], was constructed using the basic terrain analysis tools. Elevation influences
the hydrological properties and soil moisture, whereby a lower-elevation area possibly gains more
precipitation than a higher-elevation area [13,14]. The slope is associated with land subsidence because
it affects the infiltration of rainfall (a steeper surface slope decreases infiltration) [13,21], and the
aspect is the second derivative of the slope that has a relationship with land subsidence because
the slope aspect affects the strength of the soil due to the moisture preservation and the amount of
vegetation [11]. Profile curvature is associated with flow speed, sediment, and erosion quantity, while
plan curvature is perpendicular to the slope and indirectly affects land subsidence by influencing
convergence and divergence of flow across the surface [13]. The TWI defines the degree of deposition
of water at a specific site [52]. The topographical factors extracted from the SRTM DEM are widely
used as conditioning factors in land subsidence susceptibility mapping [11–13,28].

The relationship of land subsidence occurrence with the conditioning factors in each class is
described in Table 4. A ratio greater than 1 denotes that the class in the conditioning factor is
more correlated with the land subsidence occurrence [11]. The calculation of frequency ratio shows
that the land subsidence occurred in areas with groundwater level data between 20.27 and 21.00
and between 23.31 and 34.55 m below ground level, while land subsidence also occurred in areas with
more annual rainfall intensity due to the recharge of groundwater level and the usage of groundwater.
Areas between 0 and 126 m with roads were more correlated with land subsidence occurrence. The land
subsidence areas correlated with fault distance were between 15,944 and 68,975 m from the fault location.
There were three drainage density classes correlated with land subsidence occurrence and settlement
areas correlated with land subsidence. In terms of lithological factors, alluvium, alluvium fans, beach
ridge deposits, and sandstone landforms were considered more correlated with the land subsidence
occurrences. There were three classes in the elevation map, four classes in the aspect map, two classes
in the slope map, one class in the plan curvature, one class in the profile curvature, and three classes in
the topographic wetness index map correlated with land subsidence occurrences.

Table 4. Relationship between land subsidence occurrence and conditioning factors using frequency
ratio (FR) model.

No. Conditioning
Factor Class/Category Ratio each

Class
Ratio of

Occurrence FR

1

Groundwater
drawdown
(m below

ground level)

7.77–20.27 0.1831 0.1201 0.6561
20.27–21.00 0.2021 0.2953 1.4616
21.00–21.84 0.2361 0.2127 0.9009
21.84–23.31 0.1914 0.1282 0.6697
23.31–34.55 0.1874 0.2437 1.3003

2
Rainfall

intensity map
(mm/year)

1,549–1,781 0.1999 0.1009 0.5046
1,781–1,874 0.1945 0.1635 0.8404
1,874–1,908 0.1977 0.2241 1.1338
1,908–1,975 0.2090 0.3069 1.4680
1,975–2,124 0.1989 0.2047 1.0290

3
Distance to

road map (m)

0–126 0.2114 0.2201 1.0412
126–328 0.1978 0.1964 0.9931
328–632 0.1972 0.1943 0.9853

632–1,163 0.1968 0.1964 0.9979
1,163–6,451 0.1968 0.1928 0.9795
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Table 4. Cont.

No. Conditioning
Factor Class/Category Ratio each

Class
Ratio of

Occurrence FR

4
Distance to

river map (m)

0–340 0.2009 0.2262 1.1262
340–1,020 0.1999 0.2369 1.1848

1,020–2,254 0.1998 0.2030 1.0159
2,254–4,465 0.1997 0.1422 0.7120
4,465–10,845 0.1997 0.1917 0.9601

5
Distance to

fault map (m)

0–15,944 0.2000 0.0386 0.1929
15,944–29,115 0.2000 0.2029 1.0145
29,155–53,378 0.2000 0.3375 1.6874
53,378–68,975 0.2000 0.2845 1.4223
68,975–88,386 0.2000 0.1366 0.6829

6
Drainage
density

(km/km2)

0 0.2331 0.2408 1.0331
0–6 0.1917 0.1655 0.8632
6–16 0.1917 0.2071 1.0801

16–48 0.1917 0.2101 1.0960
48–157 0.1917 0.1765 0.9206

7 Land-use map

Airport 0.0084 0.0022 0.2644
Barren land 0.0009 0.0004 0.4666

Dryland agriculture 0.0594 0.0076 0.1275
Estate crop plantation 0.0035 0.0003 0.0739

Fish pond 0.0475 0.0012 0.0250
Rice field 0.3979 0.0650 0.1634

Secondary mangrove forest 0.0003 0.0001 0.3295
Settlement area 0.4572 0.9194 2.0110

Shrub-mixed dryland farms 0.0198 0.0028 0.1440
Swamp 0.0051 0.0009 0.1831

Swamp shrub 0.0000 0.0000 0.1441

8 Lithology map

Alluvium 0.5020 0.5577 1.1111
Alluvium fans 0.1966 0.3200 1.6274

Beach ridge deposits 0.0153 0.0341 2.2385
Bojongmanik form 0.0022 0.0000 0.0000

Cihoe form 0.0161 0.0002 0.0149
Coastal deposit 0.0013 0.0000 0.0000

Lake 0.0001 0.0000 0.1178
Marine deposits 0.0052 0.0000 0.0024

Old alluvium 0.0074 0.0002 0.0239
Parigi form 0.0005 0.0000 0.0000

Sandstone tuff 0.0001 0.0000 0.0000
Sandstone unit 0.0405 0.0440 1.0873
Serpong form 0.0703 0.0014 0.0198
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Table 4. Cont.

Subang form 0.0064 0.0000 0.0030
Swamp deposits 0.0175 0.0005 0.0300

Tuff banten 0.0677 0.0391 0.5779
Upper banten tuff 0.0488 0.0026 0.0543

Young volcanic rocks 0.0022 0.0000 0.0000

9
Elevation map

(m)

0–3 0.2227 0.1088 0.4883
3–9 0.2029 0.2170 1.0699
9–20 0.1976 0.3767 1.9061

20–37 0.1968 0.2637 1.3397
37–156 0.1800 0.0338 0.1878

10 Slope (degree)

0 0.2011 0.1727 0.8587
0–1.36 0.1997 0.1657 0.8294

1.36–3.19 0.1997 0.2399 1.2009
3.19–5.47 0.1997 0.2470 1.2367

>5.47 0.1997 0.1748 0.8753

Aspect

Flat 0.1214 0.1339 1.1030
North 0.1490 0.1778 1.1937

Northeast 0.1091 0.1323 1.2128
East 0.1177 0.1232 1.0468

11 Southeast 0.1006 0.0888 0.8829
South 0.1212 0.0924 0.7626

Southwest 0.0937 0.0711 0.7592
West 0.0937 0.0880 0.9386

Northwest 0.0937 0.0925 0.9869

12 Profile
curvature

Concave 0.3332 0.3253 0.9764
Flat 0.3336 0.3017 0.9045

Convex 0.3332 0.3729 1.1192

13 Plan curvature
Concave 0.3332 0.3253 0.9764

Flat 0.3336 0.3017 0.9045
Convex 0.3332 0.3729 1.1192

Topographic
wetness index

2.52–6.81 0.1430 0.1533 1.0722
6.81–8.00 0.1939 0.2252 1.1614

14 8.00–10.14 0.2140 0.2279 1.0647
10.14–11.96 0.2258 0.2098 0.9293
11.96–22.90 0.2233 0.1839 0.8232

3.3. Illustration of Methodology

The methods to generate land subsidence susceptibility maps using functional and meta-ensemble
algorithms are described below and illustrated in Figure 4.

1. Land subsidence occurrences were identified by exploiting Sentinel-1 SAR datasets from 2017 to
2020 from both ascending and descending tracks using time-series InSAR techniques based on
the StaMPS algorithm. The persistent scatterer points from co-registered single master images
showing a deformation value were used as the land subsidence inventory map.

2. Preparation of training and testing datasets was conducted by randomly dividing the persistent
scatterer (PS) points of time-series InSAR showing a vertical deformation into 50% training
data to generate land subsidence susceptibility models and 50% testing data to validate
the land subsidence susceptibility map, as done in other studies finding optimal results [28,53].
The distribution of training and test data is shown in Figure 1b.

3. Preparation of land subsidence conditioning factors for spatial correlation analysis was done
using the frequency ratio method to find the correlation between each factor and land subsidence
occurrence [53]. We used each model’s ratio value and then used as the conditioning factors
related to land subsidence occurrences. First, the conditioning factors were classified using
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quantile methods in GIS tools with a similar environment of 30 m cell size for each factor; then,
the number of subsidence occurrences in each class was calculated using the cross-tabulation tool
in GIS. Next, we calculated the ratio between the percentage of pixels of each conditioning factor
class and the percentage of subsidence occurrence pixels to obtain the FR value as follows:

Frequency Ratio =
% of class conditioning factor

% of land subsidence occurrence
(1)

Figure 4. The study workflow.

4. The conditioning factors consisting of frequency ratio values were used to generate land subsidence
susceptibility models using two functional algorithms (logistic regression and multilayer
perceptron) and two meta-ensemble algorithms (AdaBoost and LogitBoost).

5. After all land subsidence susceptibility maps were generated, all maps were validated using
the test data prepared before and analyzed using ROC curve analysis.

3.4. StaMPS Processing

StaMPS (Stanford Method for Persistent Scatterers) is an analysis method used to facilitate
the generation of time-series deformation images of all terrains, including nonurban areas. The StaMPS
algorithm uses the spatial correlation of phase measurements rather than a functional temporal model
to identify PS pixels. StaMPS processing does not use a model to describe how the displacement
rate varies with time. To identify PS pixels in a single master stack of interferograms, StaMPS uses
the phase characteristics from the dominant point scatterer in each area and creates interferograms from
SAR images. It also reduces decorrelation [54]. Thus, the StaMPS algorithm can identify and extract
the deformation signal from stable pixels in all terrains.
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The slave images in the acquired SAR datasets were resampled to perfectly match the master
image through a co-registration process before generating an interferogram. The co-registration process
was applied to two different images to produce refined SAR images, which were then cropped to focus
only on the area of interest. Next, differential InSAR (DInSAR) images were generated by subtracting
the topographic InSAR images generated using the interferograms from the topographic phases of
the SRTM DEM [55,56]. We used the PS method to measure the displacement of the earth’s surface [57]
to generate the time-series deformation map. The main processes generated a single master stack of
interferograms and topographic phase removal [33].

The StaMPS algorithm is shown in Figure 5. Multiple images were co-registered to generate a single
master image for the ascending track on 15 October 2018 and the descending track on 16 November 2018;
co-registered images with the topographic phases removed were subjected to amplitude and phase
noise analysis to derive a subset comprising all PS pixels, with weeding performed using a threshold
value of 0.4. The wrapped phase of the selected pixels was corrected for the spatially uncorrelated
look-angle error. The phase was then unwrapped, and PS outputs were generated. The deformation
map from the line of sight (LOS) displacement could be converted into vertical deformation data [58,59]
by assuming the horizontal deformation as very small compared to the vertical deformation caused
by land subsidence [60–62]. Recent studies using GPS and leveling surveys reported that the land
subsidence in Jakarta shows a vertical deformation [7], and a vertical deformation pattern was also
found in research using InSAR to monitor land subsidence in Jakarta [1,46]; hence, the deformation
from the line of sight (LOS) in this study could be assumed as negligible and could be converted directly
into vertical deformation value using Equation (2) by dividing the displacement or deformation from
the line of sight (dLOS) by the cosine of incident angle (θ) from the radar signal. The results of vertical
deformation were assigned a negative value from the initial ground-level observation point, indicating
that the land subsidence occurred vertically at that point [9].

V =
dLOS

cos θ
(2)

Figure 5. Flowchart of Stanford Method for Persistent Scatterers (StaMPS) Processing.

3.5. AdaBoost

AdaBoost is a machine learning algorithm introduced by Freund and Schapire (1997) [63].
AdaBoost’s classifier uses an adaptive resampling technique that produces a series of individual
classifiers to classify training samples accurately. The frequency of variables selected by a weak learner
was examined, and the relative importance of the variables could be determined [64]. AdaBoost
combines multiple weak learners to derive a single strong learner by repeatedly calling a weak classifier
and adjusting the attributed weight to the sample. The new classifier focuses more on the misclassified
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sample as the misclassified sample is increased compared to the correct sample. The final weight is
obtained by adding or subtracting the updated weight in each iteration. The final model is obtained
by dividing each final weight by the total adjusted weight [65]. The general form of the AdaBoost
algorithm is as follows [66]:

1. Start with weights wi =
1
N for i = 1, . . . , N;

2. Repeat this step for m = 1, . . . , M :

a. Fit the classifier fm(x) ∈ {−1, 1} using weights wi with the training data;

b. Compute errm= Ew
[
1(y,fm(x))

]
, cm= log

(
1 − errm

errm

)
;

c. Set wi ← wi exp
[
cm1(y,fm(x))

]
, i = 1, 2, . . . , N , and renormalize so that

∑
i wi= 1;

3. Output the classifier: sign
[∑M

m=1 cmfm(x)
]
.

3.6. LogitBoost

LogitBoost is a modified version of the AdaBoost algorithm, introduced by Friedman, Hastie,
and Tibshirani [66], where the exponential loss function is replaced with the log-likelihood loss
function. This method reduces classification error and is less sensitive to noise [28,67]. LogitBoost can
handle multiple class problems and uses a regression scheme as the base learner for classification [64].
The general form of the LogitBoost algorithm is as follows [66]:

1. Start with weights wi =
1
N for i = 1, 2, . . . , N, F(x) = 0, and probability estimates p(xi) =

1
2 ;

2. Repeat this step for m = 1, . . . , M :

a. Compute the working response and weights:

li =
y∗i−p(xi)

p(xi) (1 − p(xi))
, (3)

wi = p(xi) (1 − p(xi)); (4)

b. Fit the function by weighted least-squares regression of li to xi using weight wi;
c. Update the function as follows:

f(x) ← f(x) +
1
2

fm (x), (5)

p(x) ←
ef(x)

ef(x)+e−f(x)
; (6)

3. Output the classifier: sign[F(x)] = sign
[∑M

m=1 fm(x)
]
.

3.7. Logistic Regression

Logistic regression is a statistical method used to find the best model to describe the correlation
between a dependent variable and several independent variables. This method’s advantage is that
the variables do not need to be normally distributed [68]. It also offers several ways of selecting the best
predictor for use in the P probability model [69,70]. The equations describing the logistic regression
are as follows [28,69–71]:

f(x) = logit(P) = ln
[ P
1− P

]
= c0+c1x1 + . . .+ cnxn, (7)
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P =
1

1 + e−f(x)
=

1

1 + e−(c0+c1x1+...+cnxn)
, (8)

where f(x) is a linear combination function called logit(P), P is the probability of subsidence occurrence,
1− P is the probability that subsidence will not occur, x1, x2, . . . , xn are input variables, c0 is the model
intercept, and c1, . . . , cn are the approximated coefficients of regression.

3.8. Multilayer Perceptron

The multilayer perceptron is a machine learning algorithm based on the ANN technique that
consists of input layers, hidden layers, and output layers [72]. The advantages of the multilayer
perceptron algorithm are as follows: the distribution of the training data does not require any
assumptions, most inputs are selected during the training process based on the weight adjustment,
and the relative importance of the various input measures does not need to be determined [73].
The equation representing the multilayer perceptron for land subsidence classification is as
follows [28,72,73]:

m = f(c), (9)

where f(c) is a hidden function that is optimized during the training process for a given network
architecture via the adjustable weights, and c = ci for i = 1, . . . , 14, which is a vector containing 14
land subsidence conditioning factors.

4. Results

4.1. Land Subsidence Inventory Map

The mean vertical deformation maps for Jakarta shown in Figure 6a,b were derived by time-series
InSAR analysis based on the StaMPS algorithm. We overlaid a true color red/green/blue (RGB) composite
image from Sentinel-2 taken on 28 August 2020. Six areas from both ascending and descending tracks
showed high deformation; thus, we plotted a deformation trend for these areas.

The vertical deformation rate in the ascending track at Point P1 (Figure 6c) represents the Kosambi
area, which subsided 189.48 mm from 2017 to 2020. Point P2 (Figure 6c) represents the Cengkareng
area, which subsided 184.02 mm from 2017 to 2020. Point P3 (Figure 6e) represents the Ciledug area,
which subsided up to 155.22 mm from 2017 to 2020. Point P4 (Figure 6e) represents the Penjaringan
area, which subsided 148.36 mm from 2017 to 2020. Point P5 (Figure 6g) represents the Bekasi area,
which subsided 128.17 mm from 2017 to 2020. Point P6 (Figure 6g) represents the Cikarang area, which
subsided 271.84 mm from 2017 to 2020.

The vertical deformation rate in the descending track at Point P1 (Figure 6d) represents the Kosambi
area, which subsided 210.07 mm from 2017 to 2020. Point P2 (Figure 6d) represents the Cengkareng
area, which subsided 216.19 mm from 2017 to 2020. Point P3 (Figure 6f) represents the Ciledug area,
which subsided up to 155.92 mm from 2017 to 2020. Point P4 (Figure 6f) represents the Penjaringan
area, which subsided 148.31 mm from 2017 to 2020. Point P5 (Figure 6h) represents the Bekasi area,
which subsided 107.19 mm from 2017 to 2020. Point P6 (Figure 6h) represents the Cikarang area, which
subsided 257.94 mm from 2017 to 2020.

Figure 6g,h show that the deformation pattern was mostly linear. However, Figure 6c–f,
representing the Kosambi, Cengkareng, Ciledug, and Penjaringan areas, show quite periodic subsidence
with the standard deviation of the vertical deformation rate being higher than the vertical deformation
rate in Figure 6g,h. These results occurred due to the seasonal effect of groundwater extraction,
and those areas were surrounded by a residential area that mostly used groundwater as the water source.
Meanwhile, P6 is one of the most significant industrial areas in Indonesia. The mean vertical deformation
maps from ascending and descending tracks were compared to validate the accuracy of the land
subsidence inventory map using the StaMPS algorithm, and the result showed a good correlation in
Figure 6i with a coefficient of correlation (R2) up to 0.9584 between ascending and descending tracks.
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Figure 6. Mean vertical deformation map for Jakarta depicted using Sentinel-2 image in (a) ascending
tracks and (b) descending tracks; the vertical deformation rate at P1 (Kosambi) and P2 (Cengkareng)
in (c) ascending and (d) descending tracks; the vertical deformation rate at P3 (Ciledug) and P4
(Penjaringan) in ascending (e) and descending (f) tracks; the vertical deformation at P5 (Bekasi) and P4
(Cikarang) in ascending (g) and descending tracks (h). (i) The comparison of mean vertical deformation
between ascending and descending tracks. (j) Kriging interpolation of time-series deformation map
from mean vertical deformation map of descending track, resulting in the extension of the land
subsidence inventory map; the blue area is considered as the nonoccurrence area of land subsidence.

The persistent scatterer density of both tracks in the east and west areas was relatively low
due to them being wetland areas and more vegetated than other areas. The SAR dataset used in
this study from Sentinel-1 SAR C-band data with 5.5 cm wavelength could not deeply penetrate
beneath the trees. Thus, to overcome that limitation, the interpolation of the persistent scatterer points
from the descending track was constructed using kriging interpolation in GIS tools to provide land
subsidence information over the study area as shown in Figure 6j [74].

4.2. Land Subsidence Susceptibility Map

The land subsidence susceptibility model’s performance depended on the calculated parameters
(Table 5) for optimization used in this study.

A land subsidence susceptibility map was generated using 14 land subsidence conditioning
factors, training data from our land subsidence inventory map, and four different algorithms:
LogitBoost (Figure 7a), AdaBoost (Figure 7b), logistic regression (Figure 7c), and multilayer perceptron
(Figure 7d). Land subsidence susceptibility indices were generated for all unique pixels in the study
area. The susceptibility indices were reclassified using the quantile method to identify feature pairs in
five susceptibility classes: very low, low, moderate, high, and very high [28,64].
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Table 5. Calculated parameters for the algorithms used in this study.

Algorithm Parameters

AdaBoost The number of iterations: 10; seed: 1; weight threshold: 100.

LogitBoost
Number of iterations: 10; Seed: 1; weight threshold: 100;

likelihood threshold: -1.7976E308; shrinkage: 1.0; max
threshold: 3; thread pool: 1; thread to batch prediction: 1.

Logistic Regression Ridge: 1.0E-8; max iterations: -1; number of decimal places: 4.

Multilayer Perceptron
Hidden layers: a; learning rate: 0.3; momentum: 0.2; number
of decimal places: 2; seed: 0; training time: 500; validation set

size: 0; validation threshold: 20.

Figure 7. Land subsidence susceptibility map for Jakarta, generated using four different algorithms: (a)
AdaBoost, (b) LogitBoost, (c) logistic regression, and (d) multilayer perceptron.

The proportion of very high susceptibility land was quite similar for all four algorithms.
However, the map generated by AdaBoost differed from those of the other three methods because
the AdaBoost model could only classify susceptibility into four classes due to the limits of the probability
range. Therefore, the very low susceptibility class was excluded. The susceptibility class proportions
(pixel distributions) are shown in Figure 8. For the Adaboost algorithm, the proportions were 0%,
57.88%, 2.54%, 22.02%, and 17.56% for the very low, low, moderate, high, and very high classes,
respectively; the respective values for the LogitBoost algorithm were 33.33%, 27.09%, 7.03%, 16.77%,
and 15.78%, and those for the logistic regression algorithm were 32.62%, 13.86%, 16.44%, 18.51%,
and 18.57%. Finally, the multilayer perceptron algorithm’s respective values were 40.64%, 18.70%,
14.02%, 13.42%, and 13.23%.

The distribution of pixels in the very high class and high class in Figure 8 showed similar results
for each algorithm, resulting in the maps of these classes being quite similar. The very high class
was considered to be the land subsidence areas shown in the mean vertical deformation map in
Figure 6a,b, with similarity seen because of the training data used in this study being acquired from
the land subsidence inventory map with a large spatial resolution, which allowed more effectively
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defining the land subsidence area in the susceptibility map. The moderate and high classes were
considered land subsidence areas in the future, and the very low and low classes were areas with
the lowest probability of land subsidence in the future. The difference between the moderate class
from AdaBoost and that from other algorithms is that AdaBoost did not consider other areas far from
the land subsidence occurrences. Other algorithms showed that residential areas located in alluvium
landforms had a reasonable possibility of land subsidence.

Figure 8. Proportions of susceptibility classes for land subsidence susceptibility maps generated using
four different machine learning algorithms.

4.3. Model Validation

The accuracy of all four algorithms in this study was evaluated by ROC curve analysis [12,17].
ROC curve analysis is a standard way of validating the probability models used to generate land
subsidence susceptibility maps, according to the area under the curve (AUC) [22,28]. Higher values
indicate more accurate and reliable models. If the AUC, which ranges from 0 to 1, is lower than 0.5,
the model is considered unacceptably inaccurate [75].

Land subsidence susceptibility maps produced using functional (AdaBoost, LogitBoost)
and meta-ensemble (logistic regression and multilayer perceptron) algorithms were compared. The ROC
curves for the four algorithms are shown in Figure 9. The largest AUC of 0.811 was from the AdaBoost
algorithm (blue line in Figure 9). The multilayer perceptron algorithm had the next largest AUC (0.800;
purple line in Figure 9), followed by the logistic regression (0.794; green line in Figure 9) and LogitBoost
algorithms (0.791; red line in Figure 9).

Figure 9. Receiver operating characteristic (ROC) curves for the land subsidence susceptibility maps
produced by functional (logistic regression and multilayer perceptron) and meta-ensemble (AdaBoost
and LogitBoost) algorithms.
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Variables having at least one tie between the positive actual state group and the negative actual
state group can bias the results. Since all of the AUC values were higher than 0.5, the land subsidence
susceptibility maps produced by all algorithms used in this study are acceptable for predicting high-risk
subsidence areas in Jakarta [75]. However, the AdaBoost algorithm map had the best performance.

5. Discussion

5.1. Land Subsidence Inventory Map

A land subsidence inventory map was successfully created through time-series InSAR analysis of
Sentinel-1 datasets, using the StaMPS algorithm. The map is displayed as a vertical deformation map
in Figure 6a,b for descending and ascending tracks. The comparison was made to validate the mean
vertical deformation’s accuracy used as a land subsidence inventory map. A coefficient of correlation
of 0.9584 was found. As stated above, there were six high-deformation areas (Figure 6c–h) within
ascending and descending tracks, which were equally affected (in terms of subsidence) by increased
groundwater usage and existing buildings [3].

Figure 6g,h show areas with largely linear deformation rates, the standard deviations of which
were smaller than those of the area shown in Figure 6c–f. The periodic subsidence shown was affected
due to the variable climate in Jakarta, which is generally characterized by high rainfall but a dry
summer. In the rainy season, the groundwater level of all aquifers beneath Jakarta increases, which
manifests as deformation, i.e., an uplift in the ground level due to a change in the underlying material’s
thickness [34,76–79].

As shown by the land subsidence occurrence (Figure 6a,b) and groundwater drawdown (Figure 3a)
data, land subsidence for P1–P5, which are between 20.58 and 34.55 m below ground level, correlated
with the groundwater level. The correlation between land subsidence and groundwater level might
have been stronger if groundwater level data were available for the whole study area. The groundwater
level is deepest for P1 and P2, ranging from 22.47 to 34.55 m. P6 has more significant deformation
because it contains the largest industrial estate in Indonesia.

Jakarta is mostly situated on young alluvial soil (Figure 3h), which cannot tolerate the maximum
compression force of many buildings [9]. Thus, compaction of the unconsolidated alluvial soil occurs
and is exacerbated by groundwater extraction (because pore pressure is reduced, leading to further
clay compaction) [80,81].

5.2. Land Subsidence Susceptibility Map

The method used to create land subsidence susceptibility maps strongly affects the quality of
the mapping. Machine learning techniques are effective [12,13,28,64]. In particular, the method used
to generate training and testing data is important. Accurate land subsidence inventory maps can be
obtained using InSAR; we combined InSAR and GIS spatial data to produce an accurate land subsidence
susceptibility map [12]. Nevertheless, the distribution data of groundwater drawdown and rainfall
intensity data from the interpolation process might not represent the whole study area. They could
have affected the spatial distribution of the raster map. Access to the monitoring wells and rainfall
station outside the Jakarta area could provide more accurate analysis to determine the relationship
between those factors and land subsidence.

The land subsidence susceptibility maps of all four algorithms used in this study could be ordered
according to the accuracy and time taken to build the model due to the similarities in the conditioning
factors, training and testing data, and study area [28]. We used ROC curve analysis to assess the accuracy
of the maps. The AUC data showed that the AdaBoost algorithm had the highest susceptibility class
predictive accuracy of 81.1%, which was 1.1% higher than the multilayer perceptron algorithm, 1.7%
higher than the logistic regression algorithm, and 2% higher than the LogitBoost algorithm. Since
the accuracy of the algorithms used was so closely related, we analyzed the time consumption of data
preparation needed to build the model. The AdaBoost algorithm needed 218.63 s to build the model,
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the LogitBoost algorithm needed 174.94 s to build the model, logistic regression needed 16667.96 s or
4.63 h to build the model, and multilayer perceptron needed 47,538.65 s or 13.20 h to build the model,
thus identifying the LogitBoost algorithm as the fastest.

However, the LogitBoost algorithm had the lowest prediction accuracy (79.10%). The Adaboost
algorithm needed 218.63 s or 3.64 min to build the model, along with having the highest prediction
accuracy of 81.10% in the ROC curve analysis. Logistic regression needed 4.63 h to build the model,
along with a prediction accuracy of about 79.40%, and the multilayer perceptron needed 13.20 h,
along with a prediction accuracy of 80%. The maps generated using LogitBoost, logistic regression,
and multilayer perceptron (Figure 7b–d, respectively) showed similar weights and indicated that
the settlement area was at a high risk of land subsidence. The land-use map generated in this study
indicated a relatively strong correlation between land subsidence and urban development, likely due to
excessive groundwater extraction in urban areas [3,6,7]. Our map could be used by local environmental
authorities and those in charge of urban development to identify areas with high subsidence risk.
The method of combining SAR and GIS spatial data to generate land subsidence susceptibility maps
employed in this study could be applied to other regions.

6. Conclusions

We generated a land subsidence inventory map using a time-series InSAR method based
on the StaMPS algorithm from Sentinel-1 SAR datasets in ascending and descending tracks.
The comparison of both tracks was conducted, finding a coefficient of correlation between the two tracks
of 0.9548. The inventory map could be used as a training and testing dataset to create a land subsidence
susceptibility map for Jakarta using meta-ensemble (AdaBoost and LogitBoost) and functional (logistic
regression and multilayer perceptron) machine learning algorithms. We created a land subsidence
inventory map through time-series InSAR analysis of Sentinel-1 SAR datasets using the StaMPS
algorithm. The land subsidence susceptibility map produced by the AdaBoost machine learning
algorithm had higher accuracy (AUC = 0.811) and only need 3.64 min to build the model compared with
the maps created using the other algorithms (multilayer perceptron, AUC = 0.800; logistic regression,
AUC = 0.794; LogitBoost, AUC = 0.791). LogitBoost was the fastest algorithm in building the model
but had the lowest predictive accuracy. Logistic regression and multilayer perceptron needed 4.63
and 13.20 h, respectively, to build the model. All of the maps showed acceptable accuracy, as the AUC
values were all higher than 0.5; thus, they can all be used for analyzing land subsidence susceptibility
in Jakarta. Our approach based on time-series InSAR analysis, machine learning, and GIS spatial data
yielded reasonable predictions of areas with high risk of land subsidence. Further research could use
alternative algorithms and conditioning factors to generate land subsidence susceptibility maps in
other regions.
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