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Abstract: Ocean tidal backwater reshapes the stage–discharge relation in the fluvial-to-marine 
transition zone at estuaries, rendering the cautious use of these data for hydrological studies. 
While a qualitative explanation is traditionally provided by examining a scatter plot of water 
discharge against water level, a quantitative assessment of long-period ocean tidal effect on the 
stage–discharge relation has been rarely investigated. This study analyzes the relationship among 
water level, water discharge, and ocean tidal height via their standardized forms in the Mekong 
Delta. We found that semiannual and annual components of ocean tides contribute significantly to 
the discrepancy between standardized water level and standardized water discharge time series. 
This reveals that the long-period ocean tides are the significant factors influencing the stage–
discharge relation in the river delta, implying a potential of improving the relation as long as 
proper long-period ocean tidal components are taken into consideration. By isolating the 
short-period signals (i.e., less than 15 days) from land surface hydrology and ocean tides, better 
consistent stage–discharge relations are obtained, in terms of improving the Pearson correlation 
coefficient (PCC) from ~0.4 to ~0.8 and from ~0.6 to ~0.9 for the stations closest to the estuary and 
at the Mekong Delta entrance, respectively. By incorporating the long-period ocean tidal height 
time series generated from a remotely sensed global ocean tide model into the stage–discharge 
relation, further refined stage–discharge relations are obtained with the PCC higher than 0.9 for all 
employed stations, suggesting the improvement of daily averaged water level and water 
discharge while ignoring the short-period intratidal variability. The remotely sensed global ocean 
tide model, OSU12, which contains annual and semiannual ocean tide components, is capable of 
generating accurate tidal height time series necessary for the partial recovery of the stage–
discharge relation. 
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1. Introduction 

Accurate water level (WL) and water discharge (WD) measurements are fundamental to 
various hydrological applications, including flood forecasting, design and operation of conservancy 
facilities, as well as water and sediment budget analyses [1,2]. However, due to economy, politics, 
and topography along a river [3], the spatial distribution of hydrological stations is both sparse and 
uneven, along with inconsistent and missing datasets [4]. In order to complement the above 
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deficiency of observed datasets, it is a common practice to extend the datasets both in space and time 
by converting one type of data into another, for instance, estimating WD from WL. 

The conversion between WL and WD is referred to as the stage–discharge relation. Under a 
pure hydrological situation, this relation is represented by a power function, also called rating 
curve. There are two available methods to obtain the stage–discharge relation. The first method is 
based on numerical solutions of dynamic models [5–7] that simulates the stage–discharge relation 
when accurate hydraulic geometry and boundary conditions are available. The second method is 
based on data-driven models that can be based on the power function fitting, non-linear regression 
techniques [8–10], or an artificial neural network (ANN) [11–14]. 

In essence, WD is not only related to WL alone, but also disturbed by water surface slope, 
channel geometry, bed roughness, flow unsteadiness, lateral flow, and the backwater effect caused 
by an ocean tidal wave propagating up to estuaries [15,16]. Therefore, the stage–discharge relation 
becomes more complicated, manifesting as multiple loops [17]. In the river delta, the influence of the 
ocean tidal wave is a significant factor that distorts the well-established stage–discharge relation [8]. 
Consequently, the WL and WD data near the estuary mouth at river deltas are used cautiously for 
research studies, as those data are contaminated by the aforementioned factors. For instance, Sassi et 
al. [18] quantitatively analyses the contribution of different ocean tidal components (i.e., 
quarter-diurnal, semidiurnal, diurnal, and fortnightly) to surface water variation. The 
fluvial-to-marine transition zone of Mekong Delta have been further subdivided into four sections 
(i.e., fluvial-dominated tide-affected, fluvial-dominated tide-influenced, tide-dominated 
fluvial-influenced, and tide-dominated fluvial-affected zones), according to salinity, channel 
morphology, fades/grain size, and the extent of ocean tidal influence by Gugliotta et al. [19]. 
However, the stage–discharge relation at the river delta corrected by ocean tidal components 
remains unexplored. 

The Mekong Delta (MD) (Figure 1), being home to 19 million people, is an important 
agricultural and fishing district in Southeast Asia [17,20]. Further anthropogenic stressors are 
massive river training and construction of a multitude of large hydropower dams and severe sand 
extraction for concrete production [21–23]. This is characterized by a relatively flat surface with low 
altitudes and gradients [24,25]. Being a transition zone, WD and WL variability are dynamically 
affected by both fluvial and marine processes seasonally [26,27]. As a result, reverse flow caused by 
ocean tidal wave and storm surge can easily propagate along river channels [8]. As a result, salinity 
intrusion and catastrophic flooding along with rising sea level [28–30] severely threaten the grain 
production in the MD [31,32]. This also affects hydrological gauge stations within a distance of 200 
kilometers away from the estuary mouth. In addition, the Tonle Sap Lake in Cambodia also 
provides a regulation effect [33–35], before the river runoff delivers to the MD and discharges 
eventually to the South China Sea through the Bassac River and the Mekong river within the MD 
[36]. As a consequence, the stage–discharge relation in this region exhibits multiple looping curves 
along with noisy patterns [33,37]. 
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Figure 1. Map of Mekong Delta (MD), with two pairs of hydrological gauge stations (i.e., Can Tho 
and Chau Doc, and My Thuan and Tan Chau) situated near the estuaries. (The topography dataset, 
called earth_relief_30s, is a derived product of SRTM15+ [38], which is obtainable from 
http://mirrors.ustc.edu.cn/gmt/data/). 

Despite qualitative explanations, the ocean tidal backwater effect has not been quantified and 
corrected for. After all, the complex interaction between oceanic and fluvial processes is a 
cross-disciplinary science among land surface hydrology, estuary, and ocean science. As long as an 
appropriate method can be introduced to partially recover the stage–discharge relation with good 
accuracy, the corrected data would be of great usage. For such a purpose, the analysis of the 
disturbance of the stage–discharge relation by different components of ocean tides, based on a tidal 
data analysis or a remotely-sensed global ocean tide model, is a prerequisite. 

This study aims to demonstrate the potential of incorporating the ocean tidal components into 
the stage–discharge relation for a partial relation recovery in the MD. The relation among WD, WL, 
and ocean tidal height data time series are analyzed via their standardized forms. The ocean tidal 
components generated from remotely sensed OSU12 global ocean tide model are substituted into 
the resulting model relation generated from the analysis. The fitted model relation is subsequently 
applied for estimating WD from ocean tidal height and WL. A quantitative evaluation of the 
estimated WD against the observed hydrological data is also presented. 

2. Datasets and Assessment Metrics 

In this study, in-situ data from hydrological stations, tidal gauge data, and OSU12 global ocean 
tide model were analyzed. Table 1 summarizes the essential information about these datasets. 
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Table 1. The datasets used in this study. 

Products Location Time Span Temporal Resolution 

In Situ Stations’ 
Water Level Data 

Can Tho 
2003–2006 
2009–2014 

Daily average  My Thuan 2003–2006 
2009–2014 

Chau Doc 2003–2006 
Tan Chau 2003–2006 

In Situ Stations’ Discharge Data 

Can Tho 
2003–2006 
2009–2014 

Daily (before 2006) 
Monthly (after 2009) 

My Thuan 
2003–2006 
2009–2014 

Chau Doc 2003–2006 
Tan Chau 2003–2006 

Tidal Gauge Data Vung Tau 2003–2014 Hourly 

OSU12 Global Ocean Tide Model Data 
9.375N, 106.375E 

 
Tidal constituents 

(Sa, Ssa, Mm) 10.125N, 107.125E 

2.1. In-Situ Hydrological Data 

Station data time series within the MD were obtained from the Mekong River Commission 
(MRC) (http://www.mrcmekong.org). Acoustic Doppler Current Profiler (ADCP) was applied to 
gauge flow velocity for deriving precise discharge, according to MRC [39]. To compare between the 
two main subdivided branches within the MD, Tan Chau and My Thuan stations along the Mekong 
River, and Chau Doc and Can Tho stations along the Bassac River were used. Situated at the 
entrance of the MD [27], the Tan Chau and Chau Doc stations are, respectively, ~220 and ~240 km 
away from the estuary mouth. Both stations are in the middle between the Tonle Sap Lake and the 
estuary mouth, where the regulation effect of the lake and the ocean tidal backwater effect are 
minimized. Being the closest hydrological stations to the estuary mouth, My Thuan and Can Tho 
stations are subject to the backwater effect caused by landward ocean tidal propagation, which is 
clearly shown in the data time series [27]. Hence, the comparison between upper and lower station 
pairs allows us to further quantify the extent of the ocean tidal backwater effect. 

Note that WD data of Tan Chau station were missing in 2001, 2002, and 2007. To be consistent 
with the time span of other WD data, the station time series spanning from January 2003 to December 
2006 were selected for investigation, while those from January 2009 to December 2014 were employed 
for validation. Given the different temporal resolutions among WL, WD, and in-situ ocean tidal data 
time series and in order to isolate signals unrelated to hydrology, a Butterworth filter was applied to 
these time series for suppressing periodic fluctuations shorter than 15 days (e.g., diurnal, semidiurnal, 
etc.). The mean, maximum, and minimum values of those time series are summarized in Table 2. 
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Table 2. Maximum, minimum, mean values, and standard deviations of original and processed time 
series. 

Variable Station Maximum Minimum Mean Standard 
Deviation 

Original Water Discharge 
(1 × 104 m3/s) 

My Thuan 1.6500 0.0029  0.7263 0.4036 
Can Tho 1.8400 0.0025 0.7206 0.4416 

Tan Chau 2.2597 0.1190  0.9359 0.6490 
Chau Doc 0.7120 0.0045  0.2625 0.2059 

Processed Water Discharge 
(1 × 104 m3/s) 

My Thuan 1.5345 0.2423  0.7262 0.3109 
Can Tho 1.4666 0.1704  0.7209 0.3236 

Tan Chau 2.1400 0.1600  0.9360 0.6470 
Chau Doc 0.7121 0.0266  0.2626 0.2043 

Original Water Level (m) 

My Thuan 1.4225 −0.3355 0.4619 0.3522 
Can Tho 1.4591 −0.2707 0.4168 0.3231 

Tan Chau 4.3831 0.0222  1.6820 1.2544 
Chau Doc 4.0036 −0.1486 1.5017 1.1443 

Processed Water Level (m) 

My Thuan 1.2165 −0.1304 0.4620 0.3267 
Can Tho 1.0358 −0.0685 0.4171 0.2976 

Tan Chau 4.3361 0.2326  1.6825 1.2498 
Chau Doc 3.9558 0.1863  1.5019 1.1396 

Original Tide height (m) Vung Tau 4.3300 −0.4400 2.6433 0.8566 
Processed Tide height (m) Vung Tau 2.9984 2.3413  2.6436 0.1648 

 
Filtered and original time series of the four stations are displayed, showing common 

characteristics of the WL and WD time series along with their differences (Figure 2a–d). Can Tho 
and My Thuan station time series show a larger ocean tide backwater effect than those of Chau Doc 
and Tan Chau stations. By comparing WL with WD time series, WD lags behind WL by 
approximately a month. This fact is more pronounced for stations closer to the estuary mouth (i.e., 
Can Tho and My Thuan) than their upper counterparts (i.e., Chau Doc and Tan Chau). Obviously, 
the annual signal is apparent for all station time series, in which the temporal patterns are highly 
related to not only seasonal variation of watershed runoff, but also the long-period (e.g., semiannual 
and annual) ocean tidal components, as shown in Figure 2e. As a consequence, external information 
obtained from the tide gauge or ocean tide model data near estuaries can be potentially used for 
removing the effect of long-period ocean tidal components, which is the objective of this study. 
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Figure 2. Low-pass filtered (blue) and original (blue dash) time series of water discharge and water 
level (red) over (a) Can Tho, (b) My Thuan, (c) Chau Doc, and (d) Tan Chau stations, respectively, 
and (e) time series of ocean tidal height (sea level) at Vung Tau station spanning from January 2003 
to December 2006. 

2.2. Sea Level Data From Tide Gauge Station 

A tide gauge measures sea level time series at selected locations along the coasts [40]. Vung 
Tau is the closest tide gauge station to Mekong estuary chosen for relating the long-period ocean 
tidal variation to WL within the MD. Spanning from 2003 to 2014, the sea level time series at Vung 
Tau station were recorded on an hourly interval. This dataset is provided by the Hydrological and 



Remote Sens. 2020, 12, 3648 7 of 21 

 

Environmental station network center in Vietnam and can be obtained from 
http://www.ioc-sealevelmonitoring.org/station.php?code=vung. 

Figure 2e shows filtered and original hourly time series of the tidal gauge data. Fast Fourier 
transform (FFT) was applied to identify different periodic components of the time series. The 
highest power spectra are located at both diurnal and semidiurnal ocean tidal components (Figure 
3a), which are unrelated to hydrological signals. In order to be consistent with WD and WL time 
series’ daily sampling rate, the hourly tidal height time series are averaged daily after filtering 
high-frequency components via the Butterworth filter. This process, to a large extent, suppresses or 
removes the short-period ocean tidal components via the low-pass filtering process, and hence, 
reducing the effect on long-term ocean tidal components [41–43] (Figure 3b). Compared with the 
unfiltered time series, only semiannual and annual tide components are apparent in the processed 
time series. 

 

Figure 3. Spectra of the (a) hourly and (b) daily averaged ocean tidal height time series in Vung Tau 
tide gauge station. 

2.3. Global Ocean Tide Model Data 

A global ocean tide model contains gridded in-phase and quadrature amplitudes (or 
equivalently amplitude and phase) for major tidal constituents, allowing us to generate ocean tidal 
height in the absence of tide gauge stations along the coasts [44,45]. Although many remotely 
sensed ocean tide models (e.g., FES2014, GOT4.8, NAO99.b, TPXO8, EOT11a, DTU10, HAMTIDE, 
OSU12, etc.) are available for the purpose of our study, the OSU12 model, with a 0.25° × 0.25° spatial 
resolution [46,47], was employed to generate long-period tidal height time series at grid points near 
Mekong and Bassac river estuaries (Table 3), because it contained long-period tides and was derived 
purely from remotely sensed satellite altimetry data. Notwithstanding smaller amplitude when 
compared with semidiurnal and diurnal tides, long-period ocean tidal components are influential to 
daily and monthly average WL time series. As shown in Figures 2 and 3b, long-period ocean tidal 
components are likely related to the discrepancies between the pattern of WL and WD time series. It 
is appropriate to calculate the ocean tidal height time series, TH(t), at time t from the in-phase, H1, 
and quadrature amplitudes, H2, of Sa, Ssa, and Mm tides, which can be formulated as: 

𝑇𝑇𝑇𝑇(𝑡𝑡) = � (𝐻𝐻1)𝑖𝑖 cos �
2𝜋𝜋𝜋𝜋
𝑇𝑇𝑖𝑖
� + (𝐻𝐻2)𝑖𝑖sin (

2𝜋𝜋𝜋𝜋
𝑇𝑇𝑖𝑖

)
3

𝑖𝑖=1
, (1) 
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where Ti is the period of each long-period ocean tidal component i. Note that both the in-phase and 
quadrature amplitudes are with respect to Greenwich Meridian with the starting time, 0:00 AM, 1 
January 2002 (UTC +0). 

Table 3. Long-period ocean tidal components at two gridded locations close to Mekong and Bassac 
river estuaries solved at the initial time epoch of 0:00 AM, 1 January 2002 (UTC +0). 

Tide Components Point1 (9.35° N,106.375° E) (in cm) Point2 (10.125° N, 107.125° E) (in cm) 

Sa (365.25 days) 
H1 24.41570 19.06151 
H2 −1.56798 −3.91959 

Ssa (182.62 days) 
H1 1.36968 −6.76170 
H2 3.52620 2.07534 

Mm (27.55 days) 
H1 1.30950 0.32715 
H2 −1.63984 1.72923 

2.4. Assessment Metrics 

To evaluate the estimated WD against in-situ WD time series in Section 4, three assessment 
metrics, R-Square, the Pearson correlation coefficient (PCC), and the Nash–Sutcliffe efficiency (NSE) 
coefficient, are employed. 

R-Square, ranging between 0 and 1, describes how much the variation of in-situ WD, WDg, is 
explained by the estimated WD, WDe, generated from the model. The closer the value to 1, the 
better the model fitting to the WDg. R-Square is equal to the quotient of sum of squares regression 
(SSR) divided by sum of squares total (SST), and can be defined as: 

R − Square =
SSR
SST

=
∑ �WDe

i − WDg�������2n
i=1

∑ �WDg
i − WDg�������2n

i=1

 (2) 

PCC, ranging between −1 and 1, describe how strong the linear relationship between WDe and 
WDg, which is defined as: 

PCC =
∑ (WDe

i − WDe������)(WDg
i − WDg������)N

i=1

�∑ (WDe
i − WDe������)2N

i=1 �∑ (WDg
i − WDg������)2N

i=1

 (3) 

where WDe������  and WDg������  are the mean of WDe  and WDg , respectively. Notably, for the power 
function relating WL to WD, logarithmic transform is applied to obtain the log-linear relation 
between the two variables in order to assess their correlation. To highlight the difference, PCC was 
used to represent the linear relationship between WDe and WDg, while “correlation coefficient” 
appeared in each figure of this study referred to the log-linear relation between WD and WL, as 
shown in Equation (6) below. 

NSE coefficient, ranging from −∞ to 1, describes the gain in the performance of WDe against 
WDg. The closer the NSE coefficient to 1, the better the performance of the estimation [48]. It is 
defined as: 

NSE = 1 −
∑ (WDe

i − WDg
i )2N

i=1

∑ (WDg
i − WDg������)2N

i=1
 (4) 

3. Data Analysis and Methodology 

This section explores the relations among ocean tidal height, WL, and WD time series over our 
study region, so as to illustrate the interaction between fluvial and oceanic factors along with their 
combined effects on WL and WD data. For an ideal hydrological station location where WL and WD 
are purely influenced by the fluvial process, WL and WD are related by a power function [49] 
expressed as: 
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WD = a ∗ [WL − b]c (5) 

where a, b, c are the scaling coefficient, the offset of WL and the exponent of power function, 
respectively. 

However, in reality, the stage–discharge phase diagram between WL and WD appears as 
random data points with trends (i.e., Can Tho and My Thuan stations) and elliptical curves (i.e., 
Chau Doc and Tan Chau stations) in the MD (Figure 4). 

 

Figure 4. (a–d) Relationship between water level (WL) and water discharge (WD) (original daily 
sampled time series) for the four selected hydrological stations in Mekong Delta. 

The logarithmic transform of Equation (5) allows the conversion into log-linear relation, 
expressed as: 

𝑙𝑙𝑙𝑙(𝑊𝑊𝑊𝑊) = 𝑐𝑐 ∗ 𝑙𝑙𝑙𝑙(𝑊𝑊𝑊𝑊 − 𝑏𝑏) + 𝑙𝑙𝑙𝑙(𝑎𝑎). (6) 

such that Equation (6) measures a linear relationship between 𝑙𝑙𝑙𝑙(𝑊𝑊𝑊𝑊)  and 𝑙𝑙𝑙𝑙(𝑊𝑊𝑊𝑊 − 𝑏𝑏) . All 
“correlation coefficients” displayed in all stage–discharge phase diagrams were calculated based on 
𝑙𝑙𝑙𝑙(𝑊𝑊𝑊𝑊) and 𝑙𝑙𝑙𝑙(𝑊𝑊𝑊𝑊 − 𝑏𝑏), as mentioned in Section 2.4. 

Compared to those of the other two stations, the rating curves between WL and WD of Can Tho 
and My Thuan stations yield lower correlation coefficients because they are more significantly 
affected by the ocean tidal backwater. 

3.1. Data Analysis of Backwater Influence on Water Discharge (WD) and Water Level (WL) 

Although the phase diagram between WL and WD in the tide-dominated area appears 
elliptical, the patterns of the deviation from the rating curves are presumed to be analyzable by 
different ocean tidal components. Through FFT, the most pronounced periods are 365 days, 182.5 
days, and 14.7475 days in both WD and WL time series. 

The relative power (to the signal with the largest power) and initial phase of each signal are 
displayed in Table 4. For an ideal stage–discharge relation (i.e., power function relation), WL and 
WD are positively correlated. The signals of WD and WL with the same period should have the 
same initial phase and similar relative power. However, we found that the initial phase of WD and 
WL time series of the four stations are different from each other. 
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Table 4. Relative power and initial phases of the three periodic signals in WD and WL time series at 
the four selected stations with initial phase domain defined between 0° and 360°. 

Station 
Period: 365 Days Period: 182.5 Days Period: 14.7475 Days 

Relative 
Power 

Initial 
Phase 

Relative 
Power 

Initial 
Phase 

Relative 
Power 

Initial 
Phase 

Can Tho WD 1 95.2311° 0.3060 173.5607° 0.4727 25.1628° 
WL 1 58.5725° 0.2535 168.3582° 0.2997 244.1391° 

My Thuan WD 1 87.1219° 0.3093 170.8565° 0.5671 25.8326° 
WL 1 55.0654° 0.2664 175.4839° 0.3152 244.2108° 

Chau Doc 
WD 1 93.8689° 0.3392 196.6511° 0.0324 111.2065° 
WL 1 84.7393° 0.3963 193.8528° 0.0414 274.7407° 

Tan Chau 
WD 1 97.4019° 0.2385 222.2999° 0.0046 99.6860° 
WL 1 90.3988° 0.3705 202.5387° 0.0336 260.8400° 

Firstly, annual signals (i.e., 365-day period) of Can Tho and My Thuan present different initial 
phases between WD and WL, in particular WL, with its initial phases ~30° lower than that of upper 
counterparts. This indicates that annual tides can cause around a one-month time lag between the 
lower and upper stations. A similar situation applies to that of the semiannual signal, but to a lesser 
extent. Secondly, the initial phase of the half-monthly signal (i.e., 14.7475-day period) of WD and that 
of WL present the phase difference between 160° and 220°. This shows that the WD is inversely 
proportional to WL with an additional time lag. In other words, the WD increase (decrease) when the 
WL decrease (increase), implying that the half-monthly signal of WL and WD interacts with each 
other seasonally and alternately. This fact further indicates the half-monthly signal is of two origins: 
land and ocean, which is supported by physical explanations from Guo et al. (2020) [50] and Jay (1991) 
[51]. Half-monthly signals of the Can Tho and My Thuan stations yields a much larger relative power 
than their upper counterparts, indicating the damping effect on the amplitude and changing phase 
when propagating inland via the estuary mouth. Since these half-monthly signals have different 
changing ratios for inland propagation direction with annual tide components, a band-pass filter (e.g., 
Butterworth filter) was applied to remove this signal from tidal-influenced time series for consistency. 

To further analyze the interaction between oceanic and fluvial effects, the variation of WD, 
WL, and TH time series are compared via their standardized forms, xs, expressed as: 

xs =
x − x�

�∑(x−x�)2

N

 
(7) 

where x� is the average value of xx time series, and NN is the number of data in the time series. 
The standardized WD, WL and TH (i.e., WDs, WLs, and THs respectively) are compared for the 
four stations, respectively, in Figure 5. 
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Figure 5. Comparison of standardized WD, WL, and tidal height time series in (a) Can Tho, (b) 
Chau Doc, (c) My Thuan, and (d) Tan Chau station, respectively. 

As shown in Figure 5b,d, it is clear that the standardized WL time series are highly correlated 
with standardized WD time series, they reach the maximum values in early September and minimum 
in March and April simultaneously. Influences from ocean tide are minor, and the ocean tidal height 
series reaches its maximum and minimum values in different months. However, in Figure 5a,c, there 
exists large deviation between WD and WL time series. In the lower stations, the WL reaches its 
minimum and maximum value about a month later than WD, consistent with the initial phase 
difference of around 30° stated above (Table 4). For most cases, WL (red line) is set between WD (blue 
line) and TH (yellow line), emphasizing the influence of the ocean on WL. Previous studies attribute 
this phase difference to floods up and down or a time lag caused by tidal propagation [52]. Since this 
phenomenon is more apparent in stations closer to the estuaries, we speculate it is mainly caused by 
the mixing of fluvial-dominated and marine-dominated fluctuations at the annual and semiannual 
scale. 
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Theoretically, when two signals with the same period (T) are combined, the new signal will 
have the same period (T) but a different initial phase (ϕ3), is expressed as: 

𝐴𝐴1 cos �
2𝜋𝜋𝜋𝜋
𝑇𝑇

+ 𝜙𝜙1� + 𝐴𝐴2 cos �
2𝜋𝜋𝜋𝜋
𝑇𝑇

+ 𝜙𝜙2� = 𝐴𝐴3 cos �
2𝜋𝜋𝜋𝜋
𝑇𝑇

+ 𝜙𝜙3�, (8) 

where A1, A2, and A3 are three different amplitudes, ϕ1, ϕ2, and ϕ3 are three initial phases, and 
t refers to time epoch. The proof of Equation (8) is listed in Appendix A. 

Since annual and semiannual signals are major components in the WL, WD, TH time series, the 
fluvial-dominated annual (semiannual) signal and marine-dominated annual (semiannual) signal 
form a mixed annual (semiannual) WL time series in the MD. For both WL and TH fluctuating in 
the vertical direction, the WL will be potentially corrected by annual and semiannual ocean tidal 
components if the TH time series are involved in the power function fitting process. This will be 
further explored in the next subsection. However, Equation (8) does not work for ocean tidal 
components shorter than half-monthly one, because of possible non-linear interaction among fluvial 
factors, bottom topography of an estuarine channel and ocean tidal backwater. This leads to the 
non-linear change of amplitude and phase during the inland propagation process. 

3.2. Incorporating Long-Period Ocean Tidal Components Into Rating Curve 

Before incorporating long-period ocean tidal components into the rating curve, short-period 
fluctuations in both WD and WL time series, including short-period diurnal and semidiurnal ocean 
tides, have to be removed. As mentioned in Section 2.1, this can be achieved by a Butterworth filter 
that suppresses all high-frequency signals with a period shorter than 15 days. Consistent with the 
filtered time series (Figure 2), the rating curve with filtered time series of WD and WL at the four 
stations are plotted in terms of phase diagrams (Figure 6). 

 
Figure 6. (a–d) Relationship between WL and WD (low pass filtered time series) for the selected four 
hydrological stations in the Mekong Delta. 

Compared with those in Figure 4, it is clear that the correlation coefficients have been 
improved significantly (Figure 6). However, the elliptical loops are still apparent, indicating a time 
lag between WL and WD time series, as mentioned in Section 3.1. 

Given that the relationship between THs, WDs, WLs has been analyzed in Section 3.1, it is 
likely that the elliptical looping phenomenon is largely due to semiannual and annual ocean tidal 
components. For both WL and TH fluctuating in the vertical direction, the THs time series were 
applied to separate the tide-induced fluctuation from the WL time series through a fitting process. 
The WL free from tide influence, WLfree, is defined as: 

WLfree = WL − α ∗ THs. (9) 
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where, α is a coefficient that rescales the THs. Consequently, the relationship among WD, WL, THs 
can be represented by: 

WD = a ∗ [WL − α ∗ THs − 𝑏𝑏]𝑐𝑐. (10) 

where a, b, c, and α are to be determined from the observed WD, WL, and TH time series. 
Through a non-linear fitting [53,54], a, b, c, and α can be determined, and WLfree is obtainable. 

4. Results and Discussion 

The rating curves of WLfree and WD are shown (Figure 7), yielding much higher correlation 
coefficients when compared to the rating curves of original WD and WL time series. Although 
rating curves of the Can Tho and My Thuan stations still display lower correlation coefficients than 
their upper counterparts, significant improvement has been observed. Additionally, the elliptical 
looping phenomenon related to ‘time-lag’ between WL and WD is also diminished for all four 
selected stations. As a countercheck, the time series of WD and WLfree for the two stations close to 
the estuary are shown in Figure 8, revealing no apparent time lag. 

 
(a) (b) 

 
(c) (d) 

Figure 7. (a–d) Relationship between WLfree and WD (low pass filtered time series) for the selected 
four hydrological stations in the Mekong Delta. 

 
Figure 8. WD and tide-free WL time series from 2003 to 2006 in (a) Can Tho and (b) My Thuan stations. 
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In the absence of tide gauge data, the TH time series generated from a global ocean tide model 
would be a viable alternative, because it can provide ocean tidal height components for the global 
ocean. The method for obtaining model-derived TH time series has been stated in Section 2.3. The 
model-derived TH series and in-situ gauged tidal height time series are displayed, manifesting high 
similarity with each other (Figure 9). Employing the above methodology, the rating curves of the 
four stations have been recovered using model-derived TH time series (Figure 10). 

 

Figure 9. The comparison between OSU12 model-derived WL and in-situ WL at (a) Can Tho and (b) 
My Thuan during 2003–2006. 

 
Figure 10. Recovered rating curves at (a) Can Tho, (b) My Thuan, (c) Chau Doc, and (d) Tan Chau 
stations using model-derived ocean tidal height as input. 

Although the correlation coefficients of the rating curve fitting generated by model-derived TH 
time series (Figure 10) are slightly lower than by in-situ tide gauge TH time series (Figure 7), the 
improvement is considerable when compared to the original unmodified rating curves. This is 
because most global ocean tide models are derived from satellite altimetry, with the model 
accuracies lower than that of gauge-derived TH, in particular coastal regions [39]. Given the above 
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results, it is appropriate to use an ocean tidal model to partially recover rating curves over 
tide-dominated regions. 

To evaluate the accuracy of the recovered rating curves, the estimated WD time series via 
Equation (10) generated from both model-derived and in-situ TH time series are compared with the 
in-situ WD during 2003–2006. Table 5 lists all determined coefficients of Equation (10) along with 
the assessment metrics (i.e., R-Square, PCC, NSE) that assess the estimated WD against in-situ WD. 
For both WD estimated based on in-situ and model-derived TH data, all the assessment metrics 
yield high-correlation values at all the four stations, suggesting our method can partially recover 
the tide-free WL for estimating WD. Overall, the recovered stage–discharge relation is capable of 
predicting a relatively reliable WD. These results also validate the data analysis in Section 3. 

Table 5. Assessment of the estimated WD and stage–discharge relation coefficients. 

Tidal 
Height 
Data 

Station a b c 𝛂𝛂 R-Square PCC NSE 

In-situ 
measured 

Can Tho 11683 −0.2230 1.3661 0.1619 0.9291 0.9626 0.9266 
My Thuan 3436.5 −0.8665 2.4063 0.1480 0.8974 0.9468 0.8964 
Chau Doc 2239.8 0.2756 0.8592 0.1577 0.9790 0.9922 0.9843 
Tan Chau 9134.3 0.4052 0.6229 0.1819 0.9809 0.9946 0.9891 

OSU12 

Can Tho 5948.3 −0.5949 2.3417 0.1722 0.8871 0.9383 0.8804 
My Thuan 9761.2 −0.3079 1.2619 0.1520 0.8631 0.9285 0.8621 
Chau Doc 2201.2 0.2762 0.8911 0.1582 0.9828 0.9934 0.9868 
Tan Chau 8950.3 0.3809 0.6335 0.1314 0.9750 0.9910 0.9820 

To highlight the importance of tidal separation by the term −α ∗ THs in Equation (10), the PCC 
values with different combinations of coefficient b, c, and α were calculated with their best fitted a 
fixed. Taking Can Tho station as an example (Figure 11), b and c impact the PCC values (i.e., > 0.9) 
significantly, only if α is ~0.16. The same holds for My Thuan station. Therefore, adding the term −α ∗
THs to the conventional power function (i.e., Equation (5)) is necessary for the improvement of the 
stage–discharge relation in the MD, which is in the fluvial-to-marine transition zone. In summary, we 
found that an appropriate α is a prerequisite for the PCC larger than 0.9. 
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Figure 11. (a) Different PCC (presented in color bar) for different b, c, and α using time series from 
Can Tho station, and (b) slices of (a) for nine chosen α, with maximum PCC for each α shown from 
the above subplots. 

To assess the applicability of the determined coefficients of Equation (10) for Can Tho and My 
Thuan station time series during 2003–2006, these coefficients were directly employed for the 
analysis of the WL and TH data time series during 2009–2014. The predicted WD were then 
compared with the monthly in-situ WD (Figure 12), since only monthly WD are available for Can 
Tho and My Thuan stations. Hence, WL and WLf were monthly averaged before the comparison. 
For both Can Tho and My Thuan stations, tide-free WL, WLf, leads to higher correlation coefficients 
and diminishes the looping curve problem to a large degree. This indicates that coefficient α 
appears to be stable during our study period. 
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Figure 12. (a,b) Stage discharge relation from original WL, and (c,d) tide-free WL for Can Tho and 
My Thuan stations. 

Despite a substantial improvement made in this study, small deviations from the ideal power 
function still exist, particularly for the two stations closest to the estuary mouth. After all, the 
interaction between fluvial and marine processes are complicated near estuary mouths [55]. 
Remaining effects cannot be neglected. For instance, WD should pose a non-negligible effect on the 
tidal propagation along the river channel during the wet season. Overland flows inward or 
outward from the Tonle Sap Lake would likely be another important factor affecting the stage–
discharge relations, because this lake operates as a natural reservoir that regulates Mekong river 
discharge from the river delta to the coastal ocean [34,56,57]. Erosion and deposition alter hydraulic 
geometry and increase channel bottom friction and, hence, contribute to the potential instability of 
the stage–discharge relation. Furthermore, numerous clusters of dams were built along the main 
stream of Mekong river, which may also alter the stage–discharge relation [21,22]. Sea level rise, 
which closely connected to salt intrusion and coastal erosion problems may alter the estuarine 
topography condition, resulting in a secular shift of ocean tidal components [23,26]. Agricultural 
practices and deforestation also provide additional impact on the evapotranspiration balance of the 
catchment area. Furthermore, since short-term signals were filtered out or failed to be captured by 
daily sampling, the short-term variations in WD and WL have not been quantitatively investigated. 
These considerations represent the current limitations of this study. 

5. Conclusions 

Instead of seeking a qualitative explanation of the stage–discharge relation influenced by the 
ocean tidal backwater effect, this study quantitatively analyzes the relations among water discharge 
(WD), water level (WL), and ocean tidal components via their standardized forms. We found that 
annual and semiannual ocean tidal components are significant contributors to the deviation between 
WL and WD time series. In particular, the annual and semiannual periods of ocean tidal backwater 
result in the elliptic loop associated with the presence of time lag between WL and WD. 

Based on these findings, we adapt the stage–discharge relation to accommodate the effects of 
annual and semiannual ocean tidal components. It was found that the WD estimated from the 
de-tided WL yields PCC and NSE values of ~0.9. Although the de-tided WL time series generated 
based on the TH time series from the OSU12 global ocean tide model are slightly less accurate than 
that of tide gauge data, the ocean tide model is a viable alternative to partially recover the stage–
discharge relation for estuaries in the absence of tide gauge stations. 
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Further improvement lies in identifying remaining effects contributing to the potential instability 
of the stage–discharge relation, which include the non-negligible effect of seasonal WD on ocean tidal 
propagation, the Tonle Sap lake regulation effect on the Mekong river discharge, erosion and 
deposition effects on the hydraulic geometry, and channel bottom friction. The impact of human 
activities and artificial structure in the Mekong River area, as well as its interaction with climate 
change, should also be highlighted. Those factors may introduce a long-term change trend into the 
WL–WD relationship. 

The recent remotely-sensed water balance variables with improved temporal resolutions, such 
as 8-day MODIS evapotranspiration [58], daily TRMM precipitation [59], and daily GRACE 
terrestrial water storage data products [60], should enable us to compute tide-free WD, which is 
independent of in-situ measurements based on the water balance equation [36]. This can serve as a 
countercheck against the in-situ WD for assessing the first two remaining effects. 
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Appendix A 

The mathematic proof of Equation (8) is shown below: 
For the convenience of expression, set 2πt

T
= x. 

𝐴𝐴1 cos(𝑥𝑥 + 𝜙𝜙1) + 𝐴𝐴2 cos(𝑥𝑥 + 𝜙𝜙2) = (𝐴𝐴1 cos𝜙𝜙1) cos𝑥𝑥 − (𝐴𝐴1 sin𝜙𝜙1) sin 𝑥𝑥 
+(𝐴𝐴2 cos𝜙𝜙2) cos𝑥𝑥 − (𝐴𝐴2 sin𝜙𝜙2) sin 𝑥𝑥 
= (𝐴𝐴1 cos𝜙𝜙1 + 𝐴𝐴2 cos𝜙𝜙2) cos𝑥𝑥 
−(𝐴𝐴1 sin𝜙𝜙1 + 𝐴𝐴2 sin𝜙𝜙2) sin 𝑥𝑥 

(11) 

Since A1 ,A2 ,ϕ1 ,ϕ2  are constant, (A1 cosϕ1 + A2 cosϕ2) and (A1 sinϕ1 + A2 sinϕ2) are also 
constant. Therefore, we set C1 = (A1 cosϕ1 + A2 cosϕ2)  and C2 = (A1 sinϕ1 +
A2 sinϕ2).Obviously, 

𝐶𝐶1 cos𝑥𝑥 − 𝐶𝐶2 sin 𝑥𝑥 = �𝐶𝐶12 + 𝐶𝐶22(
𝐶𝐶1

�𝐶𝐶12 + 𝐶𝐶22
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −

𝐶𝐶2
�𝐶𝐶12 + 𝐶𝐶22

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) (12) 

Notice that 

�
C1

�C12 + C22
�
2

+ �
C2

�C12 + C22
�
2

= 1 (13) 

Set C1

�C12+C22
= cosϕ3, and C2

�C12+C22
= sinϕ3. Obviously,  

𝐶𝐶1 cos𝑥𝑥 − 𝐶𝐶2 sin 𝑥𝑥 = �𝐶𝐶12 + 𝐶𝐶22cos (𝑥𝑥 + 𝜙𝜙3) (14) 

where tanϕ3 = C2
C1

. If we set �C12 + C22 = A3, 

A1 cos(x + ϕ1) + A2 cos(x + ϕ2) = 

A3 cos(x + ϕ3) A1 cos(x + ϕ1) + A2 cos(x + ϕ2) A3 cos(x + ϕ3) 
(15) 
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