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Abstract: Ocean tidal backwater reshapes the stage–discharge relation in the fluvial-to-marine
transition zone at estuaries, rendering the cautious use of these data for hydrological studies.
While a qualitative explanation is traditionally provided by examining a scatter plot of water discharge
against water level, a quantitative assessment of long-period ocean tidal effect on the stage–discharge
relation has been rarely investigated. This study analyzes the relationship among water level, water
discharge, and ocean tidal height via their standardized forms in the Mekong Delta. We found
that semiannual and annual components of ocean tides contribute significantly to the discrepancy
between standardized water level and standardized water discharge time series. This reveals that
the long-period ocean tides are the significant factors influencing the stage–discharge relation in
the river delta, implying a potential of improving the relation as long as proper long-period ocean
tidal components are taken into consideration. By isolating the short-period signals (i.e., less than
15 days) from land surface hydrology and ocean tides, better consistent stage–discharge relations
are obtained, in terms of improving the Pearson correlation coefficient (PCC) from ~0.4 to ~0.8 and
from ~0.6 to ~0.9 for the stations closest to the estuary and at the Mekong Delta entrance, respectively.
By incorporating the long-period ocean tidal height time series generated from a remotely sensed
global ocean tide model into the stage–discharge relation, further refined stage–discharge relations
are obtained with the PCC higher than 0.9 for all employed stations, suggesting the improvement of
daily averaged water level and water discharge while ignoring the short-period intratidal variability.
The remotely sensed global ocean tide model, OSU12, which contains annual and semiannual ocean
tide components, is capable of generating accurate tidal height time series necessary for the partial
recovery of the stage–discharge relation.

Keywords: ocean tidal backwater; stage–discharge relation; ocean tide model; Mekong Delta

1. Introduction

Accurate water level (WL) and water discharge (WD) measurements are fundamental to various
hydrological applications, including flood forecasting, design and operation of conservancy facilities,
as well as water and sediment budget analyses [1,2]. However, due to economy, politics, and topography
along a river [3], the spatial distribution of hydrological stations is both sparse and uneven, along with
inconsistent and missing datasets [4]. In order to complement the above deficiency of observed datasets,
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it is a common practice to extend the datasets both in space and time by converting one type of data
into another, for instance, estimating WD from WL.

The conversion between WL and WD is referred to as the stage–discharge relation. Under a
pure hydrological situation, this relation is represented by a power function, also called rating curve.
There are two available methods to obtain the stage–discharge relation. The first method is based on
numerical solutions of dynamic models [5–7] that simulates the stage–discharge relation when accurate
hydraulic geometry and boundary conditions are available. The second method is based on data-driven
models that can be based on the power function fitting, non-linear regression techniques [8–10], or an
artificial neural network (ANN) [11–14].

In essence, WD is not only related to WL alone, but also disturbed by water surface slope, channel
geometry, bed roughness, flow unsteadiness, lateral flow, and the backwater effect caused by an ocean
tidal wave propagating up to estuaries [15,16]. Therefore, the stage–discharge relation becomes more
complicated, manifesting as multiple loops [17]. In the river delta, the influence of the ocean tidal
wave is a significant factor that distorts the well-established stage–discharge relation [8]. Consequently,
the WL and WD data near the estuary mouth at river deltas are used cautiously for research
studies, as those data are contaminated by the aforementioned factors. For instance, Sassi et al. [18]
quantitatively analyses the contribution of different ocean tidal components (i.e., quarter-diurnal,
semidiurnal, diurnal, and fortnightly) to surface water variation. The fluvial-to-marine transition
zone of Mekong Delta have been further subdivided into four sections (i.e., fluvial-dominated
tide-affected, fluvial-dominated tide-influenced, tide-dominated fluvial-influenced, and tide-dominated
fluvial-affected zones), according to salinity, channel morphology, fades/grain size, and the extent of
ocean tidal influence by Gugliotta et al. [19]. However, the stage–discharge relation at the river delta
corrected by ocean tidal components remains unexplored.

The Mekong Delta (MD) (Figure 1), being home to 19 million people, is an important agricultural
and fishing district in Southeast Asia [17,20]. Further anthropogenic stressors are massive river
training and construction of a multitude of large hydropower dams and severe sand extraction for
concrete production [21–23]. This is characterized by a relatively flat surface with low altitudes and
gradients [24,25]. Being a transition zone, WD and WL variability are dynamically affected by both
fluvial and marine processes seasonally [26,27]. As a result, reverse flow caused by ocean tidal wave
and storm surge can easily propagate along river channels [8]. As a result, salinity intrusion and
catastrophic flooding along with rising sea level [28–30] severely threaten the grain production in the
MD [31,32]. This also affects hydrological gauge stations within a distance of 200 kilometers away from
the estuary mouth. In addition, the Tonle Sap Lake in Cambodia also provides a regulation effect [33–35],
before the river runoff delivers to the MD and discharges eventually to the South China Sea through
the Bassac River and the Mekong river within the MD [36]. As a consequence, the stage–discharge
relation in this region exhibits multiple looping curves along with noisy patterns [33,37].

Despite qualitative explanations, the ocean tidal backwater effect has not been quantified
and corrected for. After all, the complex interaction between oceanic and fluvial processes is a
cross-disciplinary science among land surface hydrology, estuary, and ocean science. As long as an
appropriate method can be introduced to partially recover the stage–discharge relation with good
accuracy, the corrected data would be of great usage. For such a purpose, the analysis of the disturbance
of the stage–discharge relation by different components of ocean tides, based on a tidal data analysis or
a remotely-sensed global ocean tide model, is a prerequisite.

This study aims to demonstrate the potential of incorporating the ocean tidal components into
the stage–discharge relation for a partial relation recovery in the MD. The relation among WD, WL,
and ocean tidal height data time series are analyzed via their standardized forms. The ocean tidal
components generated from remotely sensed OSU12 global ocean tide model are substituted into the
resulting model relation generated from the analysis. The fitted model relation is subsequently applied
for estimating WD from ocean tidal height and WL. A quantitative evaluation of the estimated WD
against the observed hydrological data is also presented.
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Figure 1. Map of Mekong Delta (MD), with two pairs of hydrological gauge stations (i.e., Can Tho and
Chau Doc, and My Thuan and Tan Chau) situated near the estuaries. (The topography dataset, called
earth_relief_30s, is a derived product of SRTM15+ [38], which is obtainable from http://mirrors.ustc.
edu.cn/gmt/data/).

2. Datasets and Assessment Metrics

In this study, in-situ data from hydrological stations, tidal gauge data, and OSU12 global ocean
tide model were analyzed. Table 1 summarizes the essential information about these datasets.

Table 1. The datasets used in this study.

Products Location Time Span Temporal Resolution

In Situ Stations’
Water Level Data

Can Tho 2003–2006
2009–2014

Daily average
My Thuan 2003–2006

2009–2014
Chau Doc 2003–2006
Tan Chau 2003–2006

In Situ Stations’
Discharge Data

Can Tho 2003–2006
2009–2014 Daily (before 2006)

Monthly (after 2009)My Thuan 2003–2006
2009–2014

Chau Doc 2003–2006
Tan Chau 2003–2006

Tidal Gauge Data Vung Tau 2003–2014 Hourly
OSU12 Global Ocean

Tide Model Data
9.375N, 106.375E Tidal constituents

(Sa, Ssa, Mm)10.125N, 107.125E

2.1. In-Situ Hydrological Data

Station data time series within the MD were obtained from the Mekong River Commission (MRC)
(http://www.mrcmekong.org). Acoustic Doppler Current Profiler (ADCP) was applied to gauge flow
velocity for deriving precise discharge, according to MRC [39]. To compare between the two main
subdivided branches within the MD, Tan Chau and My Thuan stations along the Mekong River,
and Chau Doc and Can Tho stations along the Bassac River were used. Situated at the entrance of the

http://mirrors.ustc.edu.cn/gmt/data/
http://mirrors.ustc.edu.cn/gmt/data/
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MD [27], the Tan Chau and Chau Doc stations are, respectively, ~220 and ~240 km away from the
estuary mouth. Both stations are in the middle between the Tonle Sap Lake and the estuary mouth,
where the regulation effect of the lake and the ocean tidal backwater effect are minimized. Being the
closest hydrological stations to the estuary mouth, My Thuan and Can Tho stations are subject to the
backwater effect caused by landward ocean tidal propagation, which is clearly shown in the data time
series [27]. Hence, the comparison between upper and lower station pairs allows us to further quantify
the extent of the ocean tidal backwater effect.

Note that WD data of Tan Chau station were missing in 2001, 2002, and 2007. To be consistent
with the time span of other WD data, the station time series spanning from January 2003 to December
2006 were selected for investigation, while those from January 2009 to December 2014 were employed
for validation. Given the different temporal resolutions among WL, WD, and in-situ ocean tidal data
time series and in order to isolate signals unrelated to hydrology, a Butterworth filter was applied to
these time series for suppressing periodic fluctuations shorter than 15 days (e.g., diurnal, semidiurnal,
etc.). The mean, maximum, and minimum values of those time series are summarized in Table 2.

Table 2. Maximum, minimum, mean values, and standard deviations of original and processed
time series.

Variable Station Maximum Minimum Mean Standard Deviation

Original Water Discharge
(1 × 104 m3/s)

My Thuan 1.6500 0.0029 0.7263 0.4036
Can Tho 1.8400 0.0025 0.7206 0.4416
Tan Chau 2.2597 0.1190 0.9359 0.6490
Chau Doc 0.7120 0.0045 0.2625 0.2059

Processed Water Discharge
(1 × 104 m3/s)

My Thuan 1.5345 0.2423 0.7262 0.3109
Can Tho 1.4666 0.1704 0.7209 0.3236
Tan Chau 2.1400 0.1600 0.9360 0.6470
Chau Doc 0.7121 0.0266 0.2626 0.2043

Original Water Level (m)

My Thuan 1.4225 −0.3355 0.4619 0.3522
Can Tho 1.4591 −0.2707 0.4168 0.3231
Tan Chau 4.3831 0.0222 1.6820 1.2544
Chau Doc 4.0036 −0.1486 1.5017 1.1443

Processed Water Level (m)

My Thuan 1.2165 −0.1304 0.4620 0.3267
Can Tho 1.0358 −0.0685 0.4171 0.2976
Tan Chau 4.3361 0.2326 1.6825 1.2498
Chau Doc 3.9558 0.1863 1.5019 1.1396

Original Tide height (m) Vung Tau 4.3300 −0.4400 2.6433 0.8566
Processed Tide height (m) Vung Tau 2.9984 2.3413 2.6436 0.1648

Filtered and original time series of the four stations are displayed, showing common characteristics
of the WL and WD time series along with their differences (Figure 2a–d). Can Tho and My Thuan
station time series show a larger ocean tide backwater effect than those of Chau Doc and Tan Chau
stations. By comparing WL with WD time series, WD lags behind WL by approximately a month.
This fact is more pronounced for stations closer to the estuary mouth (i.e., Can Tho and My Thuan) than
their upper counterparts (i.e., Chau Doc and Tan Chau). Obviously, the annual signal is apparent for
all station time series, in which the temporal patterns are highly related to not only seasonal variation
of watershed runoff, but also the long-period (e.g., semiannual and annual) ocean tidal components,
as shown in Figure 2e. As a consequence, external information obtained from the tide gauge or ocean
tide model data near estuaries can be potentially used for removing the effect of long-period ocean
tidal components, which is the objective of this study.
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Figure 2. Low-pass filtered (blue) and original (blue dash) time series of water discharge and water
level (red) over (a) Can Tho, (b) My Thuan, (c) Chau Doc, and (d) Tan Chau stations, respectively,
and (e) time series of ocean tidal height (sea level) at Vung Tau station spanning from January 2003 to
December 2006.

2.2. Sea Level Data from Tide Gauge Station

A tide gauge measures sea level time series at selected locations along the coasts [40]. Vung Tau
is the closest tide gauge station to Mekong estuary chosen for relating the long-period ocean tidal
variation to WL within the MD. Spanning from 2003 to 2014, the sea level time series at Vung Tau station
were recorded on an hourly interval. This dataset is provided by the Hydrological and Environmental
station network center in Vietnam and can be obtained from http://www.ioc-sealevelmonitoring.org/

station.php?code=vung.

http://www.ioc-sealevelmonitoring.org/station.php?code=vung
http://www.ioc-sealevelmonitoring.org/station.php?code=vung
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Figure 2e shows filtered and original hourly time series of the tidal gauge data. Fast Fourier
transform (FFT) was applied to identify different periodic components of the time series. The highest
power spectra are located at both diurnal and semidiurnal ocean tidal components (Figure 3a), which are
unrelated to hydrological signals. In order to be consistent with WD and WL time series’ daily sampling
rate, the hourly tidal height time series are averaged daily after filtering high-frequency components
via the Butterworth filter. This process, to a large extent, suppresses or removes the short-period ocean
tidal components via the low-pass filtering process, and hence, reducing the effect on long-term ocean
tidal components [41–43] (Figure 3b). Compared with the unfiltered time series, only semiannual and
annual tide components are apparent in the processed time series.

Figure 3. Spectra of the (a) hourly and (b) daily averaged ocean tidal height time series in Vung Tau
tide gauge station.

2.3. Global Ocean Tide Model Data

A global ocean tide model contains gridded in-phase and quadrature amplitudes (or equivalently
amplitude and phase) for major tidal constituents, allowing us to generate ocean tidal height in the
absence of tide gauge stations along the coasts [44,45]. Although many remotely sensed ocean tide
models (e.g., FES2014, GOT4.8, NAO99.b, TPXO8, EOT11a, DTU10, HAMTIDE, OSU12, etc.) are
available for the purpose of our study, the OSU12 model, with a 0.25◦ × 0.25◦ spatial resolution [46,47],
was employed to generate long-period tidal height time series at grid points near Mekong and Bassac
river estuaries (Table 3), because it contained long-period tides and was derived purely from remotely
sensed satellite altimetry data. Notwithstanding smaller amplitude when compared with semidiurnal
and diurnal tides, long-period ocean tidal components are influential to daily and monthly average
WL time series. As shown in Figures 2 and 3b, long-period ocean tidal components are likely related to
the discrepancies between the pattern of WL and WD time series. It is appropriate to calculate the
ocean tidal height time series, TH(t), at time t from the in-phase, H1, and quadrature amplitudes, H2,
of Sa, Ssa, and Mm tides, which can be formulated as:

TH(t) =
∑3

i=1
(H1)i cos

(
2πt
Ti

)
+ (H2)i sin(

2πt
Ti

), (1)
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where Ti is the period of each long-period ocean tidal component i. Note that both the in-phase
and quadrature amplitudes are with respect to Greenwich Meridian with the starting time, 0:00 AM,
1 January 2002 (UTC +0).

Table 3. Long-period ocean tidal components at two gridded locations close to Mekong and Bassac
river estuaries solved at the initial time epoch of 0:00 AM, 1 January 2002 (UTC +0).

Tide Components Point1 (9.35◦N,106.375◦E) (in cm) Point2 (10.125◦N, 107.125◦E) (in cm)

Sa (365.25 days) H1 24.41570 19.06151
H2 −1.56798 −3.91959

Ssa (182.62 days) H1 1.36968 −6.76170
H2 3.52620 2.07534

Mm (27.55 days) H1 1.30950 0.32715
H2 −1.63984 1.72923

2.4. Assessment Metrics

To evaluate the estimated WD against in-situ WD time series in Section 4, three assessment metrics,
R-Square, the Pearson correlation coefficient (PCC), and the Nash–Sutcliffe efficiency (NSE) coefficient,
are employed.

R-Square, ranging between 0 and 1, describes how much the variation of in-situ WD, WDg,
is explained by the estimated WD, WDe, generated from the model. The closer the value to 1, the better
the model fitting to the WDg. R-Square is equal to the quotient of sum of squares regression (SSR)
divided by sum of squares total (SST), and can be defined as:

R− Square =
SSR
SST

=

∑n
i=1

(
WDi

e −WDg
)2

∑n
i=1

(
WDi

g −WDg
)2 (2)

PCC, ranging between −1 and 1, describe how strong the linear relationship between WDe and
WDg, which is defined as:

PCC =

∑N
i=1

(
WDi

e −WDe
)(

WDi
g −WDg

)
√∑N

i=1

(
WDi

e −WDe
)2

√∑N
i=1

(
WDi

g −WDg
)2

(3)

where WDe and WDg are the mean of WDe and WDg, respectively. Notably, for the power function
relating WL to WD, logarithmic transform is applied to obtain the log-linear relation between the two
variables in order to assess their correlation. To highlight the difference, PCC was used to represent the
linear relationship between WDe and WDg, while “correlation coefficient” appeared in each figure of
this study referred to the log-linear relation between WD and WL, as shown in Equation (6) below.

NSE coefficient, ranging from −∞ to 1, describes the gain in the performance of WDe against WDg.
The closer the NSE coefficient to 1, the better the performance of the estimation [48]. It is defined as:

NSE = 1−

∑N
i=1

(
WDi

e −WDi
g

)2

∑N
i=1

(
WDi

g −WDg
)2 (4)

3. Data Analysis and Methodology

This section explores the relations among ocean tidal height, WL, and WD time series over our
study region, so as to illustrate the interaction between fluvial and oceanic factors along with their
combined effects on WL and WD data. For an ideal hydrological station location where WL and
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WD are purely influenced by the fluvial process, WL and WD are related by a power function [49]
expressed as:

WD = a∗[WL− b]c (5)

where a, b, c are the scaling coefficient, the offset of WL and the exponent of power function, respectively.
However, in reality, the stage–discharge phase diagram between WL and WD appears as random

data points with trends (i.e., Can Tho and My Thuan stations) and elliptical curves (i.e., Chau Doc and
Tan Chau stations) in the MD (Figure 4).

Figure 4. (a–d) Relationship between water level (WL) and water discharge (WD) (original daily
sampled time series) for the four selected hydrological stations in Mekong Delta.

The logarithmic transform of Equation (5) allows the conversion into log-linear relation,
expressed as:

ln(WD) = c ∗ ln(WL− b) + ln(a). (6)

such that Equation (6) measures a linear relationship between ln(WD) and ln(WL− b). All “correlation
coefficients” displayed in all stage–discharge phase diagrams were calculated based on ln(WD) and
ln(WL− b), as mentioned in Section 2.4.

Compared to those of the other two stations, the rating curves between WL and WD of Can Tho
and My Thuan stations yield lower correlation coefficients because they are more significantly affected
by the ocean tidal backwater.

3.1. Data Analysis of Backwater Influence on Water Discharge (WD) and Water Level (WL)

Although the phase diagram between WL and WD in the tide-dominated area appears elliptical,
the patterns of the deviation from the rating curves are presumed to be analyzable by different
ocean tidal components. Through FFT, the most pronounced periods are 365 days, 182.5 days,
and 14.7475 days in both WD and WL time series.

The relative power (to the signal with the largest power) and initial phase of each signal are
displayed in Table 4. For an ideal stage–discharge relation (i.e., power function relation), WL and WD
are positively correlated. The signals of WD and WL with the same period should have the same initial
phase and similar relative power. However, we found that the initial phase of WD and WL time series
of the four stations are different from each other.
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Table 4. Relative power and initial phases of the three periodic signals in WD and WL time series at
the four selected stations with initial phase domain defined between 0◦ and 360◦.

Station

Period: 365 Days Period: 182.5 Days Period: 14.7475 Days

Relative
Power

Initial
Phase

Relative
Power

Initial
Phase

Relative
Power

Initial
Phase

Can Tho
WD 1 95.2311◦ 0.3060 173.5607◦ 0.4727 25.1628◦

WL 1 58.5725◦ 0.2535 168.3582◦ 0.2997 244.1391◦

My Thuan WD 1 87.1219◦ 0.3093 170.8565◦ 0.5671 25.8326◦

WL 1 55.0654◦ 0.2664 175.4839◦ 0.3152 244.2108◦

Chau Doc
WD 1 93.8689◦ 0.3392 196.6511◦ 0.0324 111.2065◦

WL 1 84.7393◦ 0.3963 193.8528◦ 0.0414 274.7407◦

Tan Chau
WD 1 97.4019◦ 0.2385 222.2999◦ 0.0046 99.6860◦

WL 1 90.3988◦ 0.3705 202.5387◦ 0.0336 260.8400◦

Firstly, annual signals (i.e., 365-day period) of Can Tho and My Thuan present different initial
phases between WD and WL, in particular WL, with its initial phases ~30◦ lower than that of upper
counterparts. This indicates that annual tides can cause around a one-month time lag between the
lower and upper stations. A similar situation applies to that of the semiannual signal, but to a lesser
extent. Secondly, the initial phase of the half-monthly signal (i.e., 14.7475-day period) of WD and
that of WL present the phase difference between 160◦ and 220◦. This shows that the WD is inversely
proportional to WL with an additional time lag. In other words, the WD increase (decrease) when
the WL decrease (increase), implying that the half-monthly signal of WL and WD interacts with
each other seasonally and alternately. This fact further indicates the half-monthly signal is of two
origins: land and ocean, which is supported by physical explanations from Guo et al. (2020) [50] and
Jay (1991) [51]. Half-monthly signals of the Can Tho and My Thuan stations yields a much larger
relative power than their upper counterparts, indicating the damping effect on the amplitude and
changing phase when propagating inland via the estuary mouth. Since these half-monthly signals have
different changing ratios for inland propagation direction with annual tide components, a band-pass
filter (e.g., Butterworth filter) was applied to remove this signal from tidal-influenced time series
for consistency.

To further analyze the interaction between oceanic and fluvial effects, the variation of WD, WL,
and TH time series are compared via their standardized forms, xs, expressed as:

xs =
x− x√∑
(x−x)2

N

(7)

where x is the average value of xx time series, and NN is the number of data in the time series.
The standardized WD, WL and TH (i.e., WDs, WLs, and THs respectively) are compared for the four
stations, respectively, in Figure 5.

As shown in Figure 5b,d, it is clear that the standardized WL time series are highly correlated with
standardized WD time series, they reach the maximum values in early September and minimum in
March and April simultaneously. Influences from ocean tide are minor, and the ocean tidal height series
reaches its maximum and minimum values in different months. However, in Figure 5a,c, there exists
large deviation between WD and WL time series. In the lower stations, the WL reaches its minimum
and maximum value about a month later than WD, consistent with the initial phase difference of
around 30◦ stated above (Table 4). For most cases, WL (red line) is set between WD (blue line) and
TH (yellow line), emphasizing the influence of the ocean on WL. Previous studies attribute this phase
difference to floods up and down or a time lag caused by tidal propagation [52]. Since this phenomenon
is more apparent in stations closer to the estuaries, we speculate it is mainly caused by the mixing of
fluvial-dominated and marine-dominated fluctuations at the annual and semiannual scale.
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Figure 5. Comparison of standardized WD, WL, and tidal height time series in (a) Can Tho, (b) Chau
Doc, (c) My Thuan, and (d) Tan Chau station, respectively.

Theoretically, when two signals with the same period (T) are combined, the new signal will have
the same period (T) but a different initial phase (φ3), is expressed as:

A1 cos
(2πt

T
+ φ1

)
+ A2 cos

(2πt
T

+ φ2

)
= A3 cos

(2πt
T

+ φ3

)
, (8)

where A1, A2, and A3 are three different amplitudes, φ1, φ2, and φ3 are three initial phases, and t refers
to time epoch. The proof of Equation (8) is listed in Appendix A.

Since annual and semiannual signals are major components in the WL, WD, TH time series,
the fluvial-dominated annual (semiannual) signal and marine-dominated annual (semiannual) signal
form a mixed annual (semiannual) WL time series in the MD. For both WL and TH fluctuating in
the vertical direction, the WL will be potentially corrected by annual and semiannual ocean tidal
components if the TH time series are involved in the power function fitting process. This will be further
explored in the next subsection. However, Equation (8) does not work for ocean tidal components
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shorter than half-monthly one, because of possible non-linear interaction among fluvial factors, bottom
topography of an estuarine channel and ocean tidal backwater. This leads to the non-linear change of
amplitude and phase during the inland propagation process.

3.2. Incorporating Long-Period Ocean Tidal Components into Rating Curve

Before incorporating long-period ocean tidal components into the rating curve, short-period
fluctuations in both WD and WL time series, including short-period diurnal and semidiurnal ocean
tides, have to be removed. As mentioned in Section 2.1, this can be achieved by a Butterworth filter
that suppresses all high-frequency signals with a period shorter than 15 days. Consistent with the
filtered time series (Figure 2), the rating curve with filtered time series of WD and WL at the four
stations are plotted in terms of phase diagrams (Figure 6).

Figure 6. (a–d) Relationship between WL and WD (low pass filtered time series) for the selected four
hydrological stations in the Mekong Delta.

Compared with those in Figure 4, it is clear that the correlation coefficients have been improved
significantly (Figure 6). However, the elliptical loops are still apparent, indicating a time lag between
WL and WD time series, as mentioned in Section 3.1.

Given that the relationship between THs, WDs, WLs has been analyzed in Section 3.1, it is likely
that the elliptical looping phenomenon is largely due to semiannual and annual ocean tidal components.
For both WL and TH fluctuating in the vertical direction, the THs time series were applied to separate
the tide-induced fluctuation from the WL time series through a fitting process. The WL free from tide
influence, WLfree, is defined as:

WLfree = WL−α× THs. (9)

where, α is a coefficient that rescales the THs. Consequently, the relationship among WD, WL, THs can
be represented by:

WD = a×[WL−α× THs − b]c. (10)

where a, b, c, and α are to be determined from the observed WD, WL, and TH time series. Through a
non-linear fitting [53,54], a, b, c, and α can be determined, and WLfree is obtainable.

4. Results and Discussion

The rating curves of WLfree and WD are shown (Figure 7), yielding much higher correlation
coefficients when compared to the rating curves of original WD and WL time series. Although rating
curves of the Can Tho and My Thuan stations still display lower correlation coefficients than their
upper counterparts, significant improvement has been observed. Additionally, the elliptical looping
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phenomenon related to ‘time-lag’ between WL and WD is also diminished for all four selected stations.
As a countercheck, the time series of WD and WLfree for the two stations close to the estuary are shown
in Figure 8, revealing no apparent time lag.

Figure 7. (a–d) Relationship between WLfree and WD (low pass filtered time series) for the selected
four hydrological stations in the Mekong Delta.

Figure 8. WD and tide-free WL time series from 2003 to 2006 in (a) Can Tho and (b) My Thuan stations.

In the absence of tide gauge data, the TH time series generated from a global ocean tide model
would be a viable alternative, because it can provide ocean tidal height components for the global
ocean. The method for obtaining model-derived TH time series has been stated in Section 2.3.
The model-derived TH series and in-situ gauged tidal height time series are displayed, manifesting
high similarity with each other (Figure 9). Employing the above methodology, the rating curves of the
four stations have been recovered using model-derived TH time series (Figure 10).
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Figure 9. The comparison between OSU12 model-derived WL and in-situ WL at (a) Can Tho and
(b) My Thuan during 2003–2006.

Figure 10. Recovered rating curves at (a) Can Tho, (b) My Thuan, (c) Chau Doc, and (d) Tan Chau
stations using model-derived ocean tidal height as input.

Although the correlation coefficients of the rating curve fitting generated by model-derived
TH time series (Figure 10) are slightly lower than by in-situ tide gauge TH time series (Figure 7),
the improvement is considerable when compared to the original unmodified rating curves. This is
because most global ocean tide models are derived from satellite altimetry, with the model accuracies
lower than that of gauge-derived TH, in particular coastal regions [39]. Given the above results, it is
appropriate to use an ocean tidal model to partially recover rating curves over tide-dominated regions.

To evaluate the accuracy of the recovered rating curves, the estimated WD time series via
Equation (10) generated from both model-derived and in-situ TH time series are compared with the
in-situ WD during 2003–2006. Table 5 lists all determined coefficients of Equation (10) along with
the assessment metrics (i.e., R-Square, PCC, NSE) that assess the estimated WD against in-situ WD.
For both WD estimated based on in-situ and model-derived TH data, all the assessment metrics yield
high-correlation values at all the four stations, suggesting our method can partially recover the tide-free
WL for estimating WD. Overall, the recovered stage–discharge relation is capable of predicting a
relatively reliable WD. These results also validate the data analysis in Section 3.
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Table 5. Assessment of the estimated WD and stage–discharge relation coefficients.

Tidal
Height Data Station a b c α R-Square PCC NSE

In-situ
measured

Can Tho 11683 −0.2230 1.3661 0.1619 0.9291 0.9626 0.9266
My Thuan 3436.5 −0.8665 2.4063 0.1480 0.8974 0.9468 0.8964
Chau Doc 2239.8 0.2756 0.8592 0.1577 0.9790 0.9922 0.9843
Tan Chau 9134.3 0.4052 0.6229 0.1819 0.9809 0.9946 0.9891

OSU12

Can Tho 5948.3 −0.5949 2.3417 0.1722 0.8871 0.9383 0.8804
My Thuan 9761.2 −0.3079 1.2619 0.1520 0.8631 0.9285 0.8621
Chau Doc 2201.2 0.2762 0.8911 0.1582 0.9828 0.9934 0.9868
Tan Chau 8950.3 0.3809 0.6335 0.1314 0.9750 0.9910 0.9820

To highlight the importance of tidal separation by the term −α× THs in Equation (10), the PCC
values with different combinations of coefficient b, c, and α were calculated with their best fitted a
fixed. Taking Can Tho station as an example (Figure 11), b and c impact the PCC values (i.e., > 0.9)
significantly, only if α is ~0.16. The same holds for My Thuan station. Therefore, adding the term
−α× THs to the conventional power function (i.e., Equation (5)) is necessary for the improvement of
the stage–discharge relation in the MD, which is in the fluvial-to-marine transition zone. In summary,
we found that an appropriate α is a prerequisite for the PCC larger than 0.9.

Figure 11. (a) Different PCC (presented in color bar) for different b, c and α using time series from Can
Tho station, and (b) slices of (a) for nine chosen α, with maximum PCC for each α shown from the
above subplots.
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To assess the applicability of the determined coefficients of Equation (10) for Can Tho and My
Thuan station time series during 2003–2006, these coefficients were directly employed for the analysis
of the WL and TH data time series during 2009–2014. The predicted WD were then compared with the
monthly in-situ WD (Figure 12), since only monthly WD are available for Can Tho and My Thuan
stations. Hence, WL and WLf were monthly averaged before the comparison. For both Can Tho and
My Thuan stations, tide-free WL, WLf, leads to higher correlation coefficients and diminishes the
looping curve problem to a large degree. This indicates that coefficient α appears to be stable during
our study period.

Figure 12. (a,b) Stage discharge relation from original WL, and (c,d) tide-free WL for Can Tho and My
Thuan stations.

Despite a substantial improvement made in this study, small deviations from the ideal power
function still exist, particularly for the two stations closest to the estuary mouth. After all, the interaction
between fluvial and marine processes are complicated near estuary mouths [55]. Remaining effects
cannot be neglected. For instance, WD should pose a non-negligible effect on the tidal propagation
along the river channel during the wet season. Overland flows inward or outward from the Tonle Sap
Lake would likely be another important factor affecting the stage–discharge relations, because this
lake operates as a natural reservoir that regulates Mekong river discharge from the river delta to the
coastal ocean [34,56,57]. Erosion and deposition alter hydraulic geometry and increase channel bottom
friction and, hence, contribute to the potential instability of the stage–discharge relation. Furthermore,
numerous clusters of dams were built along the main stream of Mekong river, which may also alter the
stage–discharge relation [21,22]. Sea level rise, which closely connected to salt intrusion and coastal
erosion problems may alter the estuarine topography condition, resulting in a secular shift of ocean
tidal components [23,26]. Agricultural practices and deforestation also provide additional impact on
the evapotranspiration balance of the catchment area. Furthermore, since short-term signals were
filtered out or failed to be captured by daily sampling, the short-term variations in WD and WL
have not been quantitatively investigated. These considerations represent the current limitations of
this study.

5. Conclusions

Instead of seeking a qualitative explanation of the stage–discharge relation influenced by the
ocean tidal backwater effect, this study quantitatively analyzes the relations among water discharge
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(WD), water level (WL), and ocean tidal components via their standardized forms. We found that
annual and semiannual ocean tidal components are significant contributors to the deviation between
WL and WD time series. In particular, the annual and semiannual periods of ocean tidal backwater
result in the elliptic loop associated with the presence of time lag between WL and WD.

Based on these findings, we adapt the stage–discharge relation to accommodate the effects of
annual and semiannual ocean tidal components. It was found that the WD estimated from the de-tided
WL yields PCC and NSE values of ~0.9. Although the de-tided WL time series generated based on
the TH time series from the OSU12 global ocean tide model are slightly less accurate than that of tide
gauge data, the ocean tide model is a viable alternative to partially recover the stage–discharge relation
for estuaries in the absence of tide gauge stations.

Further improvement lies in identifying remaining effects contributing to the potential instability
of the stage–discharge relation, which include the non-negligible effect of seasonal WD on ocean tidal
propagation, the Tonle Sap lake regulation effect on the Mekong river discharge, erosion and deposition
effects on the hydraulic geometry, and channel bottom friction. The impact of human activities and
artificial structure in the Mekong River area, as well as its interaction with climate change, should also
be highlighted. Those factors may introduce a long-term change trend into the WL–WD relationship.

The recent remotely-sensed water balance variables with improved temporal resolutions, such as
8-day MODIS evapotranspiration [58], daily TRMM precipitation [59], and daily GRACE terrestrial
water storage data products [60], should enable us to compute tide-free WD, which is independent
of in-situ measurements based on the water balance equation [36]. This can serve as a countercheck
against the in-situ WD for assessing the first two remaining effects.
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Appendix A

The mathematic proof of Equation (8) is shown below:
For the convenience of expression, set 2πt

T = x.

A1 cos(x + φ1) + A2 cos(x + φ2) = (A1 cosφ1) cos x− (A1 sinφ1) sin x
+(A2 cosφ2) cos x− (A2 sinφ2) sin x
= (A1 cosφ1 + A2 cosφ2) cos x
−(A1 sinφ1 + A2 sinφ2) sin x

(11)

Since A1,A2,φ1,φ2 are constant, (A1 cosφ1 + A2 cosφ2) and (A1 sinφ1 + A2 sinφ2) are also
constant. Therefore, we set C1 = (A1 cosφ1 + A2 cosφ2) and C2 = (A1 sinφ1 + A2 sinφ2). Obviously,

C1 cos x−C2 sin x =
√

C2
1 + C2

2(
C1√

C2
1 + C2

2

cosx−
C2√

C2
1 + C2

2

sinx) (12)

Notice that  C1√
C2

1 + C2
2


2

+

 C2√
C2

1 + C2
2


2

= 1 (13)
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Set C1√
C2

1+C2
2

= cosφ3, and C2√
C2

1+C2
2

= sinφ3. Obviously,

C1 cos x−C2 sin x =
√

C2
1 + C2

2 cos(x + φ3) (14)

where tanφ3 = C2
C1

. If we set
√

C2
1 + C2

2 = A3,

A1 cos(x + φ1) + A2 cos(x + φ2) =

A3 cos(x + φ3)A1 cos(x + φ1) + A2 cos(x + φ2)A3 cos(x + φ3)
(15)
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