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Abstract: Forest canopy height is an indispensable forest vertical structure parameter for
understanding the carbon cycle and forest ecosystem services. A variety of studies based on
spaceborne Lidar, such as ICESat, ICESat-2 and airborne Lidar, were conducted to estimate forest
canopy height at multiple scales. However, while a few studies have been conducted based on
ICESat-2 simulated data from airborne Lidar data, few studies have analyzed ATL08 and ATL03
products derived from the ATLAS sensor onboard ICESat-2 for regional vegetation canopy height
mapping. It is necessary and promising to explore how data obtained by ICESat-2 can be applied to
estimate forest canopy height. This study proposes a new means to estimate forest canopy height,
defined as the mean height of trees within a given forest area, using a combination of ICESat-2 ATL08
and ATL03 data and ZY-3 satellite stereo images. Five procedures were used to estimate the forest
canopy height of the city of Nanning in China: (1) Processing ground photons in a 30 m × 30 m grid;
(2) Extracting a digital surface model (DSM) using ZY-3 stereo images; (3) Calculating a discontinuous
canopy height model (CHM) dataset; (4) Validating the DSM and ground photon height using
GEDI data; (5) Estimating the regional wall-to-wall forest canopy height product based on the
backpropagation artificial neural network (BP-ANN) model and Landsat 8 vegetation indices and
independent accuracy assessments with field measured plots. The validation shows a root mean
square error (RMSE) of 3.34 m to 3.47 m and a coefficient of determination R2 = 0.51. The new method
shows promise and can be used for large-scale forest canopy height mapping at various resolutions or
in combination with other data, such as SAR images. Finally, this study analyzes resolutions and how
to filter effective data when ATL08 data are directly used to generate regional or global vegetation
height products, which will be the focus of future research.
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1. Introduction

As essential terrestrial ecosystems, forests form an important part of the earth’s carbon cycle [1,2].
Forests not only play an indispensable role in various ecological and social services but also help
maintain carbon balance and mitigate climate change, as they are considered carbon sinks [3–7].
The total carbon storage of forest is equivalent to 85% of total terrestrial stocks and 75% of total
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terrestrial gross primary production [8]. It is estimated that 50% of plant biomass is composed of
carbon, and the estimated value of aboveground biomass (AGB) is used as a substitute for aboveground
carbon [9]. The accurate estimation of terrestrial forest biomass is conducive to better understanding
the crucial role of forests in the cycle of global carbon. Therefore, the accurate estimation of AGB can
reduce the uncertainty of terrestrial carbon quantification [10,11]. However, for many current estimates
of global carbon flux and biomass distribution in forests, there is still too much uncertainty due to the
coarse estimation of vegetation structures for many scientific research and policy applications [10,12,13].
In regional or global mapping, the estimation of forest canopy height and AGB is directly related to the
allometric growth equation. Therefore, improving the accuracy of forest canopy height estimation
and enriching data sources are conducive to improving the accuracy of AGB estimation, which is an
important research focus [14].

The remote sensing system has been regarded as an indispensable practical tool because of due to
its large-scale coverage and repeated observations. The combination of remote sensing satellite image
data with field-measured forest inventory data can promote the production of reliable and up-to-date
forest canopy height products [15]. As an active remote sensing method, light detection and ranging
(Lidar) transmits energy and records the backscattered energy from feature information of the earth’s
surface. Lidar can extract three-dimensional attributes and provide vegetation metrics by converting
the time taken for data to be transmitted from and returned to a sensor into distance measurements [16].
The precise three-dimensional structure data obtained from airborne and spaceborne Lidar and
measurements of forest canopy height, forest volume, and canopy cover have been successfully and
widely monitored and estimated at multiple spatial scales [16–21].

Forest canopy height extraction based on airborne Lidar can be conducted at the single tree scale
and sample plot scale. Tree heights can be extracted by the discrete point cloud and canopy height
model (CHM) obtained by airborne Lidar. Pang Yong established a univariate regression model using
the height of the normalized point cloud (H75) and the measured tree height and compared and
analyzed the effects of high- and low-density point clouds on the retrieved stand parameters [22].
Hirata used a watershed segmentation algorithm to identify individual trees from a CHM acquired by
airborne Lidar [23]. The recognition rate of a single tree decreases with decreasing cutting intensity
from 95.3% in severe logging areas to 60% in noncutting areas. Popescu extracted tree height and crown
width measurements from a CHM obtained through airborne Lidar and established linear and nonlinear
regression models with measured DBH, AGB and component biomass data (leaf and root) [16].

However, the airborne Lidar is mainly used on a small scale due to its high data acquisition costs,
limited data acquisition range and use of large amounts of data, as well as being labor intensive and
time consuming, and it is difficult to use for large-scale forest vertical structure information extraction
and mapping [24]. The ICESat with the Geoscience Laser Altimeter System (GLAS), as a representative
spaceborne Lidar system, provides global footprint height information and is widely used in the
retrieval of forest canopy heights at regional and global scales [25–27]. Lefsky combined waveform
data from the GLAS and the terrain index extracted from SRTM DEM data to correct the slope of
waveform data for an area with a large slope, and improved the estimation accuracy of the regression
model of the maximum forest height [28]. The RMSE of the models for the three research areas ranged
from 4.85 m to 12.66 m.

The ICESat-2 with the Advanced Topographic Laser Altimeter System (ATLAS) was launched in
September 2018 as a follow-up mission to ICESat and aims to measure the structural characteristics of
forests at the global scale and to complement other spaceborne Lidar missions [29,30], including the
European Space Agency P-band radar BIOMASS [31], the Global Ecosystem Dynamics Investigation
Lidar (GEDI) [32], and NASA-ISRO Synthetic Aperture Radar(NISAR) missions [33]. ICESat-2 was
designed to draw a global image of Earth’s third dimension with height measurements and track
terrain changes, including those for sea ice, glaciers, forests, etc. (https://icesat-2.gsfc.nasa.gov/science),
as well as the first spaceborne Lidar system ICESat GLAS. Therefore, it is necessary and meaningful to
explore how data obtained by ICESat-2 can be applied to estimate forest canopy height or AGB.

https://icesat-2.gsfc.nasa.gov/science
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Montesano explored the abilities and uncertainties of ICESat-2 photon counting data in estimating
coniferous forest biomass according to different biomass gradients and sampling distances along
the orbit [34]. The authors found the 50 m scale to be the optimal horizontal resolution of ICESat-2
model fitting, and the biomass level was 20 Mg/ha with the estimation error of 20% to 50%. Gwenzi
evaluated the potential of ATLAS data use for canopy height extraction from savanna ecosystems [14].
The authors found the correlation between canopy height extracted from the MATLAS simulator,
which generates ATLAS-like data, and that from discrete return Lidar (DRL) to be weaker than that
from Multiple Altimeter Beam Experimental Lidar (MABEL, an airborne photon counting Lidar sensor)
data and predicted that the number of signal photons in spaceborne ATLAS data would be greatly
reduced, causing the accuracy of canopy height estimation to decrease. Narine used simulated ICESat-2
photon counting Lidar data to generate point cloud data with the same along-orbit segmentation length
as the ICESat-2 land vegetation product (ATL08), 100 m [15]. The relationship between photon counting
vegetation products and forest AGB and canopy coverage obtained by airborne Lidar was analyzed
in no-noise scenes, daytime scenes and night scenes [15]. Neuenschwander presented ATLAS data
and verified the accuracy of its ground elevation [35–37]. The RMSE value of ground elevation data
obtained from the ATLAS is 0.85 m, which is lower than that of the Space Shuttle Radar topographic
survey mission (SRTM).

However, few studies have used ICESat-2 vegetation height products to extrapolate and map
regional vegetation canopy height [38,39], and most of them are based on ICESat-2 simulation data of
airborne Lidar. The purpose of this paper is to explore ways to use the ATL08 and ATL03 products
to map regional forest canopy heights with a 30 m resolution. There are many definitions of forest
canopy height. Forest canopy height in this study refers to the mean height of trees within a given
forest area. In this study, ICESat-2 ATLAS photon data and ZY-3 stereo image pair data are combined
to generate a discontinuous CHM dataset. GEDI data are used to verify the accuracy of ground photon
elevation and the DSM. The CHM is used to create a training sample, and the BP-ANN model is used
to generate a forest canopy height map of the city of Nanning. Finally, this study analyzes resolution
and how to filter effective data that emerge when ATL08 data are directly used to generate regional or
global vegetation height products, which will be the focus of future research.

2. Materials and Methods

2.1. Description of the Study Area

Nanning, located in the south-central area of Guangxi, is the capital of the Guangxi Zhuang
Autonomous Region. Geographically, Nanning is located between 22◦13′ and 23◦32′ north and
107◦45′ and 108◦51′ east with a total land area of 22,100 km2 (Figure 1). Nanning consists of eight
administrative regions (municipal districts and the Yongning, Mashan, Binyang, Longan, Wuming,
Shanglin, and Heng counties). Elevation in the study area ranges from 70 m to 600 m, and flat land
is the main geomorphic type, accounting for 57.78% of the total area. The climate in Nanning is a
subtropical monsoon with average annual precipitation levels ranging from 1241 mm to 1753 mm,
and the average annual temperature is approximately 21.6 ◦C [40]. Additionally, the presence of
abundant water and heat resources render Nanning rich in forest resources. The main tree species
present are eucalyptus, masson pine and cunninghamia lanceolata. According to the results of the
fifth Guangxi forest resources survey, in 2016, the forested area of Nanning reached 1,050,000 hectares,
and the forest volume reached 51.99 million cubic meters (http://search.nanning.gov.cn/).

http://search.nanning.gov.cn/
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Figure 1. Location of the city of Nanning, the study area. The spot mark denotes the position of the 
field survey sample. Red boxes show the locations of ZY-3 coverage. The Shuttle Radar Topography 
Mission (SRTM) refers to the value of the elevation product collected by a C-band radar interferometry 
system. 
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The Advanced Topographic Laser Altimeter System (ATLAS) aboard ICESat-2 emits three pairs 
of beams with a spacing of 3.3 km and with a distance of approximately 90 m between the two beams. 
A pair consists of a strong and a weak beam. The diameter of the footprint is 14 m to 17 m and, the 
sampling interval along the track is set to 70 cm to facilitate intensive sampling and better capture 
elevation changes [29]. 

ATL01 to ATL21 contain three levels of ICESat-2 mission products. The Level-2 product of global 
geolocated photons (ATL03) measures the latitude, longitude, time and absolute height above the 
World Geodetic System 1984 (WGS84) for each photon [41]. ATL03 provides photon information for 
all Level-3A products such as land, ice elevation (ATL06), Arctic/Antarctic sea ice elevation (ATL07), 
land, water and vegetation elevation (ATL08) data [42]. The corresponding data of three pairs of laser 
beams are numbered gt1l-gt3r, representing the six ground tracks (GT) from left to right. ATL08 
provides terrain, canopy height, and canopy cover parameters at an along-track segment of 100 m, 
while the 100 m segment consists of 5 sequential 20 m segments labeled with segment IDs in ATL03 
and ATL08 [43]. The canopy height was calculated by the 98% height of all individual relative canopy 
heights, which is derived from a surface fitting line and vegetation surface fitting line within a 100 m 
segment. ATL08 provides a photon classification label (Noise, Ground, Canopy, and Top of Canopy), 
and the labeling of ground photons is crucial for this study. In this study, ATL03 and ATL08 data 
were utilized in combination where ATL03 provided height and coordinate information while ATL08 
provided photon classification information. ATL03 and ATL08 data were downloaded from the 
National Snow and Ice Data Center (NSIDC, https://nsidc.org/data/ATL03/versions/1, 

Figure 1. Location of the city of Nanning, the study area. The spot mark denotes the position of the field
survey sample. Red boxes show the locations of ZY-3 coverage. The Shuttle Radar Topography Mission
(SRTM) refers to the value of the elevation product collected by a C-band radar interferometry system.

2.2. Data Collection

2.2.1. ICESat-2 ATLAS

The Advanced Topographic Laser Altimeter System (ATLAS) aboard ICESat-2 emits three pairs of
beams with a spacing of 3.3 km and with a distance of approximately 90 m between the two beams.
A pair consists of a strong and a weak beam. The diameter of the footprint is 14 m to 17 m and,
the sampling interval along the track is set to 70 cm to facilitate intensive sampling and better capture
elevation changes [29].

ATL01 to ATL21 contain three levels of ICESat-2 mission products. The Level-2 product of global
geolocated photons (ATL03) measures the latitude, longitude, time and absolute height above the
World Geodetic System 1984 (WGS84) for each photon [41]. ATL03 provides photon information for
all Level-3A products such as land, ice elevation (ATL06), Arctic/Antarctic sea ice elevation (ATL07),
land, water and vegetation elevation (ATL08) data [42]. The corresponding data of three pairs of
laser beams are numbered gt1l-gt3r, representing the six ground tracks (GT) from left to right. ATL08
provides terrain, canopy height, and canopy cover parameters at an along-track segment of 100 m,
while the 100 m segment consists of 5 sequential 20 m segments labeled with segment IDs in ATL03 and
ATL08 [43]. The canopy height was calculated by the 98% height of all individual relative canopy heights,
which is derived from a surface fitting line and vegetation surface fitting line within a 100 m segment.
ATL08 provides a photon classification label (Noise, Ground, Canopy, and Top of Canopy), and the
labeling of ground photons is crucial for this study. In this study, ATL03 and ATL08 data were utilized in
combination where ATL03 provided height and coordinate information while ATL08 provided photon
classification information. ATL03 and ATL08 data were downloaded from the National Snow and Ice
Data Center (NSIDC, https://nsidc.org/data/ATL03/versions/1, https://nsidc.org/data/ATL08/versions/1)

https://nsidc.org/data/ATL03/versions/1
https://nsidc.org/data/ATL08/versions/1
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(Tables 1 and 2). ICESat-2 ATL03 and ATL08 data for the whole study area were acquired from October
30, 2018 to April 9, 2019, and data overlap with the locations of ZY-3 data for October 30, 2018 to
November 03, 2018 (Table 1, Figure 2).

Table 1. Details of the ICESat-2, ZY-3, Landsat-8 and Global Ecosystem Dynamics Investigation Lidar
(GEDI) satellite data.

Data Type Acquisition Dates (Year/Month/Day) Number of Files

ICESat-2 ATL08 2018/10/30–2019/04/29 55
ICESat-2 ATL03 2018/10/30–2019/04/29 30

ZY-3
2018/3/10 1
2018/10/5 1

Landsat-8
2018/10/31 2
2018/10/06 1

GEDI 2019/04/20–2019/10/01 73Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 22 
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Table 2. Comparison of the ATLAS aboard ICESat-2 to the GEDI aboard the International Space Station
(ISS) and the Geoscience Laser Altimeter System (GLAS) aboard ICESat [15,29].

Specification
System

ICESat-2 ATLAS GEDI ICESat GLAS

Measurement approach Photon counting Energy waveform Energy waveform
Wavelength 532 nm 1064 nm 1064 nm
Repetition rate 10 kHz 242 Hz 40 Hz

Number of beams 6 (3 pairs with 3.3 km pair separation and
90 m spacing between pairs)

4 (8 ground tracks spaced
600 m apart) 1

Footprint size 14 m 30 m 70 m
Along-track sampling 0.7 m 60 m 172 m

2.2.2. ZY-3 Data

The ZY-3 satellite, the first civil cartographic satellite designed for stereo photogrammetry in
China launched in 2012, can measure ground heights and is mainly used for 1:50,000 topographic maps.
Applying ZY-3 stereo image data for forestry research can generate a large area continuous digital
surface model (DSM), which can effectively prevent errors caused by the spatial interpolation of discrete
points. ZY-3 carries three panchromatic sensors pointing in the nadir, backward, and forward directions
with resolutions of 2.1 m × 2.1 m, two 3.5 m × 3.5 m, respectively, and one multispectral sensor that
consists of four bands (near infrared, red, green, and blue) with a resolution of 5.8 m × 5.8 m [44].
The ZY-3 02 satellite launched in 2016 is an upgraded successor of ZY-3 that have improved resolution
of backward and forward panchromatic sensors from 3.5 m × 3.5 m to 2.7 m × 2.7 m [45]. ZY-3 and
ZY-3 02 have the same ground swath of approximately 50 km × 50 km, and the same radiometric
resolution of 10 bits [46].

In this study, the ZY-3 and ZY-3 02 image data were downloaded from the China Centre for
Resources Satellite Data and Application (CRESDA, http://www.cresda.com/CN/) with the acquisition
period set to 10 March 2018 to 5 October 2018 considering data availability and cloud cover (Table 1).
Due to the presence of considerably more mountain shadows in forward view scenes, nadir and
backward view panchromatic scenes were utilized to extract the DSM while using multispectral scenes
to extract the forest area.

2.2.3. Landsat 8 Operational Land Imager Data

Landsat 8 with the Operational Land Imager (OLI) sensor provides satellite images with
wavelengths of 0.43 µm to 1.38 µm. OLI images were obtained from the United States Geological
Survey (USGS, https://glovis.usgs.gov/) on 31 October 2018 and 6 October 2018 (Table 1). The three
scenes show less than 5% cloud cover. Bands 1–7, which contain four visible bands, one near infrared
band and two shortwave infrared bands with a resolution of 30 m × 30 m, were utilized to extract
the forest area by maximum likelihood classification (MLC) to calculate the vegetation indices and to
estimate the forest canopy height of the study area. Preprocessing operations used included geometric
correction, radiometric calibration, and atmospheric correction by the Fast Line-of-Sight Atmospheric
Analysis of Hypercubes (FLAASH) module in ENVI to eliminate atmospheric effects.

This study refers to the existing literature, and a total of ten indices are selected for
analysis [44,47,48], including MSR, SLAVI, NDVI, and others (Table 3).

http://www.cresda.com/CN/
https://glovis.usgs.gov/
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Table 3. Vegetation indices and formula based on Landsat 8 OLI data. Tasseled Cap Transformation is
abbreviated as TCT.

Vegetation Index Formula Description Reference

BI 0.3029 * b2 + 0.2786 * b3 + 0.4733 * b4 + 0.5599 * b5 + 0.508
* b6 + 0.1872 * b7 TCT Brightness [49]

DVI b5 − b4 Difference Vegetation Index [50]
EVI 2.5 * (b5 − b4)/(b5 + 6b4 − 7.5b2 + 1) Enhanced Vegetation Index [51]

GVI −0.2941 * b2 − 0.243 * b3 − 0.5424 * b4 + 0.7276 * b5 +
0.0713 * b6 − 0.1608 * b7 TCT Greenness [49]

MSR RVI * (1 − (b6 − b6 min)/(b6 max − b6 min)) Modified Simple Ratio Index [52]
NDVI (b5 − b4)/(b5 + b4) Normalized Difference Vegetation Index [51]
RVI b5/b4 Simple Ratio Index [53]

SAVI (1 + L) * ((b5 − b4)/(b5 + b4 + L)) Soil-adjusted Ratio Vegetation Index [54]
SLAVI b5/(b4 + b6) Specific Leaf Area Vegetation Index [55]

WI 0.1511 * b2 + 0.1973 * b3 + 0.3283 * b4 + 0.3407 * b5 −
0.7117 * b6 − 0.4559 * b7 TCT Wetness [49]

2.2.4. GEDI

The Global Ecosystem Dynamics Investigation (GEDI), the first spaceborne Lidar system designed
specifically for studies of forest structures and launched in 2018, is an Earth Venture Instrument
(EVI) developed by NASA and equipped with three lasers and full waveform recording Lidar
instrument aboard the International Space Station (ISS) [56,57]. The GEDI operates at 1064 nm and
produces eight beam ground tracks spaced approximately 600 m apart in the cross-track direction
and sampling approximately 60 m along a track from a 4.2 km wide swath. Each footprint reflects
Lidar energy with a diameter of approximately 30 m and a vertical measurement accuracy level of
approximately 2–3 cm [57,58]. GEDI L2A product data with ground elevation and relative height
(RH) metrics were taken from NASA’s Land Processes Distributed Active Archive Center (LPDAAC,
https://e4ftl01.cr.usgs.gov/GEDI/GEDI02_A.001/) using GEDI Finder to locate GEDI orbits (files) that
intersect with the study area. GEDI data for 29 April 2019 to 1 October 2019 were acquired as the only
GEDI data available for the study area when this study was conducted (Table 2). The GEDI ground
tracks are displayed in Figure 3.

2.2.5. Field Plots and Auxiliary Data

A total of 66 field plots for 15 to 21 January 2018 were obtained to implement an independent
accuracy assessment of estimated canopy height. Every field plot covers a 30 m × 30 m square area
with information on measured mean canopy height and other forest structure parameters (Figure 1).
Considering the economic costs and availability of field survey data, some of the field measurement
points are scattered across the study area and the rest are concentrated within the Gaofeng forest
farm. All trees with a diameter at breast height (DBH) of greater than 5 cm in each plot were recorded.
The forest canopy height of each tree was derived from distance and angle measurements. Distance was
measured by a hand-held laser range finder, and angles were measured by a mechanical clinometer.
The forest canopy height of the recorded trees was used to calculate the mean canopy height of each
square. The coordinates of the southwest and northeast corners of each plot were recorded by GPS,
and the center points of the two recorded points were calculated and was taken as the plot coordinates.

SRTMGL1 data were used in collecting ground control points (GCPs) during the extraction of
the DSM with ZY-3 data and were taken from NASA. The georeferenced image provides accurate
coordinate information used for ZY-3 and Landsat 8 in the geometric correction.

2.3. Methods

A new canopy height estimation method was developed by combining the ICESat-2 ATLAS data
with ZY-3 stereo images. Figure 4 shows the flowchart for this study which consists of five sections:
(1) Calculating the elevation of ground photons in 30 m × 30 m pixels; (2) Extracting the ZY-3 DSM;
(3) Producing a discontinuous canopy height model (CHM) dataset after validation; (4) Estimating the

https://e4ftl01.cr.usgs.gov/GEDI/GEDI02_A.001/
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forest canopy height by the BP-ANN model; and (5) Assessing the accuracy of the estimated canopy
height map.
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Figure 3. GEDI and ICESat-2 ground tracks. Red dots indicate that the ground photons average value
and the GEDI footprint are located within the same 30 m × 30 m pixels of Landsat 8 images, that is,
the intersection points (more details are in Section 2.3.1). In pictures (a–d), red dots denote the same.
(a) shows the overall distribution while (b–d) show enlarged displays. The green lines in all images are
made up of dense GEDI footprints.

2.3.1. Processing ICESat-2/ATLAS ATL08 and ATL03 Data

Light beams from the ATLAS laser hits the earth’s surface, and a handful of photons are then
reflected back to the laser. The number of returning photons depends on the outgoing energy, solar and
atmospheric conditions and on surface reflectance. The number of ground photons is significantly
greater than that of vegetation because the reflectance of the terrain surface is typically approximately
0.3, which is higher than 0.1 of vegetation [43]. The ATL03 data product not only provides basic
information on photons (latitude, longitude, and height of the WGS84 ellipsoid) but also extracts signal
photons from noise photons. In producing the ATL08 data product, further filtering techniques to
remove noise photons, ground finding filter, and canopy top filter were conducted orderly to label all
the signal photons in ground, canopy and noise, respectively.

In this study, ground photons were used as the DEM to provide land surface height information.
Densely distributed ground photons were resampled into a 30 m × 30 m grid with an average ground
photon height (Figure 5). As a result, a total of 409,515 ground photons were processed into 22,437 new
points. Then, if the number of ground photons in a 30 m × 30 m grid was less than 4, the new point
was deemed ineffective and was removed since the expected number of signal photons per laser for
the vegetated surface is 0 to 4 photons [43]. For example, “p5” shown in Figure 5c was removed.
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Figure 5. Examples of locations of ground photons and ground photon average values within a
30 m × 30 m grid. Grid division is based on the row and column IDs of Landsat 8 data. The scale
bar at the bottom right of the image matches that shown in (a). (a) shows the spatial distribution of
ATL03 ground photons and ZY-3 data, and (b,c) are the positions of ground photons average value and
ground photons in each pixel.
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2.3.2. Extracting the DSM

The digital surface model (DSM) was derived from ZY-3 and ZY-3 02 stereo images using PCI
Geomatica Banff 2019 software with the OrthoEngine module. A nadir and backward-looking stereo
pair with an inclination angle of ±22◦–23.5◦ between the sensors was used for processing due to the
presence of fewer mountain shadows. The OrthoEngine module’s main purpose is to compute a math
model that associates columns and rows of the matched pixels with ground coordinates (X, Y) and
elevations (Z) using rational polynomial coefficients (RPCs), GCPs and tie points (TPs) [45]. The RPC
file was distributed with the ZY-3 data file. The Semi-Global Matching (SGM) algorithm was used
in the module to match pixels [46]. A total of 92 GCPs and 62 TPs were collected automatically at a
variety of elevations with less than two pixel residual errors, meeting the recommended minimum
value requirements [59]. The resolution of the output DSM was set to 2 m × 2 m to maintain surface
details and preserve precision [44,45].

A two-step mask extraction operation was implemented to obtain the effective DSM: (1) The score
band of PCI output can specify the reliability of DSM values, and values of 90 to 100 denote a good
pixel; and (2) The forest area of ZY-3 coverage was classified by MLC using ZY-3 multispectral images.
To meet the 30 m × 30 m resolution mapping requirement, the average value of the 30 m × 30 m grid
was calculated for subsequent processing.

2.3.3. Calculating a Discontinuous CHM Dataset

In a large number of studies, a CHM is obtained by subtracting DSM and DEM layers. However,
the existing high-precision and high-resolution DEM is mostly obtained via ground point cloud fitting
using airborne Lidar, and the DSM is obtained from the vegetation surface fitted by stereo image pairs
or vegetation point clouds. In this study, the ground photon height of spaceborne Lidar is used as the
DEM, making it possible to use the point sampling DEM of spaceborne Lidar, which could be applied
for large-scale and high-efficiency CHM sampling and regional or global canopy height mapping.

The DSM derived from ZY-3 data and by subtracting calculated ground photons’ average height
values provides a discontinuous CHM dataset as canopy height samples. Figure 6 shows the profile of
the discontinuous CHM dataset. The heights of all the data were based on the WGS 84 ellipsoid. Red,
purple, and back dots represent the ZY-3 DSM, ground photon DEM, and original ground photons,
respectively. Distances between red and purple dots denote canopy heights. Similarly, ZY-3 and
Landsat 8 forest areas were used as masks to extract effective CHM samples. A total of 1229 CHM
points were derived after filtering.

2.3.4. Validating ZY-3 DSM and Ground Photon Values via GEDI

The evaluation of ZY-3 DSM and ground photon average value accuracy is necessary for further
analysis. The waveform for each footprint was processed to determine terrain elevations and canopy
heights relative to the WGS84 ellipsoid. The elevation of the center of the lowest mode from the Gauss
fitting curve of return energy was used to validate the accuracy of the ground photons’ average height
values while the elevation of the highest detected return was used to validate that of the ZY-3 DSM.

We assume the following: if the grid of 30 m resolution Landsat data in which GEDI footprint
points are located is the same as the grid of newly calculated ground photon values, they are considered
to be intersected, that is, the same point. To obtain as many intersection points as possible, all GEDI
data for April to October 2019 that are currently open access were downloaded. The GEDI DEM
corresponding to these intersection points was used to verify the average height values of ground
photons. In total, 61 intersection points were extracted (Figure 3).
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2.3.5. BP-ANN Modeling, Extrapolation and Validation

The Backpropagation—Artificial Neural Network (BP-ANN) was used to model the relationship
between canopy height and vegetation indices derived from Landsat data and to predict canopy height.
More than 30 types of neural networks, such as black-box algorithm models, have been developed
since the first prototype was proposed [60,61]. This model has been widely used in various fields due
to its powerful prediction and forecasting capabilities [60,62–64].

For model building, a three-layer BP neural network model with 10 input layer neurons, 11 hidden
layer neurons and one output layer was constructed. The ten vegetation indices were used as input
layers. In total, 80% of the model training samples were randomly selected from the discontinuous
CHM dataset for a total of 983 samples. The “scikit-learn” package in python was used to implement
BP-ANN model training. A wall-to-wall forest canopy height map was derived by extrapolating the
BP-ANN model to the whole study area with ten vegetation index bands.

For accuracy evaluation, the mapping accuracy of canopy heights was independently validated
using three validation datasets that consist of the remaining 20% CHM dataset, a total of 66 field plots,
and their combination. The root mean square error (RMSE) was calculated to quantify the error of the
estimated forest canopy:

RMSE =

√
1
n

∑n

i = 1

(
Hi −H′i

)2
(1)

where n represents the number of samples in the validation dataset, Hi represents the actual canopy
height value and true value, and the H′i represents the predicted canopy height values.

3. Results

3.1. The DSM and Discontinuous CHM

Figure 7 shows the photon classification results of some ATL08 samples. The ground photons
shown in Figure 7 and the DSM are used to calculate the discontinuous CHM. Figure 8a,b shows the
DSM results derived from the PCI Geomatica Banff, which represents the absolute height based on the
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WGS84 ellipsoid of the earth’s surface. The holes shown in the Figure are composed of three parts:
(1) the failed pixels obtained when extracting DSM from the stereo image pair; (2) the nonforest area
corresponding to the ZY-3 multispectral image; and (3) the nonforest area corresponding to the Landsat
8 multispectral image.
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Figure 8c,d show the distribution and value of the discontinuous CHM dataset, which was used
for the training samples and some of the independent validation samples. The statistical values of
the canopy height distributions of each height range show 370 (30.11%), 238 (19.37%), 183 (14.89%),
147 (11.96%), 107 (8.71%), 61 (4.96%) and 123 (10.01%) samples with height ranges of 3 to 8 m, 8 to 11 m,
11 to 14 m, 14 to 17 m, 17 to 20 m, 20 to 23 m, and more than 23 m, respectively (Table 4). This feature
shows that the CHM dataset is representative for subsequent modeling and canopy height mapping.

Table 4. Statistical table of forest canopy height in discontinuous CHM dataset.

Forest Canopy Height (m) Number of CHM Samples Percentage

3–8 370 30.11%
8–11 238 19.37%

11–14 183 14.89%
14–17 147 11.96%
17–20 107 8.71%
20–23 61 4.96%
>23 123 10.01%

3.2. Comparison of DSM and Ground Photon Values with GEDI Data

The 61 points shown in Figure 9a are the points at which the newly calculated average elevation of
ground photons intersects with the GEDI footprint for the whole study area. The validation result for
ground photon elevation with GEDI terrain elevation shows a coefficient of determination R2 = 0.995
and an RMSE = 5.73 m. Even though the RMSE is high, which is explained further blow, more than
50% of the points in Figure 9a have the difference within ± 3 m between ground photon elevation and
GEDI terrain elevation. The validation results of the ZY-3 DSM with GEDI land surface elevation show
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an R2 = 0.991 and an RMSE = 6.59 m. The validation results for ground photon elevation with the
SRTM DEM shows an R2 = 0.997 and an RMSE = 6.76 m (Table 5).Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 22 
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Table 5. Statistical results of comparison of DSM and ground photon average height values with
GEDI data.

Data (X) Data (Y) Number of Points R2 RMSE (m)

(a) GEDI terrain elevation Ground photon terrain
elevation 61 0.995 5.733

(b) GEDI land surface
elevation ZY-3 DSM 11,808 0.991 6.594

(c) SRTM DEM Ground photon terrain
elevation 22,285 0.997 6.764
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Figure 9. Comparison of DSM and ground photon average height values with GEDI data. (a) shows
the relationship between GEDI terrain elevation and ground photon terrain elevation; (b) shows the
relationship between GEDI land surface elevation and ZY-3 DSM; (c) shows the relationship between
the SRTM DEM and ground photon terrain elevation.).

Errors of the three precision verifications mentioned above mainly result from the following:
(a) There is a deviation in the data acquisition time, as the GEDI only has data for 2019. (b) Figure 9b
shows that the scatter fitting line is below 1:1 because the highest point of the first return Gaussian
fitting peak of GEDI full waveform data represents the top of vegetation, which is significantly different
from the capacity for ZY-3 stereo images to capture the top of vegetation and which is caused by the
difference in sensor imaging. (c) The different sensors have varied effects. In this study, the 30 m × 30 m
resolution ground photon elevation is calculated, and the spot diameter of the GEDI is exactly 30 m.
(d) Terrain factors will significantly affect the reliability of waveform data. When data conditions
permit, a more reliable verification result will be obtained by applying airborne Lidar in the study area.

3.3. Forest Canopy Height Mapping and Independent Validation

Figure 10 shows the forest canopy height estimated by the BP-ANN with training samples of the
discontinuous CHM dataset. The estimated forest canopy height range of 3 m to 34 m is similar to the
field measured forest canopy height range of 6.2 m to 29.2 m. Across the study area, forest canopy
heights of 11 to 14 m accounted for the largest proportion. The spatial distribution of the estimated
forest canopy height was found to be related to the elevation of the study area. The height of the forest
canopy in mountainous areas of elevations of greater than 300 m is more than 11 m as opposed to that
in bare area. Due to the effects of human activities and urban expansion, the spatial distribution of
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forests in plain areas is relatively fragmented while the distribution of forests in mountainous areas is
relatively continuous. Most of the latter are evergreen coniferous forests with a long cutting period
and evergreen broad-leaved forests with a short cutting period, such as eucalyptus forests. In addition,
the unique karst landforms in Guangxi, especially in Longan County in western Nanning, are mostly
distributed across natural forests because they cannot be used as cultivated land. The distribution of
forest canopy height is random and is not as uniform as that of artificial forest.Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 22 

 

 
Figure 10. Forest canopy height estimated by the BP-ANN with training samples of the discontinuous 
CHM dataset. 

 

Figure 10. Forest canopy height estimated by the BP-ANN with training samples of the discontinuous
CHM dataset.

Figure 11 shows scatter plots of independent accuracy validation for the estimated forest canopy
height using 20%, a total of 257 CHM datasets, 66 field measured plots, and a combination of them.
The elevation of field measured plots varies from 90 m to 402 m, with slopes of 1◦ to 36◦. The age of
the forest ranges from 2 years to 56 years, which was estimated by local forestry experts in the field.
The average forest canopy height of field measured plots is 13.32 m. The validation results shown in
Figure 11a–c present an R2 = 0.51 and an RMSE of 3.34 m for part of the discontinuous CHM dataset,
an R2 = 0.51 and an RMSE of 3.47 m based on field measured plots, an R2 = 0.51 and an RMSE for
3.38 m based on the combination of both, respectively, demonstrating the effectiveness of the BP-ANN
model (Table 6).
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Table 6. Statistical results of comparison of DSM and ground photon average height values with
GEDI data.

Data (X) Data (Y) Number of Points R2 RMSE (m)

(a) Validation CHM dataset Estimated forest canopy height 257 0.510 3.346
(b) Field measured dataset Estimated forest canopy height 66 0.512 3.468
(c) Combination of a and b Estimated forest canopy height 323 0.512 3.382

4. Discussion

4.1. Large Scale Forest Canopy Height Mapping

We identified a new means to estimate forest canopy height using a combination of ICESat-2
ATLAS data and stereo-photogrammetry. This method uses spaceborne Lidar ICESat-2 ATLAS data to
replace airborne Lidar data and in turn obtain ground elevation information. Its low cost, unlimited
data acquisition range, and global sampling range allow it to be the ability to be applied to a wider
range. Given our successful application of this method to a study area in Nanning, it can be used over
large scales, such as regional and global forest canopy height mapping. In addition to the stereo image
pairs provided by the ZY-3 satellite, China’s first submeter high-resolution optical transmission stereo
mapping satellite GF-7 can provide high-precision stereo image pair data for superimposing ICESat-2
data to estimate global forest canopy height. Although GF-2 was not designed as a photogrammetric
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system, some studies have made use of the different orbit data from GF-2 in repeated observation areas
to realize stereo observation and extract DSM data [65].

Additionally, other techniques such as radargrammetry can produce a DSM by using SAR images
to replace the DSM derived from ZY-3 in this study [44,45]. In addition to ICESat-2, the GEDI can
provide surface elevation information as a DEM [32,57,58].

In addition, to obtain mapping results with the same resolution as those of Landsat, 30 m × 30 m
grid is used to process ground photons. If we want to obtain a lower resolution result, such as those of
the Moderate Resolution Imaging Spectroradiometer (MODIS), this is feasible, but for higher resolution
mapping, we should consider enough ground photons to increase the accuracy and reliability of the
DEM. Further analysis and research are needed.

4.2. How to Filter Effective ATL08 Data

The canopy height values provided by ATL08 data can be used as samples to directly generate a
wall-to-wall forest canopy height map. Since the resolution of ATL08 data is 100 m, ATL08 data are not
suitable for vegetation mapping at a 30 m resolution as with Landsat data, and should be used to map
at resolutions of greater than 100 m to eliminate errors caused by position deviations. The selection of
effective ATL08 data is a key problem. These two fitting lines are highly dependent on the accuracy of
photon classification, creating inevitable errors in the canopy height values of ATL08.

Our numerical analysis shows that, for ATL08 data of the study area, 6% of canopy height values
are greater than 50 m, which can be considered invalid values. These invalid values may originate
from the low precision surface and vegetation surface curves fitted by sparse signal photons, or even
attribute values obtained by interpolation. For the remaining 94% of the data, even if we use the rest of
the ATL08 data fields (such as clouds, snow, and urban areas) to exclude the influence of land surface
types and clouds, the reliability of canopy height data is affected by many other factors. For instance,
(1) irregular topography increases photon classification errors, and (2) when the photon signal of a
surface or vegetation is weak and the number of point clouds is small, the fitting error of the surface
curve will increase.

Many uncertain factors make it difficult to automatically filter effective data when data are used
in regional mapping. Figure 12 shows a frequency statistics histogram of canopy and ground photons.
We suggest that canopy and ground photon numbers be used as a basis for screening effective ATL08
data, as the stronger the photon signal, the smaller the error becomes. However, determining the
photon number threshold with universal or adaptive rules is an issue worthy of future research.
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5. Conclusions

This study proposes a new means with which to estimate forest canopy height, which used a
combination of ICESat-2 ATLAS data and ZY-3 stereo images to extract a discontinuous CHM dataset
as training samples and extrapolated the BP-ANN model to the whole study area with ten vegetation
index bands from Landsat 8 images. Ground photons of ATL08 and ATL03 were recalculated to obtain
the average terrain height value for a 30 m × 30 m grid. A discontinuous CHM dataset was derived
from the ZY-3 DSM by subtracting new ground photon heights. The accuracy of the ZY-3 DSM and
ground photons’ average values was evaluated by GEDI data. The validation results show an R2

of greater than 0.991 and an RMSE of approximately 6 m, and the source of the observed error was
discussed in detail. Regional forest canopy height mapping with a resolution of 30 m was executed
based on the BP-ANN model using the CHM dataset as a training sample combined with vegetation
indices from Landsat 8 data. The independent accuracy validation for the estimated forest canopy
height shows an R2 = 0.51 and an RMSE from 3.34 m to 3.47 m based on part of the CHM dataset and
field measured plots.

This paper presents a very promising means to map forest canopy heights at regional and global
scales. It uses spaceborne Lidar data instead of airborne Lidar data to provide terrain information at a
low cost and with global coverage. In the future, other types of data, such as radar image generating
DSM and GEDI providing ground information can adopt the method used in this work, which will be
conducive to the realization of multiple data sources that complement each other and work together
to map regional forest canopy heights. Methods of selecting effective ATL08 data to extrapolate a
wall-to-wall forest canopy height should be the focus of future research work.
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