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Abstract: Based on the analysis of multispectral satellite data, this work demonstrates the influence
of coastal upwelling on the variability of chlorophyll-a (Chl-a) concentration in the south-eastern
Baltic (SEB) Sea and in the Curonian Lagoon. The analysis of sea surface temperature (SST) data
acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua/Terra
satellites, together with Chl-a maps from Medium Resolution Imaging Spectrometer (MERIS) onboard
Envisat, shows a significant decrease of up to 40–50% in Chl-a concentration in the upwelling zone.
This results from the offshore Ekman transport of more productive surface waters, which are replaced
by cold and less-productive waters from deeper layers. Due to an active interaction between the Baltic
Sea and the Curonian Lagoon which are connected through the Klaipeda Strait, coastal upwelling
in the SEB also influences the hydrobiological conditions of the adjacent lagoon. During upwelling
inflows, SST drops by approximately 2–8 ◦C, while Chl-a concentration becomes 2–4 times lower
than in pre-upwelling conditions. The joint analysis of remotely sensed Chl-a and SST data reveals
that the upwelling-driven reduction in Chl-a concentration leads to the temporary improvement
of water quality in terms of Chl-a in the coastal zone and in the hyper-eutrophic Curonian Lagoon.
This study demonstrates the benefits of multi-spectral satellite data for upscaling coastal processes
and monitoring the environmental status of the Baltic Sea and its largest estuarine lagoon.

Keywords: coastal upwelling; SST; chlorophyll-a; MODIS; MERIS; Baltic Sea; the Curonian Lagoon;
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1. Introduction

The Baltic Sea, with its unique geographical and biogeochemical features, has a particularly
vulnerable ecosystem with a large coastal area in which eutrophication was first identified over
half a century ago [1]. According to the Helsinki Commission (HELCOM)’s integrated status
assessment [2], at least 97% of the region was assessed as eutrophied in the period of 2011–2016.
The main triggers of eutrophication are considered to be excessive inputs of nitrogen and phosphorus,
stemming from anthropogenic sources [3–6], while the loads of nutrients from natural sources,
such as coastal upwelling, have been entirely neglected. The influence of upwelling has received
relatively little attention in environmental status assessment programs such as the EU Marine Strategy
Framework Directive (MSFD) or the HELCOM guidelines for the status assessment of eutrophication [7].
However, understanding the temporal dynamics and the variability of bio-physical properties such
as chlorophyll-a (Chl-a) concentration and sea water temperature is an important task for assessing
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marine ecosystems and the water quality of coastal waters [8,9]. Chl-a is the major indicator of trophic
state, acting as a link between nutrient concentrations and algal production, while water temperature
is an important parameter for the physical and biochemical processes that occur. For example,
the distribution, transportation, and interaction of some contaminants, such as nutrients, have a
significant relationship to the water column temperature [10]. In turn, a number of studies have shown
that the use of remote sensing data can be of great use in monitoring SST and Chl-a changes in areas
affected by coastal upwelling, e.g., [11–13].

Due to the specific orientation of the coastline, sometimes up to one third of the entire Baltic Sea
may simultaneously be under the influence of upwelling [7]. In turn, coastal upwelling, drastically
changing the thermal balance and nutrient conditions in the upper layer of water, also significantly
affects coastal ecosystems by triggering changes in the phytoplankton community, productivity
and species composition [14–17]. The distribution of phytoplankton in the coastal waters of the
Baltic Sea varies over small distances (less than 10 km) and short time scales (a few days) [16].
Therefore, coastal upwellings in the SE Baltic Sea—with typical cross-shore extents of 10–20 km and
durations of 2–6 days or longer [18]—are of a great importance for the functioning of the near-shore
ecosystem [19,20].

Previous studies in the Baltic Sea have indicated that upwelling-induced nutrient supply, advection,
replacement/mixing of water masses, and changes in water temperature might affect not only single
phytoplankton species but could also result in changes to the entire phytoplankton community
(e.g., [15,16]). For example, cyanobacteria have relatively high-temperature optima [21], thus a clear
decrease in the biomass of filamentous cyanobacteria was observed during an upwelling event in
comparison to the biomass observed in pre-upwelling conditions [16]. Upwelling can also be responsible
for the displacement and offshore transport of diazotroph (capable of nitrogen fixation) and surface
(from the surface down to 5 m) dwelling populations, such as Nodularia spumigena, while populations
residing in the deeper depths (10–15 m) can be displaced to the surface [22]. It was also observed that
upwelling followed by repeated enrichment of the surface layer with new phosphates can regulate the
migration of the dinoflagellate Heterocapsa triquetra, usually associated with deeper water layers [23].
Moreover, due to its frequent nature and broad spatial extent, coastal upwelling may be considered to
be of the main factors affecting the circulation of the Baltic Sea and the functioning of its ecosystem by
changing the euphotic layer temperature, as well as by influencing the temporal and spatial variability
of phosphate, nitrate, and Chl-a concentrations [7,16,22,24].

Signatures of upwelling in the Baltic Sea are generally observed when the strongest thermal vertical
stratification occurs, i.e., from spring to autumn, and take place 25–30% of the time in some areas—along
the Swedish coast [25,26], for example. In different areas of the Baltic Sea, upwelling has regional
features that depend on the local orientation, topography, and shape of the coastline [27]. Upwelling is
observed fairly frequently in the area of the SE Baltic (SEB) coast, occurring around four times per
thermally stratified period and being present for approximately 16% of the warm (April–September)
season [18]. The area affected by upwelling can cover the entire Lithuanian and Latvian coastal waters,
sometimes extending over significant parts of the Gdansk and Eastern Gotland basins [18]. In addition,
coastal upwelling in the SEB was observed to have an impact on the environment of the Curonian
Lagoon as well. The lagoon itself is a highly eutrophied shallow water body connected to the SE Baltic
via the narrow Klaipeda Strait. During upwelling events along the SEB, the inflow of upwelled marine
water can supply large amounts of dissolved nutrients to the lagoon and have a significant influence
on its biotic and abiotic conditions [18,28]. Such intrusions of marine waters into the lagoon are mainly
determined by barotropic inflows driven by the difference in water level between the sea and the
lagoon [29] that usually occur under the northerly winds that favour upwelling [18]. When intense
wind events coincide with low river discharge, intrusions of upwelling waters can even reach the
central part of the lagoon, significantly altering environmental conditions there [18,28].

While in other parts of the Baltic Sea the environmental effects of upwelling have received
considerable attention (e.g., [16,20,30,31]), these have been only briefly mentioned in the literature
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discussing the SEB and the Curonian Lagoon [18]. In turn, a number of questions remain open
concerning the possible impacts of coastal upwelling on primary production and higher trophic levels
in the SE Baltic and in its largest coastal lagoon. Our focus here is, therefore, on assessing upwelling
induced changes in Chl-a concentration, which strongly depend on nutrient status [17]. Due to the
obvious limitations of in situ methods, Chl-a concentration from samples collected in the field is usually
insufficient for the investigation of the dynamics of Chl-a over space and time [9]. Therefore, we used
multi-spectral remote sensing data to document upwelling-induced Chl-a variability in the coastal
waters of the SE Baltic Sea and in the Curonian Lagoon.

2. Materials and Methods

2.1. Study Site

Our study site was comprised of two subareas—the Lithuanian coastal area of the SE Baltic Sea and
the Curonian Lagoon (Figure 1). The relatively straight coastline of the SE Baltic Sea is oriented such
that coastal upwellings are rather frequently observed in the region under northerly and north-easterly
winds [18,26,32]. Apart from the episodic formation of upwelling fronts, the Curonian Lagoon coastal
plume, containing highly productive lagoon waters, is another common dynamic feature along the
Lithuanian coast [28,33]. On the other hand, there are also cases when the opposite situation occurs,
and the inflow of marine waters influences the northern part of the Lagoon.
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Figure 1. Map of the study site indicating the two subareas: the Curonian Lagoon and the Lithuanian
coastal area (denoted as Lithuanian EEZ). The location of the Klaipeda coastal monitoring station is
denoted as “Klaipeda HMS”, and the location of the Smalininkai gauging station as “Smalininkai GS”.

The Curonian Lagoon itself is the largest (1584 km2) lagoon in the Baltic Sea. It is a relatively
shallow (with a mean depth of 3.8 m), highly eutrophied, and predominantly freshwater basin,
separated from the open sea by the sandy Curonian Spit. It connects to the Sea through the narrow
(0.4–1.1 km) Klaipeda Strait in the northern part of the lagoon. The northern part of the lagoon is a
transitory riverine-like system [34] with an active interaction with the Baltic Sea. The annual mean water
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salinity of 2.45 g kg−1 in the northern Curonian Lagoon can fluctuate up to as high as 7 g kg−1 due to the
intrusion of Baltic water [35]. In general, biological diversity is higher in the Curonian Lagoon than in
the open coastal waters of the Baltic Sea [36]. The lagoon is dominated by the freshwater phytoplankton
species that generally follow a pattern typical of eutrophic ecosystems [37,38]. Marine species only
enter the lagoon during seawater intrusions, and the overall abundance of phytoplankton is observed
to decrease markedly with increasing salinity [38]. More importantly, the inflow of upwelling waters
can supply large amounts of dissolved nutrients to the Curonian Lagoon and change its biotic and
abiotic conditions, thus having a significant effect on the changes in Chl-a/primary production.

2.2. Data

In our study, we performed a joint analysis of infrared MODIS data from Aqua/Terra satellites
and optical MERIS data installed on the Envisat mission to investigate coastal upwelling events that
took place in the Baltic Sea in the period of 2003-2011. The study period was limited by the lifespan of
the Envisat mission, which ended in April 2012.

MODIS Sea Surface Temperature (SST) infrared (IR) imagery has been widely used for SST studies
in the Baltic Sea (e.g., [18,39–42]), and the validation of MODIS SST product against in situ observations
in the SE Baltic Sea and the Curonian Lagoon has demonstrated a good agreement [28]. Therefore, in this
study we used Terra/Aqua MODIS standard Level 2 SST products with a spatial resolution of around
1 km [43]—obtained from the NASA OceanColor website [44]—to analyse upwelling induced surface
thermal signatures on the SE coast of the Baltic Sea and in the Curonian Lagoon. The MODIS IR
SST Algorithm is detailed in the literature [43]. SST images were processed using the ESA BEAM
and ArcGIS software. Following the methodology of previous researches [25,45], a 2 ◦C threshold
(a temperature drop of ≥2 ◦C relative to ambient waters) was used to distinguish upwelling affected
areas from reference zones, and to further analyse the impact of upwelling on Chl-a variability.

For the analysis of the impact of coastal upwelling on the spatial distribution of Chl-a concentration
during upwelling events, MERIS/Envisat full-resolution (300 m) cloud-free images were used. Level 1b
images were first corrected to account for the difference between the actual and nominal wavelengths
of the solar irradiance in each channel [46] with the Smile tool (version 1.2.101) of the BEAM VISAT
(4.8.1) software, provided by Brockmann Consult/ESA, in order to perform an irradiance correction for
all bands. Chl-a concentration in the coastal waters of the Baltic Sea was retrieved after the application
of the FUB processor (version 1.2.4), which was developed by the German Institute for Coastal Research
(GKSS), Brockmann Consult, and Freie Universität Berlin. The FUB processor is designed for European
coastal waters, and uses MERIS Level 1b top-of-atmosphere radiances to retrieve the concentrations of
the optical water constituents [47]. More details on its performance and validation in the study site can
be found in the literature [33]. The Chl-a concentration in the Curonian Lagoon was assessed from
MERIS data by utilising the semi-empirical band-ratio algorithm (Equation (1)), which uses a reflectance
peak in the red and NIR spectral regions [48]. Prior to this, MERIS data was atmospherically corrected
by using the Simulation of the Satellite Signal in the Solar Spectrum (6S) code [49]. These algorithms
have already been shown to provide accurate estimates via comparison with in situ data collected in
the Curonian Lagoon [50–52].

Chl− a, mg m−3 = 52.19×
(

Re f708

Re f665

)
− 32.07 (1)

where Refx indicates the reflectance of the band with central wavelength x.
Daily mean solar surface incoming shortwave radiation data with a spatial resolution of

0.05 × 0.05 degrees, derived from the satellite-observations of MVIRI/SEVIRI on METEOSAT, were used
for the analysis of Chl-a variability. More details on the characteristics of this product are available
from the Surface Radiation Data Set—Heliosat (SARAH)—Edition 2 [53].
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Three-hourly wind speed and direction data from Klaipeda coastal monitoring station and the
daily Nemunas River discharge from Smalininkai gauging station were provided by the Lithuanian
Hydrometeorological Service under the Ministry of Environment of the Republic of Lithuania.

2.3. Data Analysis

The phytoplankton responses to the upwelling events along the SE Baltic coast were analysed in
terms of changes in Chl-a concentration in relation to changes in SST. 27 upwelling days within 11
distinct upwelling events that had concurrent cloud-free SST and Chl-a maps were analysed in total.
Descriptive statistics (means, medians, minimum and maximum values, and standard deviations)
were used to represent the estimated parameters and their variability. To reveal whether the changes
in Chl-a concentration induced by the upwelling were significant, 30 points were selected specifically
for each upwelling case in a way to represent Chl-a concentration in the upwelling and in the reference
zone (Figure 2).
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in 25 July 2008.

Chl-a and SST values individually for each event were extracted at the same locations. The data
were tested for normality and met the normality conditions, and therefore no transformations were
applied. Statistical comparison between the two groups (Chl-a concentration in the upwelling zone
and in the reference zone) was performed after the application of the Welch t-test, which is used to
estimate the statistical significance of differences between two groups of samples with possibly unequal
variances [54] using R 3.5.1 software.

We examined a set of parameters that might influence Chl-a variability in the SEB coast, including
the discharge of the Nemunas River, upwelling-induced SST drop (∆T), SST inside the upwelling
front (hereinafter, upwelling SST), solar radiation, and mean wind speed and direction. Prior to these
analyses, a Pearson’s correlation analysis was conducted to test for correlations among quantified
environmental parameters. This revealed a strong positive correlation between upwelling SST and
∆T (r = 0.73), and ∆T was therefore excluded from subsequent analyses to eliminate interference
from multi-collinearity [55]. To obtain a stressor-response model the nonlinear regression analysis
(Generalized Additive Model (GAM)) was applied to the Chl-a data to reveal the influences of
the aforementioned environmental factors on the distribution patterns of the Chl-a concentration.
The dependent variable was the median value of the Chl-a concentration. The median value was
chosen as it is less distorted by outliers [56]. GAM analysis was performed using the Brodgar software,
version 2.7.5.
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According to the European Union Water Framework Directive 2000/60/EC (EU WFD), all member
states are required to protect existing water bodies from deterioration to achieve a “good water
status”. For surface waters, the assessment of this status is based on a measurement scale that rates
the biological and hydromorphological characteristics of the water by placing them into one of five
classes: high, good, moderate, poor, or bad, whereas the chemical characteristics are assessed only as
either “good” or “fail” [57]. The values of the boundaries between classes differ among different water
bodies based on their physical and hydrographic characteristics. The waters of the Baltic Sea and the
Curonian Lagoon have very different hydrophysical and hydrobiological conditions, and therefore
the SE Baltic falls under the category of “coastal waters” while the Curonian Lagoon falls under the
category of “transitional waters”. Based on the classes of the EU WFD Water quality, the values of
Chl-a concentration in the coastal waters of the Baltic Sea and the Curonian Lagoon were classified
into the five classes from “high” to “bad”. In addition, reference conditions representing “excellent”
status were also indicated. The threshold values of Chl-a concentration used in this work are indicated
in Table 1.

Table 1. Water classes for the warm summer season (June–September) according to WFD.

WFD Classes Chl-a in the Coastal Waters of
the SE Baltic Sea, mg m−3

Chl-a in the Curonian
Lagoon, mg m−3

Excellent (reference conditions) <2.0 <26.4
High 2.0–2.4 26.5–31.7
Good 2.5–4.8 31.8–46.6

Moderate 4.9–7.1 46.7–67.0
Poor 7.2–9.5 67.1–91.9
Bad >9.5 >91.9

3. Results

The analysis of remotely sensed SST and Chl-a data allowed for the identification of
upwelling-induced changes along the SEB coast and in the Curonian Lagoon. In this Section,
we analyse upwelling-induced Chl-a changes in the coastal zone of the SE Baltic Sea (Section 3.1) and
the influence of environmental factors on the Chl-a concentration (Section 3.2), followed by a detailed
case study of one upwelling event in the summer of 2008 (Section 3.3). In Section 3.4, we analyse the
impact of the upwelled water inflows to the Curonian Lagoon on the spatial distribution of Chl-a
concentration in the lagoon.

3.1. The Spatio-Temporal Variability of Chl-a Concentration in the Coastal Zone of the SE Baltic Sea

The main characteristics of both remotely sensed SST and Chl-a concentration during upwelling
events are presented in Table 2. As can be seen, the temperature difference in the upwelling zone
compared to the ambient waters varied from 2 ◦C to 9 ◦C (with a median of 5.43 ◦C). During some events,
the upwelling-induced SST values were very low and atypical for the given months. For example,
SST values observed during the upwelling event in May 2004 dropped down to as low as 3–4 ◦C,
and were more similar to SSTs usually observed in March (2–4 ◦C on average) than in May (10–12 ◦C
on average) (see e.g., [28]). During summer months, the upwelling-induced SST values dropped down
below 10 ◦C, thus significantly altering the abiotic conditions of the study area.

In addition to the SST changes, this analysis shows that significant changes in Chl-a concentration
were recorded during upwelling events, with a clear reduction in the latter in the upwelling affected
zone compared to the reference (ambient) waters. Mean Chl-a concentration in the upwelling zone
varied from 0.69 to 7.09 mg m−3 across different upwelling events, while in the reference zone the
mean concentration was higher and varied from 1.26 to 10.51 mg m−3. The statistical comparison of
mean and median Chl-a concentrations reveals that in 89% of the cases analysed, the difference in
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Chl-a concentration between the upwelling and the reference zones is significant, and was usually
around 40–50% lower in the upwelling zone than in the ambient waters (Table 2, Figure 3).

Table 2. Descriptive statistics (mean ± standard deviation) and results of statistical comparison
(Welch t–test) of Chl-a and SST in the upwelling and reference zones.

Upwelling
Duration Date Upwelling

Zone
Reference

Zone
Upwelling

Zone
Reference

Zone t
Value Df

yy mm dd mm dd SST, ◦C SST, ◦C Chl-a, mg m−3 Chl-a, mg m−3

2004 05 12–17

05 13 4.85 ±0.75 9.68 ±0.59 2.51 ±0.96 3.93 ±1.09 11.21 38.97
05 14 4.16 ±0.71 9.35 ±0.56 0.69 ±0.66 1.26 ±0.40 6.86 35.79
05 16 5.56 ±0.69 9.34 ±0.49 1.66 ±0.79 2.50 ±0.73 11.05 55.57
05 17 7.98 ±0.21 13.13 ±0.87 1.12 ±0.76 2.00 ±2.44 3.65 51.23

2005 06 09–10 06 09 8.59 ±1.32 13.36 ±0.43 3.26 ±1.59 4.08 ±1.35 3.95 52.07
2005 06 18–21 06 19 11.10 ±0.96 15.82 ±0.35 2.62 ±0.88 4.64 ±2.74 3.14 47.65
2006 05 07–11 05 08 6.56 ±0.67 8.46 ±0.38 1.98 ±0.59 2.70 ±1.00 5.06 31.55
2006 06 14–17 06 16 11.52 ±1.06 15.37 ±0.56 1.88 ±0.42 2.03 ±0.46 0.15 54.60 *

2006 07 01–03
07 01 17.40 ±0.54 20.94 ±0.34 2.08 ±0.57 3.61 ±0.58 15.80 49.53
07 02 17.01 ±0.88 21.04 ±0.48 2.52 ±0.83 4.05 ±1.12 8.99 49.13

2007 06 07–17
06 07 14.96 ±1.24 18.70 ±0.45 1.90 ±0.94 2.17 ±0.62 4.03 52.08
06 11 14.83 ±1.52 20.03 ±0.40 2.39 ±0.76 2.76 ±1.29 1.91 41.40 *
06 16 12.41 ±1.83 18.04 ±0.39 1.15 ±0.50 1.50 ±0.44 3.30 47.30

2008 05 19 /
2008 06 10

06 03 10.66 ±1.34 14.86 ±0.48 2.25 ±0.83 3.88 ±1.32 6.32 42.00
06 04 9.26 ±1.20 14.23 ±0.59 2.41 ±0.82 3.60 ±1.41 4.83 40.06
06 05 9.71 ±0.74 14.77 ±0.63 1.86 ±1.04 2.62 ±1.22 2.46 42.13
06 06 11.91 ±0.62 18.68 ±1.09 1.26 ±0.43 2.29 ±0.58 6.25 45.96
06 07 12.26 ±1.20 17.16 ±0.56 1.82 ±0.67 3.16 ±0.97 6.16 52.92

2008 07 25 /
2008 08 03

07 24 18.64 ±0.36 19.93 ±0.18 7.09 ±3.07 10.28 ±3.17 14.41 39.13
07 25 18.70 ±0.32 20.19 ±0.24 4.10 ±1.79 10.51 ±3.33 15.44 32.07
07 26 18.85 ±0.34 20.40 ±0.19 5.01 ±3.71 10.25 ±5.56 9.44 30.32
07 27 18.55 ±0.36 20.48 ±0.17 3.04 ±1.4 5.46 ±1.24 9.09 56.61
07 28 17.72 ±0.61 20.45 ±0.17 3.08 ±0.70 5.54 ±1.27 8.16 42.07
07 29 17.06 ±0.09 20.29 ±0.14 2.78 ±1.95 4.31 ±1.56 5.49 50.54
07 31 17.84 ±0.76 20.44 ±0.15 3.66 ±0.98 3.82 ±1.19 1.51 42.25 *

2008 09 23–26 09 24 10.32 ±0.91 15.78 ±0.44 1.03 ±0.36 0.94 ±0.34 1.05 56.59 *
2010 06 22–29 06 26 12.27 ±0.67 14.99 ±0.30 1.95 ±0.68 3.51 ±1.54 3.65 40.67

Date is the day when satellite measurements were performed. Df is the Degrees of Freedom; *asterisk indicates
statistically insignificant differences.

The differences in Chl-a concentration that were insignificant could, to a certain extent, be explained
by the phase of upwelling during which the Chl-a values were observed (Table 2, Figure 3). For example,
the Chl-a concentration values from 16 July 2006 and 31 July 2008 were measured during the upwelling
relaxation phase, thus the gradual increase in SST was accompanied by a slight increase in Chl-a,
causing the Chl-a concentration in the upwelling zone to become similar to the one observed in the
ambient waters. On the other hand, upwelling was still in the active phase on 11 June 2006 and
24 September 2008, when the difference in Chl-a concentration between the upwelling and the reference
zones was insignificant, suggesting that other environmental variables influencing Chl-a variability
also have to be considered.

This analysis also shows that the distribution patterns of Chl-a concentration in the upwelling
zone might differ due to strong event-scale variability and prevailing environmental conditions (Table 2,
Figure 3). For example, the upwelling induced ∆T in June 2008 reached over than 7 ◦C, while in
July 2008 ∆T was smaller at around 3 ◦C. At the same time, a drop in Chl-a concentration in the
upwelling area was recorded in the July event that was up to six times larger than the one in June 2008.
The Chl-a decrease in July 2008 was the largest of all of the cases analysed, and therefore special
attention will be paid to a detailed analysis of this particular upwelling event in Section 3.3.
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3.2. The Importance of Environmental Factors on the Variation of Chl-a Concentration During Coastal Upwelling

Environmental factors—i.e., upwelling SST, the discharge of the Nemunas River, solar radiation,
and wind speed—varied during separate upwelling events, while the prevailing winds were mostly
of a northerly direction as they favour the development of upwelling in the SE part of the Baltic
Sea. The application of GAM shows that the combination of the five aforementioned environmental
variables explains 77.5% of the variation in the Chl-a concentration (Table 3).

Table 3. Descriptive statistics and relative importance (F value) of the explanatory variables for the
observed changes in Chl-a concentration (median value) in the upwelling zone (* significant factors are
marked with asterisks).

Environmental Variable
n = 22 Mean Minimum Maximum F Value

* Upwelling SST, ◦C 14.2 8.6 18.9 3.45
* Solar radiation, W m−2 311 141 349 2.83

* Wind speed, m s−1 4.3 2 7.8 1.92
Nemunas river discharge, m3

s−1 400 268 735 0.23

Wind direction predominant N-NW winds 0.36
Deviance explained 77.50%

The GAM also shows upwelling SST to be the most important variable, followed by solar radiation
and wind speed, in explaining Chl-a variations in the upwelling zone. SST inside the upwelling front
varied from 8.6 to 18.9 ◦C, and a positive relationship was determined between upwelling SST and Chl-a
concentration in that a decrease in SST is usually associated with a decrease in Chl-a. Higher values
of solar radiation were also associated with higher Chl-a concentrations. Wind speed was around
4 m s−1 on average, although several cases of wind speeds exceeding 6 m s−1 were observed (Table 3).



Remote Sens. 2020, 12, 3661 9 of 21

The relationship between Chl-a concentration and wind speed showed that higher Chl-a values were
observed under lower wind speeds. The wind direction and the discharge of the Nemunas River did
not exhibit any significant impact on Chl-a values.

3.3. A Detailed Case Study of the Upwelling event in the Summer of 2008

The upwelling event that occurred in the period of July–August 2008 was chosen for more
detailed consideration as there were a substantial number of sequential satellite SST and Chl-a images
available, and this event was characterised by the largest drop in Chl-a concentration among the all
cases analysed. Using satellite data, the relatively cold and low-chlorophyll surface waters along the
coast can be clearly distinguished in summertime from the warm and chlorophyll-rich offshore waters.
The meteorological situation at the time of the development of this upwelling is presented in Figure 4.
The evolution of this upwelling event, characterised by pronounced changes in the near-shore SST and
Chl-a distributions, is illustrated in Figures 5 and 6.
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Figure 4. Wind speed and direction in Klaipeda HMS. ‘F’ symbol in the left corners and full black
circles indicate upwelling-favourable northerly winds. The red bar indicates the time interval of
the pre-upwelling phase, the green bar the upwelling active phase, and the blue bar the upwelling
relaxation phase.

Wind field measurements from the Klaipeda hydrometeorological station (see Figure 1) show
that variable wind conditions prevailed at the end of July and at the beginning of August. From this
record, the phases in the development of the upwelling could be distinguished (Figure 4). As seen in
the data, the upwelling was apparently triggered by persistent upwelling-favourable northerly winds
of 3–6 m s−1, with a relatively short pre-upwelling phase lasting from the end of July 23 to July 24.

The active phase, during which an offshore Ekman transport of surface waters was induced,
was observed starting from July 24–25. Some variations in the wind direction occurred on July 25–26;
yet, upwelling-favouring winds were most intense during this period. In general, northerly winds were
dominant until July 31, particularly favouring the development of upwelling from July 27 until the end
of the month. After July 31, the wind direction changed and the upwelling entered the relaxation phase,
although the offshore spreading of its front at the sea surface was observed until around August 3.
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cross-frontal transects near Palanga and the Curonian Spit are indicated in Figure 5. To better illustrate
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The satellite SST maps indicated the response of the surface waters to the upwelling-favouring
winds, starting from July 24. Although the water masses near the coast became slightly colder than the
open sea (∆T = 1.67 ◦C), the temperature difference was too small yet to clearly define the upwelling
event from the SST record if the 2 ◦C threshold was applied. On the contrary, the signatures of
upwelling were well depicted in the Chl-a map of the same day (July 24), when more productive
coastal waters were transported further offshore, so marking the beginning of the upwelling event
(Figures 5 and 6).

Despite SST records indicating the beginning of the upwelling event a day later, the Ekman
offshore drift depicted in the Chl-a records implies that the pre-upwelling phase lasted until 24 July.
This is well seen from the horizontal Chl-a profiles near the Curonian Spit and, especially, near Palanga,
where a northward plume of highly productive Curonian Lagoon waters was observed prior to the
upwelling event. When northerly winds became dominant, the spatial orientation of the plume
changed drastically: the plume waters were separated from the coast due to upwelling-induced
offshore transport. In turn, a sharp difference in Chl-a concentration within the first 2 km of water
from the coast (3–5 mg m−3) compared to the waters further from the coast (up to 17 mg m−3) was
observed near Palanga. The Chl-a decrease along the coast of the Curonian Spit was slightly smaller,
from 9 mg m−3 observed offshore down to around 5–7 mg m−3 along the coast (Figure 6).

On July 25, the upwelling signatures became more distinct: SST maps showed ∆T reaching
approximately 2 ◦C; and Chl-a maps depicted the upwelling zone as a wide (>5 km) band of low
Chl-a concentration along the coast (Figure 6). As retrieved from satellite images, a clear reduction in
Chl-a concentration (~4 mg m−3) was observed across the entire coastal zone relative to the ambient
waters unaffected by upwelling (up to 15 mg m−3 near Palanga and ~8 mg m−3 near the Curonian
Spit). On July 26, the hydro-biological situation became more complex in the coastal zone near the
entrance to the lagoon, because the southward outflow of fresh, warm, and highly productive waters
from the lagoon divided the upwelling zone into northern and southern parts (Figure 5). The Chl-a
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profile of July 26 showed a very distinct drop in Chl-a concentration near Palanga, down to about 2–5
mg m−3 in the first 10 km of water adjacent to the coast—values up to five times smaller than those
observed further from the coast (20–35 mg m−3). At the same time, the Chl-a rich waters continued
moving further south.

In the period of July 27–31 the upwelling-favourable wind conditions continued, and the strongest
development of the upwelling front occurred, making it very distinct in the SST records (∆T up to 5 ◦C).
The more mature the upwelling became, the more severe was the drop observed in Chl-a concentration
in coastal waters, with the lowest values (~3 mg m−3) recorded on July 27–29. At the same time,
the Curonian Lagoon plume became very intense (Figure 5), and a clear trail of more productive waters
(Chl-a concentration up to 50 mg m−3) steering to the south was evident on July 31. As can be seen
from SST maps, the upwelling front was more pronounced to the south of the Klaipeda Strait than in
the northern area, where it separated highly productive plume waters from the coast.

From the beginning of the upwelling (July 24) to the onset of its relaxation (after July 31), the mean
values of Chl-a concentration in the coastal waters decreased steadily from around 7 mg m−3 to less
than 3 mg m−3, and only when the upwelling fully entered its relaxation phase did they begin to
increase slightly—as the horizontal Chl-a profile of August 01 indicates (Figure 6).

3.4. The Influence of Upwelling on the Chl-a Concentration of the Curonian Lagoon

The analysis of satellite data showed that the existence of upwelling fronts along the SEB coast
was often accompanied by a freshwater plume from the Curonian Lagoon. However, there were also
cases when the opposite situation occurred, and inflows of marine waters during upwelling events
that influenced water masses in the northern part of the lagoon were recorded. To address this in
more detail, cases with concurrent SST and Chl-a maps were analysed in order to document the spatial
scales of upwelling inflows and their impact on horizontal SST and Chl-a distributions in the lagoon
(Figure 7).
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As retrieved from satellite images (Figure 7), inflows of upwelling waters reached the middle
part of the lagoon fairly often, with a propagation distance of up to 30 km southward—as recorded in
July 2006 and May 2009, for example. During such events, relatively cold marine waters low in Chl-a
pushed away and diluted the highly productive waters of the northern Curonian Lagoon. Although SST
and Chl-a concentrations in the lagoon varied greatly across different months, the upwelling-induced
changes in both parameters were higher in the lagoon than along the SEB coast. The average
upwelling-induced SST drop in the lagoon was approximately 5–7 ◦C, reaching up to ~16 ◦C during a
very intensive upwelling in July 2006. The horizontal changes in Chl-a concentration were even more
pronounced, dropping down by an order of magnitude during the same event.

Figure 8 shows the SST and Chl-a changes observed in the Curonian Lagoon during the selected
coastal upwelling events from 2005 to 2009. First, we will consider that typical values of these
parameters were observed in the ambient waters throughout the season. As seen, the smallest SST
values were observed in May, with an average value of around 12 ◦C. Throughout the summer season,
the SST increases to 18 ◦C in June and to 24 ◦C in July. In May and June, the Chl-a concentration
was approximately 35–50 mg m−3 on average, with maximum values reaching 65 mg m−3. In July,
the average concentration was even higher at around 50–60 mg m−3, reaching up to 120 mg m−3.
This corresponds well to the Chl-a values typically observed in the Curonian Lagoon, as the mean
climatological concentration of Chl-a is 47.6 ± 15.7 in May, 43.2 ± 29.41 in June, and 71.9 ± 51.3 mg m−3

in July [58]. However, during upwelling inflows both of these properties decreased severely in the
areas affected—2–8 ◦C in SST and 2–4 orders of magnitude in Chl-a concentration.
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Figure 8. Satellite-derived Chl-a concentration and SST in the Curonian Lagoon: Chl-a concentration
and SST in the upwelling inflow area is denoted as UPWavg and in the reference area as REFavg.

In particular, the Chl-a concentration and water temperature of the Curonian Lagoon were strongly
affected by a major upwelling event that took place in July 2006. Here, a sharp drop in SST from 21 ◦C
to 8 ◦C (∆T = 12.7 ◦C on average) was recorded in the upwelling inflow area, which was much lower
compared to those SST recorded in the reference area (minimum SST 17.8 ◦C, average SST 21 ◦C).
In addition, this particular upwelling inflow resulted in the Chl-a concentration to drop down to
several mg m−3 while in the reference area it remained above 100 mg m−3. Another upwelling inflow
event in May 2009 demonstrated that in some cases upwelling can result in only a slight SST drop,
but can at the same time lead to a pronounced decrease in Chl-a concentration. For this particular
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event, the upwelling induced temperature drop was only 2–4 ◦C, but the average Chl-a concentration
in the inflow zone (10–12 mg m−3) was nearly 4 times lower than in the ambient waters (40–50 mg
m−3).

4. Discussion

Environmental parameters such as water transparency, SST, salinity, and nutrient availability
are subjected to high variability due to coastal upwelling in the Baltic Sea [18,24,59–61], which is
also recognized as an efficient contributor to the exchange processes between coastal and offshore
waters [62]. In turn, upwelling events that take place during the warm season may have an important
influence not only on coastal SST patterns and vertical stratification, but also on the entire coastal
environment through their effect on biological processes [63].

SST, in general, is one of the primary indicators of upwelling during the warm season in the
Baltic Sea, and it is not ordinarily possible to recognize the beginning of an upwelling from SST maps
when cooler water has been uplifted but has not yet surfaced [42]. Despite this, a detailed study of
the upwelling event of July 2008 has revealed that the development of an upwelling event can be
identified in Chl-a maps before thermal signatures in the surface layer appear. In this case, a significant
increase in water transparency marked the beginning of the coastal upwelling in the Chl-a records.
The decline in Chl-a concentration during upwelling events is due to the lateral displacement of water
masses, when the peak of Chl-a production is physically removed from the upwelling region due to
cross-frontal advection [60,64], and only later do temperature changes come about.

The application of the GAM model to better understand the role of various abiotic factors on
Chl-a changes during upwelling events has shown that the SST of the upwelling zone (or the SST drop
between ambient and upwelling waters) is the most influential variable (see Table 3), in that lower
temperatures in the upwelling zone are associated with lower Chl-a concentrations. This could either
be related to the displacement of water masses and the transport of more productive waters further
offshore [22,60,64], or to the decrease in water temperature—which is unfavourable for the production
of phytoplankton [21]. The GAM also shows that the increase in solar radiation positively affects
the development of Chl-a, which is the key variable affecting the growth of phytoplankton [16,65,66].
The increase in solar radiation is also directly linked to the rise of SST, which favours the proliferation
of phytoplankton biomass. As further outlined, wind speed has a significant influence on Chl-a
distribution patterns as wind-induced mixing largely determines the distribution of phytoplankton
in the upper layer, decreasing the surface Chl-a concentration by mixing phytoplankton deeper into
the water column [67]. Higher Chl-a values were, therefore, observed under lower wind speeds.
Overall, the application of the GAM shows that the environmental variables analysed explain 77.5% of
the observed deviance in Chl-a concentration, implying that other factors—such as vertical nutrient
flux—should be taken into account when evaluating the impact of upwelling events on the functioning
of a coastal ecosystem.

The analysis of cloud-free MODIS and MERIS/Envisat images evidently revealed the effect of
upwelling on significantly lowering the SST and the Chl-a concentrations not only along the SE coast
of the Baltic Sea but also in the Curonian Lagoon. In the lagoon, the background SST and Chl-a
concentrations were much higher than in the sea, leading to more severe SST and Chl-a drops caused
by the inflow of upwelled water. Such short-term marine inflow events could be very rapid and
even reach the southern part of the Curonian Lagoon [28,29], altering the temperature and salinity
patterns therein. Such inflows might also have a longer-term impact on the growth of phytoplankton
in the Curonian Lagoon, where the supply of nutrients—such as nitrogen or phosphorus—depends
on the volume of inputs from the Baltic Sea and terrestrial sources [68]. Moreover, the structural and
functional characteristics of phytoplankton communities are also known to differ significantly between
ambient regions and marine water inflow areas [69]. We may, therefore, expect coastal upwelling to
have a much more severe effect on primary production changes in the Curonian Lagoon than in the
Baltic Sea.
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Due to the upwelling-induced uplift of deeper water layers to the surface [59], nutrient concentrations
in the upper layer can become significantly higher during and after upwelling events [70,71].
Such changes can cause a “random noise” in the time series of phosphate, nitrate, and Chl-a
concentrations, potentially masking anthropogenic effects in the status assessments of the
Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD) [7].
Coastal upwelling should, therefore, be considered an important dynamic process for the comprehensive
assessment and management of water bodies [10]—as was done, e.g., for the Italian seas [72].
Even though it is a natural process, this might create a new challenge: to understand the role of
dynamic oceanographic features that affect good environmental status [7], and to learn how to apply
this knowledge for the implementation of various directives.

Available satellite data allowed us to investigate the effect of upwelling on water quality.
The analysis of the Chl-a and SST images of the SE Baltic Sea region shows that through the reduction
in Chl-a concentration, the effect of upwelling could be linked to better water quality in the coastal
zone compared to pre-upwelling periods or offshore regions. Several examples showing WFD water
quality classes based on Chl-a concentration along the SEB coast and in the Curonian Lagoon are
presented in Figure 9. This demonstrates that upwelling-affected waters can be distinguished from
ambient ones as having better quality based on the WFD water quality classes.
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This is very well exemplified in the upwelling cases of 02 July 2006 and 25 July 2008 (Figure 9a).
Here the “excellent” to “good” quality waters along the coast are clearly distinguished from the offshore
regions, which have high Chl-a concentrations and “poor” to “bad” water status according to the WFD
water quality classes. A similar picture can be observed on 11 June 2007, where a distinct band of
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“moderate” to “bad” quality waters in the Curonian Lagoon plume are surrounded by “excellent” to
“good” quality water in the upwelling region.

It is also worth noting that the Curonian Lagoon is considered to be an important element of the
tourism development in the region. However, the eutrophication of the lagoon and poor water quality
insufficient for bathing [73], intensive summer algae blooms, and low water transparency all negatively
influence the socio-economic development of the region [74]. In this context, it is important to mention
the upwelling-induced entrainment of water into the hyper-eutrophic Curonian Lagoon which, as has
been already shown, leads to a short-term reduction in Chl-a concentration and the improvement of
water quality (Figure 9b). During such events, inflow regions with relatively low temperatures are
characterised by “excellent” water quality, whereas ambient waters could be characterised as poorly as
“bad” depending on the initial Chl-a concentration in the lagoon. Even though any improvement in
water quality would be a short-term event in this case, it can still improve the recreational potential of
the region.

This study explored the possibility of determining water quality during upwelling events with
remote sensing images from cloud-free MERIS/Envisat images. The results of the study suggest that
such events should be taken into account when evaluating the overall state of the environment, as the
measurement of water quality indicators during upwelling events might represent very different
conditions from typical ones, thus necessitating continuous monitoring. Due to the collapse of
MERIS in 2012, the number of available Chl-a images decreased, yet the launch of Sentinel-2 in 2015
and Sentinel-3 in 2016—having two optical instruments, MultiSpectral Instrument (MSI) and Ocean
and Land Colour Instrument (OLCI) respectively—increased the number of available Chl-a images
significantly [58]. In turn, Sentinel satellites provide a scientific opportunity for the high-frequency
monitoring of the water quality of coastal waters, enabling not only operational monitoring but also
studies on environmental change [75]. Therefore, they have great potential for the remote sensing of
coastal water, and are an important tool for its monitoring and research [76].

However, here we must acknowledge that our water quality estimates are based on Chl-a
concentration only, and do not consider changes in the amounts of nutrients (N, P) that are critical for
the management of eutrophication [77]. The role of the temporal and spatial limitations of nutrients on
phytoplankton growth in developing successful management strategies has been highlighted in the
study by authors of [78]. Similarly, EU directives also imply that the monitoring and management of
vulnerable coastal ecosystems should follow a holistic approach. Therefore, more complete water quality
monitoring requires the integration of in situ measurements with recent developments in techniques
such as remote sensing, numerical modelling, and other advanced information technology [10,79].
Hence, the investigation of N and P budgets, trends, variability, and fate caused by coastal upwelling
should be addressed in the near future, combining both conventional monitoring and remote
sensing methods.

5. Conclusions

This study presents the results of a satellite-based analysis of Chl-a variability in the coastal
zone of the SE Baltic Sea and in the Curonian Lagoon during wind-induced coastal upwelling events.
Multi-spectral satellite data allowed the authors to quantify the influence of coastal upwelling on the
horizontal distribution of SST and Chl-a concentration. Analysis showed that the Chl-a concentration
in the upwelling regions of the SE Baltic is, on average, 40–50% lower than in ambient waters.

As observed, the primary cause of the reduction in Chl-a concentration in the coastal zone is
related to the lateral offshore transport of warm and productive coastal waters. The first signatures
of upwelling could be identified in the Chl-a maps before the thermal signatures even appear in the
surface layer, suggesting that these data can be used for the early detection of upwelling events.

The application of the GAM model showed that the local SST inside the upwelling front,
wind speed, and solar radiation are the primary factors related to the observed changes in Chl-a.
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However, a comprehensive assessment of the influence of upwelling on the coastal ecosystem also requires
the integration of in situ measurements, providing additional information on nutrient concentrations.

The analysis of satellite data also shows clear evidence of the influence of coastal upwelling on
the hydrobiological conditions of the shallow, eutrophied Curonian Lagoon. In particular, strong SST
and Chl-a gradients resulting from the inflow of upwelled water were identified in the northern part
of the lagoon. As the Curonian Lagoon is a semi-enclosed water body, the corresponding impact of
coastal upwelling on its hydrobiological properties—and on the overall ecosystem—is higher than
along the SEB coast.

This study also outlines the influence of upwelling on water quality along the SEB coast and in
the Curonian Lagoon due to the spatio-temporal variability of the Chl-a concentration across these
water bodies. As demonstrated, multi-mission satellite data may be effectively used for monitoring
environmental status and water quality in coastal areas, thus demonstrating the practical use of the
results obtained and the Earth’s observations in water management. The example of the Baltic Sea
has also shown that upwelling events should be taken into account when performing both national,
European, and Regional Seas monitoring plans and when evaluating trends in water quality or
considering measures for the regulation of ecological status in coastal waters.
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