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Abstract: The advent of up-to-date hyperspectral technologies, and their increasing performance
both spectrally and spatially, allows for new and exciting studies and practical applications in
agriculture (soils and crops) and vegetation mapping and monitoring atregional (satellite platforms)
andwithin-field (airplanes, drones and ground-based platforms) scales. Within this context, the special
issue has included eleven international research studies using different hyperspectral datasets (from the
Visible to the Shortwave Infrared spectral region) for agricultural soil, crop and vegetation modelling,
mapping, and monitoring. Different classification methods (Support Vector Machine, Random
Forest, Artificial Neural Network, Decision Tree) and crop canopy/leaf biophysical parameters
(e.g., chlorophyll content) estimation methods (partial least squares and multiple linear regressions)
have been evaluated. Further, drone-based hyperspectral mapping by combining bidirectional
reflectance distribution function (BRDF) model for multi-angle remote sensing and object-oriented
classification methods are also examined. A review article on the recent advances of hyperspectral
imaging technology and applications in agriculture is also included in this issue. The special issue is
intended to help researchers and farmers involved in precision agriculture technology and practices to
a better comprehension of strengths and limitations of the application of hyperspectral measurements
for agriculture and vegetation monitoring. The studies published herein can be used by the agriculture
and vegetation research and management communities to improve the characterization and evaluation
of biophysical variables and processes, as well as for a more accurate prediction of plant nutrient
using existing and forthcoming hyperspectral remote sensing technologies.

Keywords: hyperspectral remote sensing for soil and crops in agriculture; hyperspectral imaging
for vegetation; plant traits; high-resolution spectroscopy for agricultural soils and vegetation;
hyperspectral databases for agricultural soils and vegetation; hyperspectral data as input for
modelling soil, crop, and vegetation; product validation; new hyperspectral technologies; future
hyperspectral missions

1. Introduction

The use of hyperspectral technology for an optimal quantification of crop and soil biophysical
variables at various spatial scales is an important aspect in agricultural management practices and
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monitoring [1,2]. Moreover, there is a great interest to update (i.e., research of new variables) and
optimize the retrieval of crop biophysical variables using drone and available satellite data [2–17],
as well as future high spatial resolution hyperspectral satellites. To this aim, the exploitation of
different approaches for assimilation of the retrieved biophysical parameters into agricultural models
is also of primary interest. As it would allow deriving agronomical proxy variables addressing the
issues of the multi-scale and multivariate nature of the retrieved variables [6,7,11–19]. For example, a
complete and updated knowledge of the spatial distribution of leaf area index (LAI), pigments like
chlorophyll content and nitrogen can support sustainable agricultural practices and optimize related
costs, through optimal use of fertilizer, pesticides and water that are strictly subdued to an improvement
of crop yields and quality. Hyperspectral imaging has great potential for applications in agriculture,
particularly precision agriculture, owing to their ample spectral information sensitive to different
plant and soil biophysical and biochemical properties [11–25]. Multiple platforms (satellites, airplanes,
unmanned aerial vehicle (UAVs), and close-range platforms) have become more widely available in
recent years for collecting hyperspectral data with different spatial (from centimeter to decameter),
temporal, and spectral resolutions. These platforms have different strengths and limitations in terms
of spatial coverage, flight endurance, flexibility, operational complexity, and costs. These factors
need to be evaluated when choosing the hyperspectral platform(s) for specific research purposes,
e.g., increasing productivity, expanded coverage, and reduced use of fertilizers, pesticides, and water.
Further technological developments are also needed to overcome some of the limitations, such as the
short battery endurance in UAV operations and high cost of hyperspectral sensors [4].

All in all, hyperspectral remote sensing (RS) represents an attractive and efficient technology
capable of estimating soil and crop biophysical variables of interest from regional to intra-field scales.

Research advances are still required to validate methods and applications for the estimation
of additional crop biophysical variables and proxy agronomical products [14–25] and for their
assimilation into spatially distributed agricultural models (e.g., grains quality, pest and disease dynamic,
water-driven, and crop growing models), also by comparing different assimilation approaches [10–24].

This special issue was set up to highlight and diffuse the recent advances in hyperspectral RS
studies and their practical applications for agriculture (soils and crops) mapping and monitoring
from regional to within-field scales. Our objectives as guest Editors were to encourage studies and
applications on this topic and to assemble high-quality, peer-reviewed research and review articles
in a special issue of Remote Sensing dedicated to this theme. We accepted manuscripts concerned
with all aspects of hyperspectral RS (optical domain) for crop and natural vegetation. This included
hyperspectral studies of agricultural soils, crops, as well as other vegetation types using the ground,
drone, air-, and space-borne platforms (VIS-NIR, SWIR, and TIR). With various focus on: field, and
laboratory hyperspectral measurements for monitoring agriculture and vegetation; retrieval of plant
traits at leaf and canopy level from hyperspectral measurements; new methods for hyperspectral
data processing and atmospheric compensation techniques; hyperspectral sensors calibration and
products validation for agriculture and vegetation monitoring; statistical and computational methods
for hyperspectral data analysis in agriculture and vegetation applications; integration or combined
use of hyperspectral data from the optical domain with other Earth Observation (EO) technologies;
modelling of soils, crops, and vegetation using hyperspectral data; next-generation hyperspectral
technologies and missions, platforms, and sensors for agriculture and vegetation.

A total of 18 manuscripts were submitted and peer-reviewed by fifty anonymous, scrupulous
reviewers. Of these, 11 manuscripts achieved the level of quality and innovation expected by Remote
Sensing and were at the end published in this special issue. A total of 77 authors contributed to these 11
articles and hailed from six different nations: Brazil (26 authors), Canada (8), Australia (5), Finland (3),
China (23), UK (1), Iran (3), Belgium (1), Spain (1), Poland (3), Ethiopia (1), and USA (2).
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2. Overview of Contributions

The works composing this Special Issue cover a wide range of topics, from the use of high
spectral resolution hyperspectral LiDAR (light detection and ranging) for vegetation parameters
extraction, to the estimation of chlorophyll content in peanut leaf, to the estimation of heavy metal
contents in grapevine foliage, to the application of UAV-based multiangle hyperspectral data in fine
vegetation classification, to the use of artificial neural networks for modeling hyperspectral response of
water-stress induced lettuce plants, to different classification methods and algorithms for agricultural
biophysical variables retrieval, plants and invasive species retrieval, and to predict nutrient content.
They are presented below in chronological order of acceptance.

First, Jiang et al. [25] employed and evaluated the use of high spectral resolution hyperspectral
LiDAR (Acousto-optical Tunable Filter HSL-AOTF-HSL, active and non-contact instrument), with 10 nm
spectral resolution, for leaf vegetation red edge parameters extraction. The results were compared
with the referenced value from a standard SVC© HR-1024 spectrometer (Spectra Vista Corporation,

Poughkeepsie, NY 12603 USA) for validation. Green leaf parameter differences between HSL
and SVC results were minor, which supported the notion that HSL was practical for extracting the
employed parameter as an active method. This paper is just the beginning of using the high spectral
resolution HSL for vegetation index detection, which might inspire the estimation of other vegetation
parameters or biochemical content using this advanced LiDAR technique.

Second, the estimation of peanut leaf chlorophyll content with dorsiventral leaf adjusted ratio
index (DLARI), performed by Xie et al. [26]. The study is one of the first attempts to assess the impact
of spectral differences among dorsiventral leaves caused by leaf structure on leaf chlorophyll content
(LCC) retrieval. The authors’ objectives were to (1) analyze spectral differences in the adaxial and
abaxial surfaces of peanut leaves; (2) identify the optimal wavelengths of the modified Datt (MDATT)
index for estimating peanut LCC; (3) develop a novel index based on a four-band combination to reduce
spectral differences in dorsiventral leaves for improving LCC retrieval; (4) compare the performance
of the indices developed in this study with those widely used in the literature. The reliability of
narrow-band indices can be influenced by a range of phenotypic characteristics. Further work is
required to assess the application of DLARI to estimate LCC for other crop species. The robust
wavelength regions proposed (715–820 nm) should provide a good starting point for optimizing the
index for other crop species.

Third, [27], in their work applied five treatments of heavy metal stress (Cu, Zn, Pb, Cr, and Cd) to
grapevine seedlings and hyperspectral data (350–2500 nm) and heavy metal contents were collected
based on in-field and laboratory experiments. The partial least squares (PLS) method was used as
a feature selection technique, and multiple linear regressions (MLR) and support vector machine
(SVM) regression methods were applied for modelling purposes. Based on the PLS results, visible
and red-edge regions were found most suitable for estimating heavy metal contents in the present
study. The authors pointed out that each heavy metal has a special effect, leading to distinct responses
depending on the plant species (including leaf color changes, chlorosis, necrosis, dwarfism, giant, leaf,
and root spreading, etc.).

Fourth, Yan et al. [28] applied UAV-based multi-angle remote sensing for fine vegetation
classification by combining a bidirectional reflectance distribution function (BRDF) model for
multi-angle remote sensing and object-oriented classification methods. Bands of high importance
for the fine classification of vegetation included the blue band (466– nm), green band (494–570
nm), red band (642–690 nm), red-edge band (694–774 nm), and near-infrared band (810–882 nm).
The importance of the BRDF characteristic parameters are discussed in detail and the research results
promote the application of multi-angle remote sensing technology in vegetation information extraction
and provide important theoretical significance and application value for regional and global vegetation
and ecological monitoring.

Fifth, [29] evaluated the hyperspectral response of water-stress induced lettuce (Lactuca sativa L.)
using artificial neural networks (ANN). Hyperspectral response was measured four times,
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during 14 days of stress induction, with an ASD Fieldspec HandHeld spectroradiometer (325–1075 nm).
Both reflectance and absorbance measurements were calculated. Different biophysical parameters were
also evaluated. The performance of the ANN approach was compared against other machine learning
algorithms. Authors’ results showed that the ANN approach could separate the water-stressed lettuce
from the non-stressed group with up to 80% accuracy at the beginning of the experiment. Absorbance
data offered better accuracy than reflectance data to model it. This study demonstrated that it is
possible to detect early stages of water stress in lettuce plants with high accuracy based on an ANN
approach applied to hyperspectral data. The methodology has the potential to be applied to other
species and cultivars in agricultural fields.

Sixth, a review of waveband selection in hyperspectral classification of plants was performed
by [30]. The authors reviewed the last 22 years of hyperspectral vegetation classification literature
that evaluate the overall waveband selection frequency, waveband selection frequency variation by
taxonomic, structural, or functional groups. The influence of feature selection choice by comparing
methods as stepwise discriminant analysis (SDA), support vector machines (SVM), and random
forests (RF) is studied. They concluded that characteristics of plant studies influence the wavebands
selected for classification and advised caution when relying upon waveband recommendations from
the literature to guide waveband selections or classifications for new plant discrimination applications.
In this regard, recommendations appear to be weakly generalizable between studies.

Seventh, Sabat-Tomala et al. [31] study proposed a comparison of SVM and RF algorithms for
invasive and expansive species classification using airborne hyperspectral data (HySpex Visible and
Near Infrared-VNIR-1800 scanners and a Shortwave Infrared-SWIR-384 scanner; Hyspex NEO, Oslo,
Norway). These invasive species are considered a threat to natural biodiversity because of their high
adaptability and low habitat requirements. Maps of the spatial distribution of analyzed species were
obtained; high accuracies were observed for all data sets and classifiers. In particular, the authors
verified whether the expansive/invasive Rubus spp., Calamagrostis epigejos, and Solidago spp. were
characterized by a specific set of spectral characteristics that allowed them to be distinguished from the
surrounding species, which altogether created a mix of fuzzy, covered patterns. Moreover, an analysis
of the impact of the number of pixels in training data set on the classification accuracy was performed.
The accuracy assessment method presented in the paper confirmed that all analyzed species can be
identified in heterogeneous habitats through hyperspectral airborne remote sensing.

Eight, machine learning (ML) algorithms were applied by [32] to predict macro- and micronutrient
nutrient content (N, P, K, Mg, S, Cu, Fe, Mn, and Zn) in Valencia-Orange from leaf hyperspectral
measurements. A Fieldspec ASD FieldSpec® HandHeld 2 (Malvern PANalytical Ltd, Malvern, WR14
1XZ, United Kingdom) spectroradiometer was used and the surface reflectance and first-derivative
spectra from the spectral range of 380 to 1020 nm (640 spectral bands) was evaluated. K-Nearest
Neighbor (kNN), Lasso Regression, Ridge Regression, Support Vector Machine (SVM), Artificial Neural
Network (ANN), Decision Tree (DT), and Random Forest (RF) ML algorithms were tested. The methods
were assessed based on Cross-Validation and Leave-One-Out. The Relief-F metric of the algorithms’
prediction was used to determine the most contributive wavelength or spectral region associated with
each nutrient. RF model was the most suitable to model most of them. The results indicate that,
for the Valencia-orange leaves, surface reflectance data is more suitable to predict macronutrients,
while first-derivative spectra are better linked to micronutrients.

Ninth, a review article provided by [33] analyzed the recent advances of hyperspectral imaging
technology and applications in agriculture. Due to limited accessibility outside of the scientific
community, hyperspectral images have not been widely used in precision agriculture. In recent years,
different mini-sized and low-cost airborne hyperspectral sensors (e.g., Headwall Micro-Hyperspec,
Cubert UHD 185-Firefly) have been developed, and advanced space-borne hyperspectral sensors have
also been or will be launched (e.g., PRISMA, DESIS, EnMAP, HyspIRI). Hyperspectral imaging is
becoming more widely available to agricultural applications. Meanwhile, the acquisition, processing,
and analysis of hyperspectral imagery remain a challenging research topic (e.g., large data volume,
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high data dimensionality, and complex information analysis). The imaging platforms and sensors
(airplane, UAV, satellite, close-range ground- or lab-based) together with analytic methods used in the
literature, were discussed. Performances of hyperspectral imaging for different applications (e.g., crop
biophysical and biochemical properties’ mapping, soil characteristics, and crop classification) were
also evaluated. This review intended to assist agricultural researchers and practitioners to better
understand the strengths and limitations of hyperspectral imaging to agricultural applications and
promote the adoption of this valuable technology. Recommendations for future hyperspectral imaging
research for precision agriculture were also presented.

Tenth, Zhang et al. [34] presented a study on the detection of canopy chlorophyll content for
three growth stages of corn using continuous wavelet transform (CWT) analysis. The reflectance
spectrum increased in the 325–400 and 761–970 nm regions as the growth stage advanced and the
growth period shifted. The reflectance decreased in the 401–700 and 971–1075 nm regions as the
growth stage advanced. The characteristic bands related to chlorophyll content in the spectral data
and the wavelet energy coefficients were screened using the maximum correlation coefficient and the
local correlation coefficient extrema, respectively. A partial least square regression (PLSR) model was
established. Results showed that bands selected via local correlation coefficient extrema in a wavelet
energy coefficient created a detection model with optimal accuracy.

Last, a different study in terms of application is proposed by [35], who studied the nutrient
content of tef (Eragrostis tef), an understudied plant that has importance due to both food and forage
benefits, and investigated the replicability of methods across two study sites situated in different
international and environmental contexts [35]. The research aims were to (1) determine whether
calcium, magnesium, and protein of both the tef plant and grain can be predicted using hyperspectral
data and PLSR model through waveband selection, and (2) compare the replicability of models across
varying environments. Results suggest the method can produce high nutrient prediction accuracy
for both the plant and grain in individual environments, but the selection of wavebands for nutrient
prediction was not comparable across study areas. Results using PLSR model with hyperspectral
data from non-milled grains were generally positive, and wavebands for protein prediction generally
agreed with other studies. While more research is needed to determine whether these consistencies are
true positives or are affected by other factors. This study contributes to the gap in the literature related
to non-milled grains. Therefore, there is a need for greater attention to methods and results replication
in remote sensing, specifically hyperspectral analyses, in order for scientific findings to be repeatable
beyond the plot level.

3. Concluding Remarks

Hyperspectral remote sensing for studying agriculture and natural vegetation is a challenging
research topic that will remain of great interest for different sciences communities for the next decades.
As a matter of fact, Space agencies, on a worldwide basis, have ongoing programs to develop
hyperspectral satellite missions to assure global coverage at high spatial resolution that will have a
noteworthy impact on agricultural and natural vegetation monitoring studies. The eleven manuscripts
collected in this special issue and, therefore, represent some meaningful progress in the application
of hyperspectral EO data for agricultural and vegetation research themes. Further work in this area
is required in view of the recent advances and funding opportunities in this field. We expect that
the studies published herein will help the agriculture and vegetation research and management
communities to better characterize and assess biophysical variables and processes, as well as more
effectively predict plant nutrient using upcoming hyperspectral remote sensing technologies.
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