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Abstract: Solar photovoltaics (PV) has advanced at an unprecedented rate and the global cumulative
installed PV capacity is growing exponentially. However, the ability to forecast PV power remains
a key technical challenge due to the variability and uncertainty of solar irradiance resulting from
the changes of clouds. Ground-based remote sensing with high temporal and spatial resolution
may have potential for solar irradiation forecasting, especially under cloudy conditions. To this end,
we established two ultra-short-term forecasting models of global horizonal irradiance (GHI) using
Ternary Linear Regression (TLR) and Back Propagation Neural Network (BPN), respectively, based on
the observation of a ground-based sky imager (TSI-880, Total Sky Imager) and a radiometer at a PV
plant in Dunhuang, China. Sky images taken every 1 min (minute) were processed to determine the
distribution of clouds with different optical depths (thick, thin) for generating a two-dimensional
cloud map. To obtain the forecasted cloud map, the Particle Image Velocity (PIV) method was applied
to the two consecutive images and the cloud map was advected to the future. Further, different types
of cloud fraction combined with clear sky index derived from the GHI of clear sky conditions were
used as the inputs of the two forecasting models. Limited validation on 4 partly cloudy days showed
that the average relative root mean square error (rRMSE) of the 4 days ranged from 5% to 36%
based on the TLR model and ranged from 12% to 32% based on the BPN model. The forecasting
performance of the BPN model was better than the TLR model and the forecasting errors increased
with the increase in lead time.
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1. Introduction

Solar photovoltaics (PV) is developing at an unprecedented speed, which is attributed to dramatic
cost reductions, technology advancements and government policy support [1–3]. According to the IEA
(International Renewable Energy Agency) report, global solar PV power generation increased by 22%
to 720 TWh in 2019 [4]. However, the ability to forecast PV power remains a key technical challenge for
the integration of large-scale PV into the electrical grid due to the variability and uncertainty of solar
irradiance, which affects PV power most directly [5–9]. Moreover, accurate forecasting of solar irradiance
is crucial to the dispatch and management of power systems [5]. Further ultra-short-term systems for
forecasting highly spatially and temporally resolved solar irradiance in a timeframe of 15 min have
been put forward to optimize the operation of solar power plants [10–12]. In fact, the amount of GHI
(global horizontal irradiance) is closely related to atmospheric conditions including cloud, transparency,
aerosol concentration and water content [13], in which cloud is the most dominant factor [14,15],
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and rapid fluctuations of GHI are generally caused by large changes in cloud conditions [16]. At present,
the forecasting of cloud fraction and location is very difficult according to physical and dynamics
principles, although it is vital to the ultra-short-term forecasting of solar irradiance [17].

Although well-established methods have been developed for operational solar irradiance
forecasting, in the previous studies, part of solar irradiance forecasting applications based on statistical
models or artificial neural networks do not directly use characteristic information of cloud, resulting in
significant biases [18–22], and the numerical weather prediction (NWP) models that can infer local cloud
cover information through the dynamic modeling of atmosphere are widely used for solar irradiance
forecasting of several hours to a few days ahead [23,24], whereas they are unlikely to capture real-time
temporal relationships between solar irradiance and meteorological factors and simulate cloud with
severe convection or short life cycle, due to the coarse spatial resolutions and uncertain initial conditions
of NWP models and complicated microscopic physical characteristics of cloud particles [10,25],
eventually leading to random errors in short-term solar irradiance prediction [26–28]. Satellite-based
solar irradiation forecasting of 1–6 h ahead does not have adequate fine temporal and spatial resolutions
to extract information of small-scale and low-altitude cloud [29]. Hence, ground based remote sensing
with high temporal and spatial resolution was developed for solar irradiation forecasting to fill the gap
of NWP and satellite-based models in nowcasting applications [30,31].

In recent years, sky imagers that rely on ground measurements combined with irradiance
sensors have been widely used for nowcasting systems. For Total Sky Imager (TSI), cloud indices
derived from images were used for nowcasting of GHI and were reported to have potential for solar
irradiance forecasting of 15–20 min ahead [30]. Furthermore, the intra hour forecasting applications
for direct normal irradiance (DNI) or GHI of 20 min ahead were performed and the results showed
better performance than the persistence model; these studies generally combined the TSI images
and the cloud base height for cloud tracking [32–34]. Other studies, in which predictive cloud
indices inferred from the ground-based measurements were applied to artificial neural network
(ANN) or multilayer-perceptron-network (MLP) models, improved intra hour irradiance forecasting
results [35,36]. The radiative transfer model was combined with predicted sky images to forecast GHI
and DNI for time horizons of 1–10 min ahead [37]. Recently, minutely solar irradiance was forecasted
though the mapping relationship between sky images and irradiance [38]. Moreover, raindrop detection
for sky images was proposed to improve the accuracy of short-term solar irradiance [39]. It is obvious
that various technologies can be applied to sky images for short-term solar irradiance.

The goal of this paper is to establish two ultra-short-term rolling forecasting models of GHI based
on Ternary Linear Regression (TLR) and Back Propagation Neural Network (BPN) using the observation
of a sky imager (TSI-880) and GHI in Dunhuang, China. The TLR model was used to establish the
real-time temporal linear relationship between three different sky types (thick cloud, thin cloud and
clear sky) derived from images and the clear sky index derived from clear sky model, to determine the
attenuation proportion of the three sky types to the clear sky index, while the BPN model was used for
constructing the nonlinear relation between cloud and clear sky index to forecast GHI.

2. Instruments and Data

The Total Sky Imager of TSI-880 deployed on the rooftop of a solar plant in Dunhuang (set up at
94.478◦E, 40.078◦N, 1221 m MSL (mean sea level)) was mainly used for ultra-short-term forecasting of the
power generation of photovoltaics. The appearance and composition of TSI-880 are shown in Figure 1,
consisting of a sun tracking and blocking device, imaging device, and a built-in micro-computer used
for the storage and transfer of data. The dome of mirror rotates at a certain speed to ensure that the
shadow band blocks strong direct sunlight and prevents the lens from being damaged, and captures the
sky scene reflected on the hemisphere mirror with a downward charge coupled device (CCD) camera.

A solar shortwave radiation meter of TBQ-2 was used to measure the instantaneous GHI accurately.
The images with a resolution of 352 × 288 pixels and a 24-bit color JPEG format and GHI data were
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sampled synchronously with the frequency of 1 min, and simultaneously stored locally and remotely
to guarantee the timeliness, integrity and reliability of the data.
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Figure 1. Appearance and composition of total sky imager (TSI-880).

3. Methods and Results

3.1. Cloud Detection and Retrieve

Feature extraction from cloud images is a key component in the application of the Total Sky
Imager [12]. Although TSI-880 provides cloud detection according to the built-in algorithm, the single
fixed red-blue-Ratio (RBR) threshold for all images and untreated shielding caused significant error
in the results. To be specific, on the one hand, the cloud information near the sun shielded by the
shadow band is vital for ultra-short-term irradiance forecasting [34]. On the other hand, the image
RBR is greatly affected by atmospheric conditions including transparency, aerosol content and sand
dust, even though for the same clear sky image, the RBR values around the sun and near the horizon
are larger due to aerosol forward scatter and long optical path [40,41]. Given this, we performed cloud
detection based on the RBR threshold to determine the cloud fraction.

The first step of cloud detection is recovering the shielding areas that result from the support arm
and shadow band, as shown in Figure 2a. The angle of the shadow band deviates from the true north
on the image, which is equal to the solar azimuth (SAA), because projection of the sky on the image is
isometric [42], and the area of shadow band is shown in the green area of Figure 2b and interpolated
according to the pixels on both sides. The projection of the support arm with a fixed position is shown
in the white area of Figure 2b and is restored by horizontal bidirectional interpolation. The restored
image is shown in Figure 2c. Additionally, the sky, effectively occupying 260 × 260 pixels, is cropped
from the original image and distortion is corrected by the spherical distortion correction model [43].
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Figure 2. TSI image: (a) Raw image, (b) occlusion location, (c) occlusion recovery.

In the TSI spherical coordinate system, the relationship of the zenith angle, azimuth and scattering
angle (marked with Θ) is shown in Figure 3. The small black square indicates a point on the spherical
mirror, θ′ and φ′ are the zenith angle (IZA) and the azimuth angle of the point, respectively; θ and
φ are the solar zenith angle (SZA) and SAA, respectively. The IZA is used to represent the zenith
angle of the pixel on the image, and the SPA (Sun-Pixel Angle) is the angle between the sun and the
pixel, representing the positional relationship between the pixel and the sun on the image. The SPA
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is approximately equal to Θ due to the long distance between the sun and the earth. From Figure 3,
we have:

sin(IZA) = sinθ′ =
r
R

(1)

cos(SPA) = cos Θ = cosθ cosθ′ + sinθ sinθ′ cos(φ−φ′) (2)

where r is the distance between pixel and image center on the image, and R is the radius of the image.
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Figure 3. Relationship of the scattering angle, zenith angle and azimuthal angle in spherical coordinates
(from ref. [44]).

The images with the SZA of 58◦ under clear-sky conditions were selected for representing the
relationship of the RBR, IZA and SPA, as shown in Figure 4a. It is obvious that the RBR values decrease
with the increase in SPA, while they increase with the increase in IZA. The areas of near horizon
(IZA > 75◦) and around the sun (SPA < 35◦) have larger values of RBR in relation to other areas. Hence,
the Clear Sky Library (CSL) was applied to eliminate the dependence of RBR on the areas around the
sun and horizon [45]. To be specific, the historical clear images were selected as background images to
provide RBR reference for images to be detected, and SZA, IZA, SPA, R, G, and B brightness values
of historical clear images were saved as the data fields of the CSL. Additionally, we calculated the
standard deviation distribution of the RBR of different clear sky images (Figure 4b) and found that the
RBR variation had a large range from 0.1 to 0.18 in the area around the sun (SPA < 35◦). Given this,
the closest image in the CSL was selected for the images to be detected, to reduce the impact of aerosols
concentration and sun position projection on the RBR.
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Figure 4. Distribution of RBR (red-blue-ratio) with SPA (Sun-Pixel Angle) and IZA (image zenith
angle) in clear sky condition: (a) RBR distribution on 11 August 2015 at SZA = 58◦ (solar zenith angle);
(b) standard deviation of RBR on 4 May, 10 June, 11 August and 24 November 2015 at SZA = 58◦.

As for the thresholds of different sky types, a certain number of images taken on different dates
during the observation were selected as training samples. The thresholds shown in Figure 5 were
derived from the PDF (probability distribution function) of RBR differences of pixels between the
selected images of CSL and the sample images, and the thresholds of clear sky (T_clear) and thick
cloud (T_thick) were 0.067 and 0.225, respectively.
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A pixel was identified as thick cloud if the difference of RBR between the pixel and the
corresponding pixel in the background image (∆RBR) was larger than 0.225; if the ∆RBR was
smaller than 0.067, the pixel was identified as clear sky, otherwise the pixel was identified as thin cloud.
An instance of cloud detection is shown in Figure 6e. Moreover, the sun parameter (SP) proposed by
Pfiste et al. [16] was introduced to correct the type of the pixels around the sun. SP is a dynamic single
threshold defined as the RBR average of the pixels around the sun (Figure 4a, −35◦ < SPA <35◦). If the
sun is obscured by thick cloud (Figure 6a), RBR of the pixels around the sun are usually smaller than
that of the clear day, leading to misidentification as clear sky (Figure 6e). Consequently, when the
RBR of the pixel around the sun was larger than the SP, the pixel was re-recognized as thick cloud
(Figure 6f). Finally, the cloud fraction of thick cloud ( fthick) and thin cloud ( fthin) are the ratios of the
numbers of thick cloud and thin cloud to total pixels, respectively.

Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 17 

 

instance of cloud detection is shown in Figure 6e. Moreover, the sun parameter (SP) proposed by 
Pfiste et al. [16] was introduced to correct the type of the pixels around the sun. SP is a dynamic single 
threshold defined as the RBR average of the pixels around the sun (Figure. 4a, −35° < SPA <35°). If the 
sun is obscured by thick cloud (Figure 6a), RBR of the pixels around the sun are usually smaller than 
that of the clear day, leading to misidentification as clear sky (Figure 6e). Consequently, when the 
RBR of the pixel around the sun was larger than the SP, the pixel was re-recognized as thick cloud 
(Figure 6f). Finally, the cloud fraction of thick cloud (𝑓 ) and thin cloud (𝑓 ) are the ratios of the 
numbers of thick cloud and thin cloud to total pixels, respectively. 

 

Figure 5. Probability distribution of three types of pixel RBR difference on sample images. 

 
Figure 6. Process of cloud detection (a) image at 15:10 on May 7,2015 at SZA = 58°, SAA = 239°(solar 
azimuth). (b) RBR image. (c) The background RBR image at 15:13 on 7 May 7 at SZA = 58°, SAA = 
239°. (d) RBR difference of (b) and (c). (e) Output of cloud detection. (f) Cloud map corrected by SP 
(sun parameter) (SP = 0.78), white: thick cloud, gray: thin cloud, blue: clear sky. 

3.2. Cloud Velocity and Cloud Map Forecasting 

Forecasting of the cloud map is a prerequisite for estimating solar irradiance with total sky 
images. The MATLAB-based algorithm “mpiv (particle image velocimetry)” developed by Mori and 
Chang was applied to the two consecutive images for estimating the translational speed of the cloud 
[46]. The algorithm has been successfully applied to cloud velocity estimation in solar irradiance 
forecasting with all-sky images, infrared images and satellite images [32,47,48]. To avoid errors 
caused by cloud detection, the red channel of the raw images was extracted to calculate cloud speed 
because “mpiv” can only be used for two-dimensional images, and the red channel of the image has 

(a)

 

 (b)

0

0.2

0.4

0.6

0.8

1

 

 (c)

0

0.2

0.4

0.6

0.8

1

 (d)

0.1

0.2

0.3

0.4

0.5

0.6 (e) (f)

Figure 5. Probability distribution of three types of pixel RBR difference on sample images.

Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 17 

 

instance of cloud detection is shown in Figure 6e. Moreover, the sun parameter (SP) proposed by 
Pfiste et al. [16] was introduced to correct the type of the pixels around the sun. SP is a dynamic single 
threshold defined as the RBR average of the pixels around the sun (Figure. 4a, −35° < SPA <35°). If the 
sun is obscured by thick cloud (Figure 6a), RBR of the pixels around the sun are usually smaller than 
that of the clear day, leading to misidentification as clear sky (Figure 6e). Consequently, when the 
RBR of the pixel around the sun was larger than the SP, the pixel was re-recognized as thick cloud 
(Figure 6f). Finally, the cloud fraction of thick cloud (𝑓 ) and thin cloud (𝑓 ) are the ratios of the 
numbers of thick cloud and thin cloud to total pixels, respectively. 

 

Figure 5. Probability distribution of three types of pixel RBR difference on sample images. 

 
Figure 6. Process of cloud detection (a) image at 15:10 on May 7,2015 at SZA = 58°, SAA = 239°(solar 
azimuth). (b) RBR image. (c) The background RBR image at 15:13 on 7 May 7 at SZA = 58°, SAA = 
239°. (d) RBR difference of (b) and (c). (e) Output of cloud detection. (f) Cloud map corrected by SP 
(sun parameter) (SP = 0.78), white: thick cloud, gray: thin cloud, blue: clear sky. 

3.2. Cloud Velocity and Cloud Map Forecasting 

Forecasting of the cloud map is a prerequisite for estimating solar irradiance with total sky 
images. The MATLAB-based algorithm “mpiv (particle image velocimetry)” developed by Mori and 
Chang was applied to the two consecutive images for estimating the translational speed of the cloud 
[46]. The algorithm has been successfully applied to cloud velocity estimation in solar irradiance 
forecasting with all-sky images, infrared images and satellite images [32,47,48]. To avoid errors 
caused by cloud detection, the red channel of the raw images was extracted to calculate cloud speed 
because “mpiv” can only be used for two-dimensional images, and the red channel of the image has 

(a)

 

 (b)

0

0.2

0.4

0.6

0.8

1

 

 (c)

0

0.2

0.4

0.6

0.8

1

 (d)

0.1

0.2

0.3

0.4

0.5

0.6 (e) (f)
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(solar azimuth). (b) RBR image. (c) The background RBR image at 15:13 on 7 May 7 at SZA = 58◦,
SAA = 239◦. (d) RBR difference of (b,c). (e) Output of cloud detection. (f) Cloud map corrected by SP
(sun parameter) (SP = 0.78), white: thick cloud, gray: thin cloud, blue: clear sky.

3.2. Cloud Velocity and Cloud Map Forecasting

Forecasting of the cloud map is a prerequisite for estimating solar irradiance with total sky images.
The MATLAB-based algorithm “mpiv (particle image velocimetry)” developed by Mori and Chang
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was applied to the two consecutive images for estimating the translational speed of the cloud [46].
The algorithm has been successfully applied to cloud velocity estimation in solar irradiance forecasting
with all-sky images, infrared images and satellite images [32,47,48]. To avoid errors caused by cloud
detection, the red channel of the raw images was extracted to calculate cloud speed because “mpiv”
can only be used for two-dimensional images, and the red channel of the image has higher contrast to
clear sky and cloud than the blue and green channels. The interval of the two consecutive images was
1 min, and the search sub-window was defined as an area of 32 × 32 pixels. Two iterative recursive
checks were performed using the MQD (Minimum Quadric Differences) algorithm to calculate the
velocity vector field. Median filtering was used to remove discrete error vectors, and finally linear
interpolation was used to correct the error vectors.

The cloud velocities were assumed to have the same direction and magnitude due to the limited
sight of the TSI. For the clear sky area, the calculated velocities are usually zero or close to zero.
Therefore, the calculated velocity vector fields were divided into two categories with the K-means
algorithm and the larger value of cluster centers was selected as the representative velocity vector of
the cloud. The red and blue scatters represent the velocity fields of the cloud and clear sky, respectively,
and the black cross indicates the cluster center in Figure 7. The velocity vector of the cloud was u = 10.3,
v = 7.9 (pixels/min); u and v represent the velocity of the horizontal and vertical direction, respectively.
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Figure 7. Determination of representative velocity vector.

To obtain the forecasted cloud map, the retrieved cloud map was advected to the future with the
representative velocity vector. However, the information at the boundary of images is likely to be
unpredictable due to the limited observation view of TSI. Here, the boundary of the forecasted cloud
map was filled with the boundary information of the image 1 min ago. From Figure 8, we found that
the pixels at the edge were more error-forecasted because these areas use the boundary information of
the previous moment, and the pixels of thin clouds are also more error-forecasted because the thin
clouds are difficult to be accurately detected in the raw image, especially in the area around the sun.
The pixels of clear sky are likely to be detected as thin clouds due to the forward scattering of aerosols
and haze. Therefore, the accuracy of cloud forecasting is limited by the TSI observation view and cloud
detection errors.
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Figure 8. Cloud map forecast and matching error: the forecast cloud map at T + t (c) is produced
by advecting the cloud map at time T (b) in the direction of the motion vector computed from (a)
(T − 1) and (b) (T). To determine the forecast error (f), the future binary cloud map at time T + t (e)
is compared to the forecast binary cloud map (d). Red and green colors in (f) show forecast errors
(red: pixel forecast cloudy but actually clear; green: pixel forecast clear but actually cloudy) and white
indicates accurate forecasts.

3.3. The Clear Sky Model and Clear Sky Index

Extraterrestrial solar radiation received by the upper boundary of the atmospheric layer
changes with the Earth–Sun distance. For the observation site located at latitude ϕ and longitude λ,
the extraterrestrial irradiance (Iets) at a certain moment can be calculated by the solar constant and the
position of the sun at the moment:

Iets = Sc(1 + 0.033× cos(
360
365
× d)) cosθ (3)

Sc is the solar constant (1367 W/m2) [49], d is the DOY (day of year) of the year, 1 January is 1 and
31 December is 365.

Diurnal variation of Iets is a cosine function of the zenithal angle [50]. The GHI exhibits uniform
attenuation of Iets under conditions of clear sky, while it shows random and irregular fluctuations under
conditions of broken sky with active clouds. Consequently, many irradiance forecasting models were
developed from clear-sky radiation models. The existing clear-sky models such as Solis, Kasten and
Ineichen typically developed from atmospheric radiative transfer models can simulate the GHI well,
but usually require additional meteorological factors such as aerosol optical depth, ozone content,
water vapor content and turbidity [51]. In this study, the clear-sky model was established between the
Iets and the GHI of clear days during the observation though the least square method.

Iclk =
2∑

n=0

an(Iets)
n, an = {−0.00000476, 0.8123113,−35.9099519} (4)

where Iclk is the GHI under clear sky, an are fitting coefficients.
The three-dimensional radiation transmission process in the clouds and the cloud radiative effect

of clouds are very complicated; it is difficult to quantify the forcing effect of clouds on radiation.
The variation of GHI is assumed to be caused by changes in cloud fraction and type (thick cloud and
thin cloud) due to the small observation scope. The clear sky index, defined as the ratio of GHI to
Iets, is used to reflect the attenuation degree of entire atmosphere to Iets. Whereas in the studies of
radiation forecasting, the clear sky index (kt) is usually defined as the ratio of GHI to clear sky GHI [31],
meaning that only the effect of the cloud is considered while the influence of other radiative forcing
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factors, including atmospheric molecules and aerosols, is excluded. Additionally, the attenuation
degree of radiation by clouds with different optical thicknesses varies considerably. Thick clouds with
low-altitude can reduce DNI to almost zero in a few seconds [33], while thin clouds with high-altitude
may reduce GHI by 10% [14,52]. Hence, we established GHI estimation models based on the principle
of the attenuation degree of cloud to irradiance varying with the distribution proportions of the
different types of sky (thick cloud, thin cloud, and clear).

3.4. Forecasting of GHI

3.4.1. Two Forecast Models of GHI

Based on the retrieved and forecasted cloud fraction and clear sky index, the two rolling forecasting
models of GHI using ternary linear regression (TLR) and BP neural network were established.
Rolling forecasting refers to training the previous model with n values observed from time t-n to t,
and the model is used for the forecasting of future time.

The TLR model constructed the relationships of kt and cloud fraction as shown in Formula (5),
describing the attenuation proportion of three sky types (thick cloud, thin cloud and clear sky) 5 min
before forecast time, for correcting the clear sky index dynamically.

kt(t−5_t) = a(t−5_t) + b1(t−5_t) fthick(t−5_t) + b2(t−5_t) fthin(t−5_t) + b3(t−5_t) fclear(t−5_t) (5)

where fthick, fthin, fclear are the fractions of thick cloud, thin cloud and clear sky. The subscript t− 5_t
indicates 5 min from t − 5 to t.

The regression coefficients obtained by formula 5 combined with forecasted cloud fraction were
applied to estimate the kt and GHI of the short-term future.

kt(t+∆t) = a(t−5_t) + b1(t−5_t) fthick(t+∆t) + b2(t−5_t) fthin(t+∆t) + b3(t−5_t) fclear(t+∆t) (6)

It+∆t = Iclk(t+∆t) × kt(t+∆t) (7)

where, ∆t represents the forecasting time scale (taken as 0~5 min in this paper). The subscript t + ∆t
represents the forecasting time.

The BP (Back Propagation) neural network is a multi-layer feed-forward neural network trained
by an error back-propagation algorithm which can obtain complex non-linear processing capability
through complex mapping of simple non-linear processing elements. Its basic principle is to use the
gradient descent method to minimize the mean square error between the actual output and the expected
output of the network. It consists of the input layer, the hidden layer, and the output layer. The hidden
layer consists of several neural units and each neural unit has a randomly assigned threshold and
assigns a weight to the input layer and output layer. The calculation process includes the forward
propagation of the signal and the backward propagation of the error. The error output is calculated in
the direction from input to output, and the weight and threshold are adjusted in the direction from
output to input. In this paper, a BP neural network is used to establish a ultra-short-term GHI forecast
model. The training process of the prediction model is simply expressed as Equation (10):

(ANNu(L, N), I, T)
training
−−−−−−→ ANNB (8)

ANNu is an untrained BP neural network, L is the number of hidden layers, N is the number of
neurons in each hidden layer. I represents inputs including fthick(t−10_t), fthin(t−10_t), Iets, and Iclk, and T
represents the target. ANNB is the trained BP neural network. The forecasting model is given by:

Î(t + ∆t) = ANNB(In(t)) (9)

where In represents new inputs that do not contain the samples involved in training.
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Forecasting accuracy and operating efficiency are important indicators for evaluating the
performance of the ultra-short-term forecasting model due to the demand of online rolling learning.
This paper selected 3, 20, and 10 for L, N and the number of samples, respectively, by training the N, L,
the number of iterations and sample error and considering the accuracy of forecasting results and the
efficiency of running time.

3.4.2. Evaluation of Forecast Models

Pearson correlation coefficient (R) given by formula 10 is used to evaluate the correlation between
the forecasted and measured GHI:

R =

∑N
n=1

(
Ifh − Ifh

)(
Iobs − Iobs

)
√∑N

n=1

(
Ifh − Ifh

)2
√∑N

n=1

(
Iobs − Iobs

)2
(10)

RMSE (Root Mean Square Error) and rRMSE (relative RMSE) are used to indicate the deviation degree
of the predicted and measured irradiance, and smaller values for RMSE and rRMSE indicate higher
forecasting accuracy and smaller deviation between the forecasted and observed GHI.

RMSE =

√√√
1
N

N∑
n=1

(Ifh − Iobs)
2 (11)

rRMSE =

√√√
1
N

N∑
n=1

(Ifh − Iobs)
2
×

100

Iobs
(12)

MAE (Mean Absolute Error) is the average of absolute error of the predicted and measured GHI,
which can better reflect the prediction error. MAE and rMAE (relative Mean Absolute Error) can be
defined by:

MAE =
1
N

N∑
n=1

(|Ifh − Iobs|) (13)

rMAE =
1
N

N∑
n=1

(|Ifh − Iobs|) ×
100

Iobs
(14)

MBE (Mean Bias Error) is the average value of the predicted and measured GHI errors; MBE and rMBE
(relative Mean Bias Error) are given by:

MBE =
1
N

N∑
n=1

(Ifh − Iobs) (15)

rMBE =
1
N

N∑
n=1

(Ifh − Iobs) ×
100

Iobs
(16)

3.4.3. Results of GHI Forecasting

Clear or overcast days will always result in perfect forecasting, making them unsuitable for
reflecting the ground irradiance response to changes in cloud fraction and evaluating the performance
of forecasting models with the sky imager; hence, these days are eliminated. The 4 representative
days with partial clouds were selected from November 2017, including 5th November, 7th November,
8th November, and 11th November.

Although nowcasting of GHI is not affected by the cloud motion, it can be used as a verification
method for the accuracy of the cloud detection and the significance of the ternary linear regression
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equation. Hence, the nowcasting of GHI obtained from formula 5 was used for verifying the rationality
of the TLR model in this paper. The results of GHI nowcasting for 5 November 2017 and 7 November
2017 are shown in Figure 9a, and Figure 10a showed that the correlation between forecasted GHI
and observed GHI is almost 1, indicating that all the nowcasting GHI can match the observed GHI.
Additionally, from Figures 9 and 10b,c, we also found that the forecasted GHI could adequately match
the randomness and uncertainty of the observed GHI. In other words, the ternary linear regression
equation based on the three different sky types has a significant regression effect, and can consequently
be applied for further forecasting.Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 17 
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The scatter diagrams shown in Figure 11 are the result of GHI forecasting ranging from 1 to 5 min
on 5 November 2017 and the various errors are given in Table 1. The points dispersion increases with
the increase in time scale, with a validation of r = 0.999, 0.983, 0.967, 0.948 for 1 min, 2 min, 3 min,
5 min, respectively. From Table 1, we also found that the forecasting errors increase with the increase
in the forecast time. The various errors during the 4 days were given by Tables 1–4. As expected from
the previous studies, higher lead times resulted in higher errors. The average RMSE of the 4 selected
days for 1 min, 2 min, 3 min, and 5 min forecasting are 39.89 W/m2, 59.02 W/m2, 76.64 W/m2 and
103.08 W/m2; the average rRMSE are 14%, 21%, 27%, 36%, respectively. Bias values (MBE and rMBE)
showed negative values, indicating that more sky clear pixels were incorrectly assigned as cloud.
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Figure 11. Scatter plots of global horizonal irradiance (GHI) forecasting based on ternary linear
regression (TRL) model for 1 min (a), 2 min (b), 3 min (c), 5 min (d) on 5 November 2017.

By taking the neural network dynamic rolling learning method, the comparisons between the
forecasted and measured GHI on 5 November and 11 November 2017 are given by Figures 12
and 13. The points with larger deviation correspond to the moment when the radiation changes
sharply. Bias values (MBE and rMBE) also showing negative values may be related to excessive
boundary clouds.

The comparisons of forecasting errors for the 4 days are shown in Tables 1–4. The 4-day average
error is shown in Table 5. It is obvious that the errors of RMSE, MAE and MBE of the two kinds of
forecasting all increase with the increase in lead time, and the correlation coefficient decreases with the
increase in lead time.
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5 min (d) on 11 November 2017.

Although the cloud fraction and clear sky index satisfy the multiple linear regression relation in
a short time (several minutes), when using this linear relation to statistically extrapolate the future
irradiance, the forecast performance is not as good as the neural network forecast model and the error
is larger. The reason for this is that, under broken sky conditions with rapid changes of cloud fraction
and speed, the nonlinear BPN-based model can reflect these changes more effectively. This is because
neural networks have the ability to learn and can handle complex non-linear problems.
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Table 1. Forecasting error comparison between the ternary linear regression (TRL) model and the back
propagation neural network (BPN) model on 5 November 2017, RMSE: root mean square error, MAE:
mean absolute error, MBE: mean bias error; rRMSE: relative root mean square error, rMAE: relative
mean absolute error, rMBE: relative mean bias error.

Model Time Scale RMSE MAE MBE rRMSE rMAE rMBE R

TLR

0 min 8.593 4.460 0.370 0.038 0.020 0.002 0.998

1 min 46.732 26.479 0.279 0.203 0.115 0.001 0.95

2 min 64.119 38.595 −1.107 0.278 0.167 −0.005 0.91

3 min 83.427 49.840 −4.934 0.347 0.208 −0.021 0.86

5 min 117.063 71.094 −7.650 0.502 0.305 −0.033 0.83

BPN

1 min 16.070 8.649 −0.971 0.069 0.037 −0.004 0.993

2 min 27.431 14.760 −1.206 0.118 0.064 −0.005 0.980

3 min 37.219 21.471 0.017 0.152 0.088 0.000 0.966

5 min 49.500 28.701 −1.932 0.212 0.123 −0.008 0.936

10 min 73.136 46.970 −4.762 0.311 0.200 −0.020 0.864

Table 2. Forecasting error comparison between the linear regression model and the neural network
model on 7 November 2017.

Model Time Scale RMSE MAE MBE rRMSE rMAE rMBE R

TLR

0 min 33.320 15.906 2.411 0.117 0.056 0.008 0.996

1 min 48.784 30.077 1.221 0.169 0.104 0.004 0.931

2 min 65.655 44.577 0.628 0.227 0.154 0.002 0.882

3 min 102.039 68.285 −1.546 0.352 0.236 −0.005 0.757

5 min 124.722 85.332 −3.327 0.429 0.294 −0.011 0.672

BPN

1 min 43.307 26.267 −0.065 0.151 0.092 0.000 0.937

2 min 56.867 36.142 −2.368 0.198 0.126 −0.008 0.893

3 min 81.953 54.740 −0.672 0.286 0.191 −0.002 0.801

5 min 97.350 63.719 4.313 0.338 0.221 0.015 0.742

10 min 124.594 89.594 2.770 0.430 0.309 0.010 0.555

Table 3. Forecasting error comparison between the linear regression model and the neural network
model on 8 November 2017.

Model Time Scale RMSE MAE MBE rRMSE rMAE rMBE R

TLR

0 min 6.562 1.885 −0.076 0.020 0.006 0.000 0.996

1 min 32.690 14.152 0.958 0.096 0.042 0.003 0.931

2 min 54.270 24.522 2.736 0.164 0.074 0.008 0.882

3 min 49.692 24.503 −4.380 0.149 0.074 −0.013 0.757

5 min 58.799 30.687 −6.170 0.176 0.092 −0.018 0.672

BPN

1 min 47.604 27.184 0.368 0.173 0.099 0.001 0.944

2 min 66.083 40.428 −5.953 0.240 0.147 −0.022 0.889

3 min 81.247 52.912 −4.567 0.294 0.192 −0.017 0.841

5 min 98.843 65.099 −2.602 0.357 0.235 −0.009 0.773

10 min 109.479 74.403 −5.503 0.452 0.307 −0.023 0.727
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Table 4. Forecasting error comparison between the linear regression model and the neural network
model on 11 November 2017.

Model Time Scale RMSE MAE MBE rRMSE rMAE rMBE R

TLR

0 min 8.579 2.973 −1.494 0.026 0.009 −0.005 0.999

1 min 31.334 13.912 −4.006 0.092 0.041 −0.012 0.988

2 min 52.052 22.725 −7.152 0.157 0.068 −0.022 0.967

3 min 71.395 31.077 −10.971 0.215 0.093 −0.033 0.941

5 min 111.740 45.512 −21.055 0.335 0.136 −0.063 0.875

BPN

1 min 38.779 18.536 1.195 0.116 0.055 0.004 0.980

2 min 53.112 26.449 0.922 0.158 0.079 0.003 0.963

3 min 55.241 27.653 2.119 0.165 0.083 0.006 0.961

5 min 57.718 30.609 0.817 0.172 0.091 0.002 0.956

10 min 81.365 50.763 1.780 0.321 0.401 0.010 0.895

Table 5. The average forecasting error of 4 days comparison between the linear regression model and
the neural network model.

Model Time Scale RMSE MAE MBE rRMSE rMAE rMBE

TLR

0 min 14.26 6.31 0.30 0.05 0.023 0.001

1 min 39.89 21.16 −0.39 0.14 0.076 −0.001

2 min 59.02 32.60 −1.22 0.21 0.116 −0.004

3 min 76.64 43.43 −5.46 0.27 0.15 −0.018

5 min 103.08 58.16 −9.55 0.36 0.21 −0.031

BPN

1 min 38.78 18.54 1.20 0.12 0.055 0.004

2 min 53.11 26.45 0.92 0.16 0.079 0.003

3 min 55.24 27.65 2.20 0.17 0.083 0.006

5 min 57.72 30.61 0.82 0.17 0.091 0.002

10 min 81.37 50.76 1.78 0.32 0.401 0.010

4. Discussion

The two GHI forecasting models developed in this paper are mainly based on the ground
observational characteristics of clouds from the Dunhuang region of China, considering the attenuation
effect of clouds with different thickness and proportion on GHI. To apply them to other areas,
cloud detection and forecasting technologies are universal and necessary adjustment based on
observations for the clear sky model are needed. Meanwhile, the radiation transmission in cloudy
atmosphere is an extremely complicated process and the interaction mechanism between radiation
and clouds remains poorly understood. In fact, clouds with different heights have diverse attenuation
effects on radiation. However, cloud base height is not available for a single TSI site. Unified processing
of clouds of different heights is likely to increase the error of forecasting.

Moreover, in this study, the temporal–spatial range is limited by the observation range of the
ground sky imager. The boundary information of forecasted cloud images comes from the original
images and cannot represent the sky situation in the future. When the clouds move fast, the forecasting
error of the cloud image increases and the forecasting time scale reduces.

Overall, the average rRMSE of the 4 selected days ranged from 5% to 36% based on the TLR model
and ranged from 12% to 32% based on the BPN model. In the previous study, the forecasting with four
all-sky cameras, which were claimed to be state of the art, reduced the rRMSE of GHI from 30.9% to
23.5% [11]; however, the computational efficiency and cost were also much higher.

Dunhuang is located in northwestern China; the weather in winter is usually dry. There is almost
no typical synoptic process during the observation period, broken days are few and the optical thickness
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of cloud is small. On the one hand, thin high-altitude cloud is hard to be accurately detected in the sky
images, and the error of cloud detection and retrieval limited the accuracy of irradiance forecasting.
On the other hand, thin clouds are prone to move and dissipate quickly, making forecasting more
difficult and the time scale smaller.

In view of the shortcomings in the current work, the prospects for future work are proposed:
The localized network of TSI observation will be deployed to retrieve the cloud base height and extract
the cloud information and join the multiple images from different sites at the same time, achieving the
monitoring of cloud motion in a larger area and improving spatial-temporal scale and accuracy of
refined forecasting of solar radiation.

5. Conclusions

Two rolling forecasting models of GHI were established in this study based on the observation
of a TSI and radiometer at a PV plant in Dunhuang, China. The main technical work included cloud
detection and forecasting. To our knowledge, this is first time that such models have been developed
and compared. Although the complicated effect of clouds on radiation is simplified in the models,
especially in the TLR model, by including the objective observational characteristics of clouds into
the surface radiation based on clear sky radiation, we simulated the GHI under the partly cloudy
sky conditions. The two models allow us to effectively model the decreasing or increasing trend and
degree of local GHI from the deployment of the ground observation of clouds; this is of significant
relevance to the scheduling, dispatching and regulation of PV plants’ power.

For cloud detection, the area around the sun and near-horizontal area are difficult to distinguish
accurately; the error of thin cloud, especially in the areas around the sun and the shading areas,
is greater than thick cloud. The threshold of clear sky and thick cloud is 0.067 and 0.225, respectively,
in this study.

The accuracy of cloud map prediction is limited by the accuracy of cloud recognition. Because of
the limited view of TSI, there will be clouds moving outside of the image, causing errors in the forecasted
cloud map, through advection transport, to increase with the increase in lead time, and causing the
average rRMSE of the 4 selected days to range from 5% to 36% based on the TLR model and from 12%
to 32% based on the BPN model.
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