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Abstract: The optimization of forest management in roadsides is a necessary task in terms of
wildfire prevention in order to mitigate their effects. Forest fire risk assessment identifies high-risk
locations, while providing a decision-making support about vegetation management for firefighting.
In this study, nine relevant parameters: elevation, slope, aspect, road distance, settlement distance,
fuel model types, normalized difference vegetation index (NDVI), fire weather index (FWI), and
historical fire regimes, were considered as indicators of the likelihood of a forest fire occurrence.
The parameters were grouped in five categories: topography, vegetation, FWI, historical fire regimes,
and anthropogenic issues. This paper presents a novel approach to forest fire risk mapping the
classification of vegetation in fuel model types based on the analysis of light detection and ranging
(LiDAR) was incorporated. The criteria weights that lead to fire risk were computed by the analytic
hierarchy process (AHP) and applied to two datasets located in NW Spain. Results show that
approximately 50% of the study area A and 65% of the study area B are characterized as a 3-moderate
fire risk zone. The methodology presented in this study will allow road managers to determine
appropriate vegetation measures with regards to fire risk. The automation of this methodology is
transferable to other regions for forest prevention planning and fire mitigation.

Keywords: fire risk parameters; forest fire risk map; forest management; spatial analysis; LiDAR
data; multi-criteria decision analysis (MCDA)

1. Introduction

One major environmental concern is the occurrence of forest fires, that affect forest preservation,
create economic and ecological damage, and cause human suffering. Spain is among the top five
European countries with the highest number of wildfires. In the NW region of Galicia, forest fires are
one of the natural hazards. In 2019, 1676 forest fires were registered in the Galician region, covering
13.691 ha [1].

Human caused fires are initiated by accidents, negligence, or arson. Road access is a significant
contributing factor in the occurrence of human caused ignitions [2]. The 70% of forest fires occur close
to main roads, at a distance of less than 500 m [3]. The increased ignition risk related to increasing
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housing and road density may be additionally modulated by the vegetation types crossed by roads [2].
Road managers have the knowledge to control roadside vegetation through preventive operations
including herb mowing, applying herbicide products, clearing, or pruning vegetation. The assessment
of the ignition potential of roadside vegetation plays a cornerstone role in prevention management.
The best method to mitigate the likelihood of fire ignition is decreasing the roadside flammability [4].
The current law regarding forest firefighting in Galicia [5] establishes a forest-to-road distance threshold
between 4 and 10 m, depending on tree species and road class. Targeting fuel treatments and locating
resources to areas where fire ignitions are predicted to occur may be effective in improving the
probability in the fire containment [6].

Fire risk could be defined as the probability of a forest fire occurring as well as the potential damage
it could cause in a given place (vulnerability) [7]. The susceptibility mapping or spatial fire prediction
consists of locating where a forest fire will likely occur [8]. Further, the current technology applied
in the control of such natural events has three component categories: predicting, monitoring and
prevention [9]. Therefore, fire risk mapping is essential to plan the maintenance actions on vegetation.

Regarding the scale, there are studies of long-term, short-term, or in real-time. Considering spatial
scales there are global, regional, or local studies. Long-term risk is linked to features of a territory
that do not vary periodically (topography or vegetation types) and it is more suitable to improve
overall forest management planning [10]. On the other hand, short-term risk is linked to changeable
factors (vegetation stress or climate conditions) and is updated using a time scale that can eventually
be daily or hourly, with mainly operative usefulness [11]. From a geographic point of view, global
wildfires are linked to long-term approaches [12]. Regional risk mapping is especially suitable for
national and regional orientation of environment, such as forest polices and legislation [13]. Local risk
maps are refereed to extensions below those aforementioned which are especially to be included in
land management, wildfire risk communication, and emergency planning, at the municipal or local
community level [14].

Fire occurrence, frequency, and intensity primarily depend on weather conditions and vegetation
fuel load, which contribute to ignition of and to sustaining fire, respectively [15]. Identification of
the greatest influence variables on fire occurrence is essential for modeling fire risk [16]. The main
factors which contribute to fire ignition and propagation are topography (elevation, slope and aspect),
vegetation, weather, and human factors [17]. Several common variables, slope, aspect, elevation,
distance from road, distance from settlement, and land use cover are used to generate forest fire risk
maps [7,18–22]. There are studies which include other parameters such as normalized difference
vegetation index (NDVI) and climate parameters (annual air temperature, annual precipitation, and
wind speed) [23]. On the other hand, there are several studies which include the fire weather index
(FWI) [24] or fire historic to map forest fire risk areas [25] and have pointed-out the suitability of the
FWI as a fire danger indicator for different Mediterranean climates and forest types [26,27].

Remote sensing technologies is a frequently used method to assess vegetation conditions. LiDAR
(light detection and ranging) is an active remote sensing technology that can accurately measure
three-dimensional vegetation structure over large areas efficiently, in comparison to other traditional
methodologies. The use of LiDAR data to map fuel types is subject of current research [28,29]. Having
up to date and accurate fuel type maps is fundamental to properly manage wildland fire risk areas [30].
Thus, the integration of this parameter in forest fire risk maps is an innovative and interesting aspect
which provides significant fuel information.

Many studies have been executed to produce forest fire maps using geographic information
systems (GIS) and remote sensing (RS) techniques [22,31–34].

Several techniques are used in the forest fire risk maps generation, such as knowledge-based
methods in combination with GIS [21,23,35–37], logistic regression [38], analytic hierarchy process
(AHP) [39–41], fuzzy logic [42], goal programming (GP) and analytical network process [43], artificial
neural networks (ANN) [44], and random forest [45].
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Capabilities of GIS and multi criteria decision analysis (MCDA) have been combined to solve a
wide range of spatial problems [46,47]. The integration of MCDAs with the capabilities of GIS provides
a smart spatial modelling methodology for identifying the relative significance of indicators. The AHP
method approaches decision-making by arranging the important components of a problem into a
hierarchical structure like a family tree. The AHP method reduces complex decisions into a series of
simple comparisons, called pairwise comparison, between elements of the decision hierarchy [17].

In general, expert knowledge plays a fundamental role in fire risk modelling. In this context, the
criteria weights determined by AHP and GIS software are used as a support to determine the fire
risk areas. Furthermore, the opinion of five experts were considered to derive criteria weights who
collaborate in the present research. The purpose of this study is to define and implement a forest fire
risk assessment for fire risk mapping, by combining several attributes. The vegetation management
could be optimized by development of fire risk maps around roads.

The specific objectives of this study are to:

• Investigate and determine the main factors affecting fire risk in the study area.
• Determine the weight for each factor influencing forest fire risk.
• Improve existing information about the generation of fuel and flammability models by LiDAR

data analysis, generate vegetation continuity covers, and apply forest fire risk weather index
based on the weather conditions in the area.

• Develop a methodology to automatically calculate main factors involved in forest fire risk map.
• Report on fire risks obtained and establish the recommendations to road managers focusing on

mitigation measures or actions.

2. Materials and Methods

2.1. Area of Study

In this study two pilot areas were analyzed to generate risk maps around two different types of
road. The study areas are located in the Northwest Spain: one in the region of Lobios which is referred
to as study area A, and the second in the region of Celanova which is known as study area B.

Ourense province is in the south-central part of Galician region, at 128 m in average above sea
level. The climatic type is sub-Mediterranean oceanic temperate, so vegetation is adapted to dry
periods. The average temperature is 14.5 ◦C and the precipitation is about 912 mm per year, July being
the warmest and driest month in contrast to December and January.

Study area A is located around OU-312 road, two-way tertiary road located in Lobios municipality
(Figure 1). It belongs to the Natural Park of Baixa Limia-Serra do Xurés, where flora is characterized by
a deciduous forest, the main species being Quercus pyrenaica, Betula alba, Quercus suber, Arbutus unedo,
Sorbus aucuparia, and Ilex aquifolium.

Study area B is in the municipality of Celanova (Figure 1). The study of this area focuses on
the AG-31 motorway which is a high capacity road with 18.7 km long and two 3.5-m wide lanes in
each direction.

2.2. Materials

2.2.1. Satellite Imagery

The images used in this study came from the Sentinel 2 mission, that is part of the Copernicus
program by the European Commission in partnership with European Space Agency (ESA). The
Copernicus Sentinel-2 mission consists of two satellites flying in the same orbit but phased at 180◦,
resulting in a revisiting frequency of 5 days. Satellite images were downloaded from the Copernicus
Open Hub with a L2A processing level, that includes geometric and radiometric correction. The selected
20-m resolution images were recorded on 23 August 2019. Particularly, bands 4 (central wavelength
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665 nm) and 8A (central wavelength 865 nm) were used in this methodology because these are the
bands needed in the NDVI calculation [48].Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 21 
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Figure 1. (a) Location of both study areas in Ourense province; (b) location of Ourense province on the
Spain map; (c) location of study area A in Lobios municipality; (d) location of study area B in Celanova
municipality. The map coordinate system is EPSG:25829 ETRS89/UTM zone 29N.

2.2.2. Aerial LiDAR Data

The experimental data for this work were collected using a Phoenix system [49], which is based on
a Velodyne LiDAR model, the Alpha AL3-32. It shows survey-grade centimetric accuracy and intensity
calibration. Their 32 lasers emit 700,000 pulses per second and record up to two returns per pulse. The
system includes a global navigation satellite system (GNSS) that provides real-time kinematics and
post-processing options with an accuracy specification up to 1 cm in horizontal and 2.5 cm in vertical
positioning. The raw point clouds were collected on 15 August 2019 and contain 18,000,000 points in
study area A and 63,126,000 points in study area B, with a density of 350 points/m2 and an average
point spacing of 0.05 m.

2.3. Methodology

The overall methodology adopted to achieve the objective of this study is illustrated in Figure 2.
QGIS software [50] and Python language were used for data processing. First, layers for each factor
were created by each parameter evaluation and a criterion was defined to classify each layer into a
hazard index from 1 to 5, being 1-very low, 2-low, 3-moderate, 4-high, and 5-very high. Once thematic
layers were created, analytic hierarchy process (AHP) was computed to define the influence of each
variable in the final risk map.

In this study nine relevant parameters categorized in five groups were considered in the forest
fire risk map which are detailed below.
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2.3.1. Topography

Morphometric properties (elevation, slope, and aspect) were derived from a 2-m resolution
Digital Terrain Model (DTM) available from the official Spanish National Centre for Geographical
Information (CNIG) [51] using the topographic analysis (GDAL) library in QGIS software (Figure 3).
The orthometric DTM heights were previously transformed to match point cloud ellipsoidal heights by
adding the Geoid model used in Spain (“EGM2008-REDNAP”) as shown in Figure 4.Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 21 

 

 

Figure 3. Slope and aspect maps. (a) Slope map of study area A; (b) aspect map of study area A; (c) 
slope map of study area B; (d) aspect map of study area B. The map coordinate system is EPSG:25829 
ETRS89/UTM zone 29N. 

 

Figure 4. DTM maps. (a) DTM map of study area A in Lobios municipality; (b) DTM map of study 
area B in Celanova municipality. Legend indicates height in meters. The map coordinate system is 
EPSG:25829 ETRS89/UTM zone 29N. 

  

Figure 3. Slope and aspect maps. (a) Slope map of study area A; (b) aspect map of study area A; (c)
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ETRS89/UTM zone 29N.
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Figure 4. DTM maps. (a) DTM map of study area A in Lobios municipality; (b) DTM map of study
area B in Celanova municipality. Legend indicates height in meters. The map coordinate system is
EPSG:25829 ETRS89/UTM zone 29N.

2.3.2. Vegetation

The goal of the classification of the structure is to divide the vegetation in three major groups
(grass, shrubs, and trees) following the Prometheus system [52] that adapts NFFL (Northern Forest
Fire Laboratory) classification [53] to the Mediterranean conditions (Table 1).

Table 1. Description of the seven models of Prometheus classification for vegetation.

Fuel Model Type Presence (%) Height (m)

Fuel model 1 >60% grass ≤0.4 m
Fuel model 2 >60% shrubs and ≤50% trees ≤0.6 m
Fuel model 3 >60% shrubs and ≤50% trees ≤2.0 m
Fuel model 4 >60% shrubs and ≤50% trees ≤4.0 m
Fuel model 5 ≤30% shrubs and >50% trees ≤4.0 m
Fuel model 6 >30% shrubs and >50% trees (h shrubs—h trees) >0.5m
Fuel model 7 >30% shrubs and >50% trees (h shrubs—h trees) ≤0.5m

Point cloud data preprocessing starts with a cleaning filter to remove noise points. The filter used
was the Radius Outlier Removal filter (ROR) due to its good results compared to other filters [54].

After noise filtering, points were organized in a 20 m grid and segmented into two main groups:
ground and vegetation points, following the methodology presented in previous studies [55]. Vegetation
points were filtered to obtain the objective categories: grass (points with heights lower than 0.4 m),
shrubs (points with heights between 0.4 and 4 m), and trees (points with heights higher than 4 m) [56].
Finally, each 20 m cell was labelled with the corresponding fuel type in Table 1 according to their
spatial distribution and height.

Regarding vegetation condition, the NDVI index [57] was computed using L2A Sentinel-2 imagery
with a 20 m spatial resolution using Equation (1), where Near Infrared Reflectance (NIR) corresponds
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to the reflectance of band 8A and RED corresponds to the reflectance of band 4. NDVI values range
between −1.0 and +1.0. Figure 5 shows the classification of vegetation points in fuel types.

NDVI =
(NIR−RED)

(NIR + RED)
(1)

where NDVI is normalized difference vegetation index, NIR is near infrared band, and RED is visible
infrared band.Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 21 
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2.3.3. Fire Weather Index

The FWI system is one of the components of the Canadian Forest Fire Danger Rating System
(CFFDRS) [58] and was adopted by the European Forest Fire Information System (EFFIS) as a
harmonized European level fire danger assessment.

In this work, FWI was used to rate the fire danger, that accounts for the effects of fuel moisture
and wind on fire behavior and was computed making use of three major components consisting of Fire
Weather Observations, Fuel Moisture Codes, and the Fire Behavior Indices.

The Fire Weather Observations consist of temperature (◦C), wind direction (◦), wind speed (km/h),
relative humidity (%), absolute pressure (hPa), and instantaneous rainfall (mm) data at 15:00 UTC+00,
and the accumulated precipitation in the previous 24 h. Data was gathered from six stations at distances
lower than 30 km belonging to Meteogalicia, the meteorological service of the Regional Ministry of the
Environment of Xunta de Galicia [59].

The meteorological data was interpolated using a Thin Plate Splines (TPS). The goal of this
interpolator is to generate a minimum-curvature continuous surface defined by Equation (2)

Etps =
1
n

∑n

i=1
(z(xi) − f(xi))

2 + λJ(f) (2)

where Etps is the smoothing interpolant, J(f) is the surface, z(xi) are observation values in a set of
measurement points xi, f(xi) is a spline piecewise function, and λ is a smoothing parameter.
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The resulting layer is a 500 m resolution raster containing hourly data for each of the weather
variables. These layers are input to the fuel moisture codes and fire indices to provide the FWI, that
were implemented using Python. To obtain consistent values, the codes consider a period of 60 days
before the date target, in our case, 14 and 15 of August 2019.

2.3.4. Anthropogenic Issues

Human activities are strongly associated with the occurrence of forest fire and, thus, the
proximity to urban areas and roads should be considered fundamental for forest fire risk mapping [60].
Anthropogenic parameters have been used in other studies [18,22,23].

Roads and settlement vectors data were gathered from the CNIG [51] and by a buffer tool in
QGIS. It covers 300, 600, 900, 1200, and >1200 m for roads and 500, 1000, 1500, 2000, and >2000 m for
settlements. The next step was to clip and rating layers with each intersection from 1 (very low) to 5
(very high). The output layer has 2 m of spatial resolution. Figure 6 shows settlements buffer layers
result, as this study focuses on roads so are obviously within the 300 m of road buffer.
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2.3.5. Historical Fire Regimes

The historical fires layer was obtained by combining Fire Recurrence (FR) and Time Since Fire
(TSF) [61], input gathered from a public database [62] containing the burned areas from year 2001
to 2017. TSF information was classified into values ranging from 1-very low (2001–2004); 2-low
(2005–2007); 3-moderate (2008–2011); 4-high (2012–2015); 5-very high (2016 and 2017). Null values were
result of the raster generation which pixels without forest fire record obtained a zero-value assignment.
Then FR and TSF were combined using a merge tool in QGIS to obtain the historical fire layer, shown
in Figure 7.

2.4. Classification

Once the layer variables were obtained, the next step was the assignment of values from 1 to 5,
1 being the lowest fire risk and 5 the highest one. The weights assignment was carried out to each
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parameter according their influence on fire risk [20,22,23,40,63,64]. However, historical fires and fuel
model types parameters were classified by development of an own methodology.Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 21 

 

 

Figure 7. Map of the registered forest fires classified in the Lobios municipality. The map coordinate 
system is EPSG:25829 ETRS89/UTM zone 29N. 

2.4. Classification 

Once the layer variables were obtained, the next step was the assignment of values from 1 to 5, 
1 being the lowest fire risk and 5 the highest one. The weights assignment was carried out to each 
parameter according their influence on fire risk [20,22,23,40,63,64]. However, historical fires and fuel 
model types parameters were classified by development of an own methodology. 

Fuel parameters were considered fuel model types 4 and 7, as the most dangerous regarding a 
forest fire for their height and fuel load. Additionally, fuel model type 1 is considered dangerous 
because it is formed of herbaceous and the flame speed could be fanned and spread quickly. 

Regarding historical fires, pixels classified as very low and low fire risk are characterized for TSF 
greater than 5 years and the fire recurrence is less than three times for 1-very low-grade, while is three 
times for 2-low grade. The 3-moderate fire risk corresponds to pixels where there is an only forest 
fire record in the last five years. The 4-high and 5-very high fire risk grades match with pixels which 
have records of forest fire within the last 5 years and a fire recurrence of two for high classification 
and three for classification as very high. Table 2 shows the different classes in the variables were 
separately based on their sensitivity to forest fire. 
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system is EPSG:25829 ETRS89/UTM zone 29N.

Fuel parameters were considered fuel model types 4 and 7, as the most dangerous regarding
a forest fire for their height and fuel load. Additionally, fuel model type 1 is considered dangerous
because it is formed of herbaceous and the flame speed could be fanned and spread quickly.

Regarding historical fires, pixels classified as very low and low fire risk are characterized for TSF
greater than 5 years and the fire recurrence is less than three times for 1-very low-grade, while is three
times for 2-low grade. The 3-moderate fire risk corresponds to pixels where there is an only forest
fire record in the last five years. The 4-high and 5-very high fire risk grades match with pixels which
have records of forest fire within the last 5 years and a fire recurrence of two for high classification and
three for classification as very high. Table 2 shows the different classes in the variables were separately
based on their sensitivity to forest fire.

2.5. Analytic Hierarchy Process (AHP)

An analytic hierarchy process (AHP) was followed to define the influence of each variable to
output a raster for the fire risk. A precedence weighting was derived and combined to determine the
global ranking score of each relevant criterion [65]. To check the consistency of the decision making
and reduce the bias in the process, a consistency ratio (CR) was obtained with Equations (3) and (4).

CR =
CI
RI

(3)

CI =
λmax− n

n− 1
(4)

where CR is the consistency ratio, CI is the consistency index and RI is the random index in Equation
(3). λmax is the maximum value in the average of dividing the sum of the weights, and n is the number
of criteria. CR values of 0.10 and lower are considered tolerable [66].
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Table 2. Values and relating classes assigned to variables of forest fire risk map.

Variables Classes Values Relating Classes

Topography

Elevation (m)

>800 1 Very low
600–800 2 Low
400–600 3 Moderate
200–400 4 High
≤200 5 Very high

Aspect

South 5 Very high
West 3 Moderate
East 3 Moderate

North 1 Very low
Flat 1 Very low

Northeast 2 Low
Northwest 2 Low
Southeast 4 High
Southwest 5 Very high

Slope (◦)

>35 5 Very high
25–35 4 High
15–25 3 Moderate
5–15 2 Low
≤5 1 Very low

Vegetation

NDVI

>0.67 1 Very low
0.54–0.67 2 Low
0.40–0.54 3 Moderate
0.27–0.40 4 High
≤0.27 5 Very high

Fuel type model

Fuel model 1 3 Moderate
Fuel model 2 1 Very low
Fuel model 3 4 High
Fuel model 4 5 Very high
Fuel model 5 3 Moderate
Fuel model 6 4 High
Fuel model 7 5 Very high

Meteorological FWI

>28 5 Very high
23–28 4 High
13–23 3 Moderate
3–13 2 Low
≤3 1 Very low

Anthropogenic issues

Road distance (m)

>1200 1 Very low
1200 2 Low
900 3 Moderate
600 4 High
300 5 Very high

Settlement distance (m)

>2000 1 Very low
2000 2 Low
1500 3 Moderate
1000 4 High
500 5 Very high

Historical fires Fire regimes (TSF-FR)

Fire regime 1 1 Very Low
Fire regime 2 2 Low
Fire regime 3 3 Moderate
Fire regime 4 4 High
Fire regime 5 5 Very high



Remote Sens. 2020, 12, 3705 11 of 20

3. Results

3.1. Base Layers

As defined in Table 2, base layer classification ranges from 1-very low, 2-low, 3-moderate, 4-high
to 5-very high (value 5). The null values were one of the results obtained in the process of raster
generation and correspond with pixels assignment of zero value which matched with road and
buildings. Elevation parameter ranges from 461 to 582 m above mean see level (MSL) in the study area
A, while in the study area B ranges from 477 to 551 m above MSL. The classified DTM map shows a
3-moderate index for both areas. The study area A presents a maximum slope of 51◦ and 65◦ of slope
in study area B, that corresponds to the embankment roads. Both study areas have a predominant
northeast orientation that receive less hours of sunshine in the energy balance of the year comparing
to the rest of orientations. Figure 8 shows the result of classification for both factors, where we can
highlight a 5-very high value for slope layer in study area A, while study area B exhibits the higher
risk in the edges of the motorway. However, the mean value consists of 3-moderate risk.
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Figure 8. Classification of slope (first row) and aspect maps (second row). (a) Slope map classified of
the study area A; (b) aspect map classified of the study area A; (c) slope map classified of the study area
B; (d) aspect map classified of the study area B. The map coordinate system is EPSG:25829 ETRS89/UTM
zone 29N.

Regarding vegetation characterization and fuel models, the most representative models for study
area A are models 3 and 5, which represent a total of 1.3 ha (42%) and 1.5 ha (48%), respectively. There
is also a presence, but to a lesser extent, of fuels models 4 (0.02 ha) and 6 (0.27 ha). In study area B, fuel
models 3–6 are present, with a total of 4.22 ha (36%), 1.11 ha (9%), 5.04 ha (43%), and 1.30 ha (11%). In
addition, there is a presence of fuel model type 2 (0.01 ha) in the margins of AG-31 motorway. An
important issue to be highlighted is the presence of fuel type 5 very near the roadsides, a focus item
for prevention.

NDVI values range between 0.6 and 0.80 for forest areas and 0.15–0.16 for rocks and low vegetation.
According with NDVI results, the highest fire risk is in the shrub area in study area A. The road
surroundings in study area B includes pixels with a wide range from 1-very low to 5-very high, where
the average value is 2 and mode is 1. Figure 9 shows the results of the fuel model types and NDVI
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layers classification. It is important to highlight that NDVI values for road and building areas were
catalogued as null to avoid overestimation.
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Figure 9. Fuel model (first row) and NDVI (second row) maps classified. (a) Fuel model map classified
of study area A; (b) NDVI map classified of study area A; (c) fuel model map classified of study area
B; (d) NDVI map classified of study area B. The map coordinate system is EPSG:25829 ETRS89/UTM
zone 29N.

Temperature, wind, and moisture conditions for the dates used in the study, 14 and 15 of August,
were not extreme the value of temperature being high (30 ◦C), the wind speed is low (9–11 km/h), and
the relative humidity of combustible does not present a danger value in case of forest fire with a value
between 40% and 50%. Table 3 shows the results of the meteorological raster data obtained in both
study areas and FWI calculated components.

Table 3. Results of the FWI calculated components.

Variables Study Area A Study Area B

Temperature (◦C) 30.3 29.9
Temperature previous day (◦C) 28.2 26.6

Relative humidity (%) 47.0 42.6
Relative humidity previous day (%) 56.4 58.0

Absolute pressure (hPa) 960.4 966.6
Wind speed (km/h) 11.1 9.5
Wind direction (◦) 106.9 139.7

Instantaneous rainfall (mm) 0 0
FFMC 89.09 89.71

ISI 6.58 6.64
DMC 10.03 10.31
DC 21.40 21.33
BUI 9.96 10.22



Remote Sens. 2020, 12, 3705 13 of 20

Meteorologic data is the basis for FWI calculation where the codes provide insightful partial
results. The FFMC value indicates the moisture content in fine fuels, showing an average value of 89, a
high score that exhibits a low ignition probability. This fact is coherent with the average value of 6
for the ISI factor, that indicates a low ignition probability. DMC and DC average values of 10 and 21,
respectively, indicate a low amount of fuel available for combustion. These partial results support a
FWI value of 7.01 for study area A and 7.17 for study area B, ensuing a FWI layer rated with a 2-low
risk factor for both areas.

Regarding the fire historical layers analysis, Table 4 shows the forest fires registered, the burnt
area (ha), and the recurrence years of fires in the Lobios municipality since 2001.

Table 4. Historical records of forest fire from 2001 to 2017 in Lobios municipality.

Fire Year Burnt Area (ha) Recurrence Year

2001 1.717 -
2004 211 -
2005 362 -
2006 116 -
2007 16.04 2001, 2004
2009 292 2001, 2004, 2007
2010 524 2001
2011 3.108 2001, 2005, 2006
2016 1.276 2004
2017 2.672 2001, 2006, 2010, 2011

These fires did not strictly affect study area A, that is catalogued as Null in the map, but it is
crucial to remark the anthropogenic fire risk index due to fire recurrence.

The Celanova municipality located in the study area B only presents a registered forest fire in 2005,
with a total 243 ha burned that occurred far away from the study area B, resulting in a Null classification.

Regarding anthropogenic issues, the study areas are within the first described road buffer of 300 m
and were classified as 5-very high risk. By taking settlements distances into account, study area B is
located within the 500 m buffer while study area A is located within the buffer settlement of 1000 m.
The layers were classified as 5-very high-risk index for the study area B, and a 4-high risk index in the
study area A.

3.2. Forest Fire Risk Mapping

Tables 5 and 6 show the results of the AHP, where Table 5 allocates the results of weighting criteria
factors and Table 6 shows weights of groups. The lowest weight corresponds to the fire historical
variable, while the highest weight corresponds to vegetation parameters.

Table 5. Results of comparison matrix and weights to criteria factors.

Criteria Criteria Wi

Anthropogenic issues Distance from roads Distance from settlements
Distance from roads 1 3 0.750

Distance from settlements 1/3 1 0.250
Criteria: vegetation NDVI Fuel model type Wi

NDVI 1 1/3 0.250
Fuel model type 3 1 0.750

Criteria: topography Aspect Slope Elevation Wi
Aspect 1 2 3 0.539
Slope 1/2 1 2 0.297

Elevation 1/3 1/2 1 0.164
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Table 6. Results of weight calculated for each group.

Vegetation Topography FWI Socioeconomics Fire Historical Wi

Vegetation 1 3 2 2 5 0.359
Topography 1/3 1 1/3 1/3 3 0.108

FWI 1/2 3 1 3 5 0.298
Anthropogenic issues 1/2 3 1/3 1 3 0.180

Fire historical 1/5 1/3 1/5 1/3 1 0.055

The CR of the confusion matrix calculated is 0.080, and thus, the matrix is consistent enough [65].
The weights vector derived from the comparison matrix are used to obtain the equation for the fire risk
as given in Equation (5).

FR = 0.359V × (0.250NDVI + 0.750FMT) + 0.108T × (0.539A + 0.297S + 0.164E) +

0.180AI × (0.750DR + 0.250DS) + 0.298FWI + 0.055FH
(5)

where FR is fire risk, V is vegetation type, NDVI is normalized difference vegetation index, FMT is fuel
model types, T is topography, A is aspect, S is slope, E is elevation, AI is anthropogenic issues, DR is
road distance, DS is distance settlement distance, FWI is fire weather index, and FH is fire historical.

Figure 10 shows the final risk map where each pixel has a value between 1 and 5 according to the
previous classification.Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 21 
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Figure 10. Forest fire risk map. (a) Forest fire risk map of study area A; (b) forest fire risk map of study
area B. The map coordinate system is EPSG:25829 ETRS89/UTM zone 29N.

The forest fire risk map layer was created merging layers of different resolution. Aspect, slope,
elevation, fuel types, distance from roads, and settlement layers have 2 m of resolution, while NDVI
has 20 m and FWI and fire historic layers have 500 m of resolution. The resolution of 2 m was
determined for the output layer. Layers with different resolution were resampled according to the
nearest neighbors algorithm.

The forest fire risk map shows that the vegetation factor played a key role. Slope is an important
factor in forest fire risk being very high in the surroundings of road, which is visible in the study area
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B, with areas classified as high possibility of forest fire with a 4 value. FWI obviously decreases the
susceptibility of forest fire ignition.

The Study area A map resulted in two classes, low and moderate forest fire risk, which represent a
total area of 2.25 and 2.77 ha, respectively. In study area B, forest fire risk map resulted, low, moderate,
and high, which represent a total area of 6.81, 12.96, and 0.23 ha, respectively.

4. Discussion

This study presented a workflow for forest fire risk mapping around roads based on several data
sources. Results show fire key variables and their weight in an AHP decision support system. The
contribution of LiDAR allows the analysis of the vegetation structure and its integration on the forest
fire risk map. The fuel information provides an important weight of 0.750 in the forest fire risk map
calculation. Moreover, this methodology can be applied to other areas with higher dimensions, for
example, when LiDAR data are available in a public spatial data infrastructure (SDI).

Most fire incidents happen in low elevation areas, due to numerous factors such as human
presence, decrease in relative humidity, and the increase in the temperature [63]. Due to this,
topography, anthropogenic, and meteorological parameters are fundamental in the study being the
meteorological parameter considered the most important of the three with a weight of 0.298 and the
topography the lower weight assignment with 0.108. The anthropogenic parameter was considered
more important than topography with an assignment of 0.180.

In residential areas and near roads, more human activities are witnessed, and the human activity
is the most significant factor in the fire outbreak [67]. In this study, anthropogenic parameters have
a value of 0.180, of which road distances has a weight of 0.750, while settlement distances have a
weight of 0.250. The weights indicated that the factor of vegetation group has the highest significance
and affectation. This statement is in accordance with the results achieved by Valdrevu et al. [47] and
Rassoli et al. [63].

In contrast, the historical fires parameter is less important than other factors with a weight
assignment of 0.055. Historical fires were used as fire risk parameter in this study. The study of
Yathish et al. [15] used the fire occurrence layer for calibration and validation, considering land surface
temperature as the only meteorological parameter. In this paper, the FWI integration was investigated
as a parameter in the fire risk mapping which allow detailed information about the moisture effects in
fuel and wind in the behavior of fire being of great importance in the fire risk prevention and providing
more concrete information than meteorological data.

The results of Gigović et al. [40] also showed that land use is an important parameter in forest fire
modelling, which is consistent with the results of our research. The land use parameter is comparable to
the vegetation fuel type parameter used in the present study. However, the results of Gigović et al. [40]
showed the high importance of distance between roads and settlement, which have more importance
than climate, in contrast to the present study. The weights obtained for the FWI parameter and the
human factors were 0.298 and 0.180, respectively. FWI provides meteorological information directly
related to forest fire risk and its probability of ignition and propagation, while the meteorological
conditions do not provide information on fuels state. This fact supports the application of FWI as an
influence parameter in forest fire risk mapping.

Suryabhagavan et al. [37] in their study, showed that the most important parameter in the fire risk
is the vegetation, followed by slope. The lower values of weight parameters are for settlement and road
distances. The attribution of weight of the parameters are similar with this study. The lower values
were also attributed to the anthropogenic issues and the higher weight was assigned to the vegetation
parameter. The difference in both studies regardless of the FWI parameter used in the present study is
in line with the research done.

Vallejo et al. [7] remarked that spatial cadastral information of buildings and roads could address
the main limitations in their study and improve the classification of fuel types along with the analysis
of transport networks. In the present work, these topics were covered with the use of cadaster layers to
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adapt fuel condition based on NDVI and, hence, buildings and roads were clipped to filter misleading
or wrong values. The vegetation information used by Vallejo et al., was obtained from Landsat- 7
images with a resolution of 15 m. In comparison, the LiDAR data used in this study has a mean spacing
between points of 0.05 and 2 m of resolution in raster transformation which allows for a more detailed
study of the vegetation structure parameters.

In the study by Gheshalghi [21], a GIS-based analytical network process was used to provide a
fire risk map using slope, aspect, altitude, land cover, NDVI, annual rainfall, temperature, distance
to settlements, and distance to roads as input layers. The classification of the parameters and their
weights is very similar to that followed in the present study. The highest weight consists of the climatic
group, giving an annual rainfall weight of 0.17713 followed by NDVI with 0.16445 value. Lowest
values were obtained for distance to roads and distance to settlements with 0.05499 and 0.07056 values,
respectively. The conclusions include the consideration that the most important parameters were
vegetation and climate, which is coherent with the results presented in this manuscript.

The study of Coelho et al. [36] showed the importance of rainfall and temperature parameters in a
forest fire. The land use parameter had the higher weight assigned to pasture and planted forest, as the
vegetation parameter in the present study, being considered fuel types 5 and 7 as the most dangerous
regarding forest fire risk.

The methodology used by Eskandari [39] used fuzzy AHP and GIS to estimate the weights of the
parameters affecting forest fire mapping, including distances to farmland, roads, settlement, and rivers
in addition to slope, aspect, and elevation. The results of fuzzy weighting show that human factor,
with a value of 0.301, and biologic factors were the most important parameters to be considered. In the
study of Eskandari, the topography group has a value 0.2517 being the least considered parameter.
Additionally, in the present study, topography group was considered the second least important
parameter with a weight of 0.108.

Kayet et al. [19] in their recent study, showed a comparative of frequency ratio (FR) and AHP
models for forest fire risk mapping. The results from FR and AHP showed similar trends (accuracy of
81 and 79%, respectively). In the present study, vegetation group has a value of 0.359, of which NDVI
has a weight of 0.250, and FWI parameter has a value of 0.298. These parameters have the highest
significance in the fire risk map to the contrary of results achieved by Kayet et al. [19] where land
surface temperature was considered the most important parameter with a value of 0.25 and NDVI
parameter has a value of 0.11.

The major difference found with regards to other investigations lies in the size of the study area.
This study is based on fire risk around roads, while others are done at the municipally or provincial
level. Due to the use of dense point cloud, a detailed analysis of vegetation is obtained in comparison
with other studies.

In general terms, the proposed method, and the availability of the required data, allows its
straightforward application to a wide range of regions.

5. Conclusions

In this paper, a methodology based on GIS and AHP was developed to determine forest fire risk
areas around roads in Northwest Spain. According to the results, vegetation and FWI parameters
have a strong influence on forest fire ignition, whereas parameters like historical fire, topography, and
humans have a lower weight in risk calculation. The final risk model shows that approximately 50% of
study area A and 65% of study area B are classified as moderate fire risk (value 3 out of 5).

Fire risk mapping is a suitable tool to identify and locate areas around roads that are vulnerable
and supports roadside vegetation management. For example, herbicidal products application and
pruning in areas of special risk like slopes, embankments, and clearing areas which could help to
reduce the propagation and intensity of forest fire. At the same time, fire risk maps help transport
managers and practitioners to develop and adopt fire emergency plans. As a future trend, sensitivity
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analysis of AHP could be integrated with other multi criteria decision analysis (MCDA) techniques to
improve the results.
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