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Abstract: Detailed information about tree species composition is critical to forest managers and ecologists.
In this study, we used Sentinel-2 imagery in combination with a canopy height model (CHM)
derived from airborne laser scanning (ALS) to map individual tree crowns and identify them to
species level. Our study area covered 140 km2 of a mainly mixed temperate forest in the Veluwe area
in The Netherlands. Ground truth data on tree species were acquired for 2460 trees. Tree crowns
were automatically delineated from the CHM model. We identified the delineated tree crowns to
species and phylum level (angiosperm vs. gymnosperm) using a random forest (RF) classification.
The RF model used multitemporal spectral variables from Sentinel-2 and crown structural variables
from the CHM and was validated using an independent dataset. Different combinations of variables
were tested. After feature reduction from 25 to 15 features, the RF model identified tree crowns with
an overall accuracy of 78.5% (Kappa value 0.75) for tree species and 84.5% (Kappa value 0.73) for tree
phyla whilst using the combination of all variables. Adding crown structural and multitemporal
spectral information improved the RF classification compared to using only a Sentinel image from
one season as input data. The producer’s accuracies varied between 43.8% for Norway spruce
(Picea abies) to 95.3% for Douglas fir (Pseudotsuga menziesii). The RF model was extrapolated to
generate a tree species map over a study area (140 km2). The map showed high abundances of
common oak (Quercus robur; 35.5%) and Scots pine (Pinus sylvestris; 22.8%) and low abundances of
Norway spruce (Picea abies; 1.7%) and Douglas fir (Pseudotsuga menziesii; 2.8%). Our results indicate a
high potential for individual tree classification based on Sentinel-2 imagery and automatically derived
tree crowns from canopy height models.

Keywords: tree species classification; multitemporal; object-based; Sentinel-2; airborne laser scanning;
random forest

1. Introduction

Spatially explicit information about tree species distribution and other forest parameters,
such as height, crown cover, and biomass, are valuable for various ecological applications,
the parametrization of land surface models, and forest management. Forests regulate climate
and biogeochemical cycles and represent an important terrestrial carbon reservoir [1]. As a result
of climate change, Europe will likely experience higher temperatures and more frequent and severe
droughts in the future [2]. The combination of increased heat and drought may lead to higher fire risk in
Mediterranean Europe but also in temperate and boreal ecosystems in Europe [3]. Fire spread
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and severity depend largely on fuel flammability, which in forest ecosystems is among other
factors dependent on the dominant tree species. Different tree species vary in crown openness,
wood moisture content, and litter flammability, factors driving fuel flammability, and fire behaviour
in forests [4,5]. Knowing the tree species distribution in a particular area is thus helpful for forest
fire prevention and management. Besides the use of detailed tree species distribution maps in
forest fire prevention, such maps would be useful for other ecological applications and fields, for
example, sustainable forest management, which aims to conserve biological diversity in forests [6],
as well as close-to-nature forest management, in which monospecific plantations are transformed to
heterogeneous mixed-species stands that more closely resemble natural forests [7]. However, the sheer
number of trees present in a particular forest limits the manual identification and classification of
individual trees in detailed maps and asks for an automated approach.

Remote sensing is particularly useful for data acquisition needed for large scale forest monitoring,
since it enables the acquisition of data over large areas at a high level of detail with a synoptic view.
In this way, remote sensing has the potential to complement field inventories [8].

For the classification of individual trees at the species level, both high spatial and high spectral
resolution data are desired [9,10]. Tree species and forest types classifications have used remote sensing
datasets with different spectral resolutions [11–15]. Multispectral data are nowadays widely and freely
available and have shown potential for classification of tree species and forest types at individual
tree level, e.g., [10–19]. These studies, however, require manual delineation of individual tree crowns,
which is quite labour-intensive and thus cannot be easily applied over large areas [20].

Species classification at individual tree level can be challenging due to the fact that the spectral
signature retrieved from trees is, amongst others, influenced by its biochemical properties, canopy structure,
forest maturity, and acquisition conditions [21]. The spectral signature that satellites measure is
composed of the combination of reflectance from tree crown, tree crown shadows, illuminated and
shadowed parts of tree crowns, and from the understory, e.g., soil, herbaceous vegetation, and litter [22].
The understory reflectance thus has an effect on the identification of tree species in open forests when
pixel classification is used [11]. Object-based classification, which in this case is the classification of
individual tree crowns as separate objects, minimizes the spectral mixture of tree and understory
reflectance by grouping pixels that belong to the same tree crown [22–25]. For each tree crown,
spectral and crown structural information, the latter describing the geometrical properties of a
tree crown, can be extracted and included in classification algorithms [12].

To classify tree species, both parametric and non-parametric classification algorithms have
been used [7,12,22]; parametric algorithms include maximum likelihood and Bayesian methods [11].
Non-parametric classifiers do not make any assumptions about the shape of the model function.
The non-parametric classifier random forest (RF) is robust against noise, and the setup is simple when
compared to other non-parametric methods [26,27]. Previous studies have applied the RF model
to classify tree species using multispectral satellite data [28] or crown structural data derived from
airborne laser scanning (ALS) data as explanatory variables or features in the model. Furthermore,
RF models have previously been used on crown structural and spectral data combined in a single
classification [29,30], which has shown to improve the classification accuracy [31] compared to using
only structural data. Another potential layer of information that could be utilized in an RF or similar
model is the phenological variation between tree species. In temperate forests, biophysical and
structural properties of the tree canopy change with the changing seasons as a result of flowering,
leaf-onset, and, in winter, deciduous trees by leaf senescence. These phenological changes vary
widely among different tree species [32], and species variation can be captured with multitemporal
imagery [15,33,34].

The aim of our study is to develop a new method to automatically map tree crowns and to classify
those crowns to species level using multitemporal Sentinel-2 imagery from four consecutive seasons
(autumn 2018–summer 2019) and crown structural variables derived from ALS data. To the best
of our knowledge, we are the first to combine fully automatic tree crown segmentation with a tree
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species classification model in a single method. We applied our method to map individual trees in a
mixed temperate forest area in The Netherlands and classified these trees at species and phylum level
(angiosperm vs. gymnosperm).

2. Materials and Methods

2.1. Study Area

The study area is situated in the Veluwe, the largest contiguous forest in The Netherlands
(52◦11′–52◦24′ N, 5◦71′–5◦92′ E, WGS84). Our study area covers the central part of the Veluwe and is
located west of the town Apeldoorn and north of the Nationaal Park De Hoge Veluwe. The Netherlands
have a temperate oceanic climate with an average annual precipitation of 832.5 mm and average air
temperature of 14.1 ◦C [35].

The Veluwe is characterized by the presence of push moraines and other glacial geomorphological
landscape elements. The landscape was formed during the second last glacial, the Saale glaciation
(300—130 kyr BP). In the last ice age, the Weichselian glaciation (115—11.7 kyr BP), aeolian coversands
were deposited. Due to deforestation and subsequent overgrazing since the 12th century, more than half
of the Veluwe was converted from forest to open heathlands and drift sands by the 19th century [36].
As the soil in these areas deteriorated and the heathlands largely lost their agricultural use by the
end of the 19th century, large tracts of unproductive heathland were planted with mostly coniferous
tree species. Scots pine (Pinus sylvestris) was planted in poor heathland areas, while on more
fertile soils, forests of broadleaved trees and Douglas fir (Pseudotsuga menziesii) were preferred [37].
The eight most common species in our study area were found to be European beech (Fagus sylvatica),
Douglas fir (Pseudotsuga menziesii), Japanese larch (Larix kaempferi), northern red oak (Quercus rubra),
Scots pine (Pinus sylvestris), silver birch (Betula pendula), Norway spruce (Picea abies), and common oak
(Quercus robur) (Appendix A Figures A1 and A2).

Our study area covers approximately 140 km2 of broadleaved, coniferous, and mixed forests,
large unvegetated drift sands areas, and heathlands, but also anthropogenic structures such as buildings
and roads (Figure 1).
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2.2. Field Data

Two field surveys of 12 days were conducted, one in May 2019 and a subsequent survey in
December 2019 (Figure 1). Trees were measured separately (n = 1743) and in plots (n = 479). The location
of sample sites was selected based on the vegetation structure and the species composition being
representative for the larger study area and by bike accessibility. In total, 17 plots of 30 by 30 m
were established and measured in May 2019. The plots were located in heterogeneous forest stands
located more than 3 m away from roads and distributed over the entire study area (Figure 1). For each
individual tree, the location of the trees was logged using a Trimble Geo 7X Handheld Data Collector
(1–100 cm accuracy), which used more than 50 independent and differentially corrected GPS recordings
to determine the final position. The horizontal position of the samples had a final average uncertainty
of 0.5–1 m. Furthermore, for each tree, the diameter at breast height (DBH, range 1.9–129.9 cm) was
measured using a measuring tape. Finally, the average crown width was determined as the average of
four perpendicular radii of the tree branches. The length of the four radii were assessed by visually
determining the crown extent and then measuring the distance between the maximum crown extent and
the tree trunk with a Bosch laser PLR 50 C (±2 mm accuracy). The tree crown area (range: 1.1–352.9 m2)
was then calculated from these data as the surface of an ellipse (crown area = π ∗ a ∗ b; in which a and
b are the mean of the two largest and two smallest radii, respectively).

The number of trees per plot ranged between 13 and 53, with an average of 27 trees. During the
field campaign in May 2019, we sampled 268 individual trees and collected data of 26 different
tree species. The number of trees per species are shown in Table 1. The samples of the eight most
common species were used for the classification on tree species level. All 26 species were used for the
classification on phylum, angiosperm or gymnosperm, level.

Table 1. Inventory data of trees and anthropogenic features (n = 2460).

Common Name Scientific Name Phylum Sample Size

Silver birch Betula pendula Angiosperm 154
European beech Fagus sylvatica Angiosperm 287
Japanese larch Larix kaempferi Gymnosperm 176

Norway spruce Picea abies Gymnosperm 67
Scots pine Pinus sylvestris Gymnosperm 365
Douglas fir Pseudotsuga menziesii Gymnosperm 260

Common oak Quercus robur Angiosperm 384
Northern red oak Quercus rubra Angiosperm 290

Grand fir Abies grandis Gymnosperm 21
Fir Abies spp. Gymnosperm 4

Maple Acer spp. Angiosperm 9
Horse-chestnut Aesculus hippocastanum Angiosperm 12
Sweet chestnut Castanea sativa Angiosperm 20

Hawthorn Crataegus spp. Angiosperm 3

Copper beech Fagus sylvatica
Atropunicea Angiosperm 9

Common juniper Juniperus communis Gymnosperm 25
European crab apple Malus sylvestris Angiosperm 3

Corsican pine Pinus nigra Gymnosperm 33
Plane tree Platanus spp. Angiosperm 1
Populus Populus spp. Angiosperm 2

Silver poplar Populus alba Angiosperm 3
European wild pear Pyrus pyraster Angiosperm 1

Eared willow Salix aurita Angiosperm 12
Thuja Thuja spp. Gymnosperm 19

Linden Tilia spp. Angiosperm 36
Hemlock Tsuga spp. Gymnosperm 1

Anthropogenic features - - 238
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In December 2019, two days of additional field data collection were carried out to survey another
1475 individual trees of the eight most common species (Table 1). The location of homogeneous stands
was determined by aerial photograph interpretation. During this survey, only the tree species and
location were determined.

To exclude anthropogenic features from the tree species and phylum analysis, polygons
overlapping houses, roads, or other human made features were identified as anthropogenic features
(n = 238). This classification was based on the interpretation of Sentinel-2 imagery.

2.3. Digital Elevation Model and Pre-Processing

We used the national digital elevation model (DEM) of The Netherlands (Actueel Hoogtebestand
Nederland, AHN) to construct a canopy height model (CHM) for the study area. The AHN is
a collaboration between the regional water authorities, provinces, and Directorate-General for
Public Works and Water Management that has resulted in an ALS derived high resolution DEM
of The Netherlands over multiple years [38]. The ALS acquisition flights over our study area were
carried out between December and March 2017/2018, when winter deciduous trees do not have leaves.

The recording resulted in a point cloud, which was calibrated and classified by the Directorate-General
for Public Works and Water Management, leading to two different datasets. The digital terrain model
(DTM) consists of points that were classified as ground level. For every pixel of 50 cm by 50 cm,
the value that represents the centre of the cell was calculated with the squared inverse distance
weighting method. The other dataset is the digital surface model (DSM). This dataset contains points
that do not represent the ground level but instead vegetation or buildings [39]. Both the DTM and
the DSM were freely downloaded from the portal of Publieke Dienstverlening Op de Kaart (PDOK).
Eleven tiles that were recorded in 2018 covered the entire study area. The error in height was 5 cm,
and the horizontal resolution was 50 cm. The average point density was 6–10 points per m2. For cells
with no data, we calculated the height values using inverse distance weighting [40] within a search
radius of 60 m for the DTM and 160 m for the DSM. The CHM was constructed as the difference
between the DSM and the DTM, thereby representing the actual height of the tree crowns at the same
resolution of the DTM (Figure 2).
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2.4. Satellite Imagery and Pre-Processing

The spectral information of the individual tree crowns was extracted from Sentinel-2 imagery.
The Sentinel-2 satellite program is part of Copernicus, an Earth observation program of the European Union.
Sentinel-2 consists of two satellites that have a sun-synchronous polar orbit at 786 km altitude.
Both satellites carry a multi-spectral instrument (MSI) with 13 spectral bands, covering the visible (VIS),
the near infra-red (NIR), and the short wave infra-red (SWIR) at different spatial resolutions ranging
from 10 to 60 m. The MSI is a passive, optical push-broom sensor with a swath width of 290 km.
This results in a short revisit time of around five days, increasing the chance to get cloud free images [41].

For image selection, we used two criteria, (1) images should be free of any cloud/haze cover
in the study area, and (2) image acquisition time should be close to the date of the field data
collection. The Sentinel images used were from 18 September 2018, 17 November 2018, 21 April 2019,
and 26 August 2019 to enable the detection of phenological changes. We assumed that no significant
changes in forest cover had taken place between the different acquisition dates.

The Sentinel-2 10 m resolution bands were downloaded via the external Semi-Automatic
Classification Plugin (SCP, version 6.4.0.2) within Quantum GIS (QGIS, version 3.6.3). We included
the blue (band 2, 490 nm), the green (band 3, 560 nm), the red (band 4, 665 nm), and the near infrared
(band 8, 842 nm) bands (Table 2). Subsequently, the Dark Object Subtraction 1 (DOS1) atmospheric
correction within the SCP was performed on all images [42]. A total of 16 images, 4 bands for each date,
were clipped to the extent of the research area and subsequently stacked. The geographic coordinate
system used during the analysis was set to EPSG:28992—Amersfoort/RD New—Projected.

Table 2. Characteristics of Sentinel-2 satellite data used in this study.

Tile Spectral Band and
Central Wavelength Spatial Resolution Acquisition Date

Band 2 (490 nm)
10 m

18 September 2018
T31UFT Band 3 (560 nm) 17 November 2018

Band 4 (665 nm) 21 April 2019
Band 8 (842 nm) 26 August 2019

2.5. Delineation of Tree Crowns

For tree species and phylum classification, we applied an object-based approach using
automatically delineated tree crowns as spatial polygons (Figure 2). The data processing and
analyses were performed in R (version 3.6.0) and QGIS (version 3.6.3). The classification models were
used to predict the species and phyla of all trees present in the entire study area.

We applied the method described by Popescu and Wyne [43] to detect tree tops and delineate
tree crowns. In the CHM, tree tops were detected using the R-package lidR (version 2.0.3) [44].
This function applies a variable window technique with a local maximum (LM) filter. A pixel is
identified as a local maximum when its neighbouring pixels have a lower height value [45]. The LM
filter has a circular or a square search window. The former was used in this study, since a circular
window is a better approximation of a tree crown compared to a square [43]. The search window size
should be adjusted to a size that corresponds to the tree crown present on the CHM. The algorithm
from lidR records the height of each pixel and calculates the search window size for the local maximum
filter based on a predefined function that describes the relationship between tree height and crown area.
The R-package ForestTools (version 0.2.0) [46] was applied to delineate tree crowns from the tree
top data and the CHM. This function implements a watershed segmentation to outline crowns from
a CHM. It extends a region from the highest point, as long as the neighbouring pixels have a lower
height value [47].

The field-estimated crown area data allowed us to fit a tree crown area–height relationship to
prescribe the search window size for the LM filter. We tested both linear (Crown area = a + b ∗ Height)
and quadratic functions (Crown area = a + b ∗Height2), in which a and b represent the intercept and
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the slope of the relationship, respectively. The tree crown area–height relationship that best described
our data was:

Crown area = 1.2 + 0.3 ∗ Height (1)

First, the root mean square error (RMSE) was calculated for the number of trees in each plot.
The number of trees measured in the field were compared to the number of trees derived from the
LM filter, for which a and b parameters were modified. The values of a and b of both the linear and
the quadratic function that gave the lowest RMSE in the grid-search were chosen. The RMSE results
with the different variables are shown in Appendix A Figure A3 and Tables A1 and A2. The linear
function 1.2 + 0.3 ∗ Height resulted in a RMSE value of 11.47 trees. The RMSE value of the function
3.1 + 0.0091 ∗ Height2 was 10.65 trees.

Second, the field-measured crown area was compared with the crown area derived from the
automatically delineated tree crowns. The measured tree and the nearest derived tree top were coupled
using distance matrix. This matrix measures the distance between the GPS location of the trees
measured in the field and the coordinates of the derived tree tops. The RMSE of the tree crowns of the
eight most common species are tabulated in Appendix A Table A3. The function that gave the lowest
RMSE for tree crowns was the linear function, which was chosen to delineate all tree tops and crowns
in the study area, for which we applied a minimum threshold of 2 m tree height and 2 m2 crown area.

2.6. Crown Structural and Spectral Information

For each delineated tree crown, we extracted several crown structural features from the CHM.
These included minimum, maximum, sum, mean, median, standard deviation, range, and variance of
tree height and crown projected surface area.

From the Sentinel-2 imagery, the mean spectral values for all downloaded bands were extracted to
the delineated tree crowns using the R-package velox (version 0.2.0) [48]. Centroids from the Sentinel-2
pixels that overlapped with the tree crowns were averaged for each individual crown. For small tree
crowns that did not intersect with any Sentinel-2 pixel centroid, the spectral values of the nearest pixel
centroid were assigned.

The location of the trees measured in the field were connected to the nearest centre of a delineated
tree crown by using a distance matrix. The nearest distance ranged between 0.1 m and 16.8 m, and the
mean distance was 2.4 m. Trees with a nearest distance larger than 6 m were excluded from the analysis.
The mean crown area for those trees was 30.7 m2 (SD = 20.1 m2).

Delineated tree crowns sometimes covered multiple sampled trees, and those trees were connected
to the same centre of the crown. In this case, we assigned the field-measured tree with the most similar
crown area as from the delineated tree crown to this crown. This procedure slightly reduced the sample
size (Table 3).
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Table 3. Data (n = 1922) used in the random forest classification. The eight most common species and
the anthropogenic features class were used into the species classification; the phylum classification
included all classes.

Common Name Scientific Name Phylum Sample Size

Silver birch Betula pendula Angiosperm 133
European beech Fagus sylvatica Angiosperm 230
Japanese larch Larix kaempferi Gymnosperm 120

Norway spruce Picea abies Gymnosperm 48
Scots pine Pinus sylvestris Gymnosperm 274
Douglas fir Pseudotsuga menziesii Gymnosperm 129

Common oak Quercus robur Angiosperm 339
Northern red oak Quercus rubra Angiosperm 220

Grand fir Abies grandis Gymnosperm 5
Fir Abies spp. Gymnosperm 4

Maple Acer spp. Angiosperm 9
Horse-chestnut Aesculus hippocastanum Angiosperm 12
Sweet chestnut Castanea sativa Angiosperm 20

Hawthorn Crataegus spp. Angiosperm 3

Copper beech Fagus sylvatica
Atropunicea Angiosperm 10

Common juniper Juniperus communis Gymnosperm 25
European crab apple Malus sylvestris Angiosperm 3

Corsican pine Pinus nigra Gymnosperm 29
Plane tree Platanus spp. Angiosperm 1
Populus Populus spp. Angiosperm 4

Silver poplar Populus alba Angiosperm 3
European wild pear Pyrus pyraster Angiosperm 1

Eared willow Salix aurita Angiosperm 11
Thuja Thuja spp. Gymnosperm 17

Linden Tilia spp. Angiosperm 33
Hemlock Tsuga spp. Gymnosperm 1

Anthropogenic features - - 238

2.7. Random Forest Classification

The random forest (RF) model, a non-parametric algorithm, has previously shown to perform well
in tree species and group classifications [26]. The RF model consists of an ensemble of decision trees.
Each tree is constructed by taking an individual bootstrap sample randomly from the original
training dataset. The tree consists of multiple nodes. At each node, the data are split according to
the features, for instance, the maximum height or the value of a spectral band. At each node, a subset
of features is randomly selected. The best-splitting feature is determined by the Gini criterion and
subsequently chosen.

The classification error is estimated by using the samples that are not present in the bootstrap
sample (out-of-bag data, OOB). The samples in the OOB dataset are classified by the corresponding
decision tree. For each sample in the original dataset, the majority vote in classification outcomes of
the decision trees is compared to the true label. This gives an estimate of the misclassification rate.

The explanatory power of the input variables is calculated by the mean decrease in accuracy (MDA)
and the mean decrease in Gini (MDG). The MDA of a variable is assessed by randomly converting
the values of the variable for the OOB data, while values of the other variables are kept constant.
The misclassification rate is compared with the randomly commuted rate, resulting in the importance
of the variable. The decreases in the splitting criterion Gini are summarised and normalized by the
number of trees in the forest to calculate the MDG of a variable [49].

In this study, we performed classifications based on different combinations of crown structural
and spectral features. We tested the classification suitability of the following combinations of features:
(1) both the crown structural variables and the spectral data from four seasons; (2) only the spectral
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data from four seasons; (3) only the crown structural variables; and (4) the crown structural variables
in combination with spectral data from only one season.

We used the R-package randomForest (version 4.6.14) [49,50] for tree species and phylum
classification. The RF model requires two parameters: (1) the number of input variables randomly split
at each node, and (2) the number of classification trees or bootstrap iterations. The number of split
variables (mtry) was optimised, which searches the optimal value of mtry compared to the OOB error.
The number of trees (ntree) was set to 500. Using the VSURF R-package (version 1.1.0) [51,52] and
the established mtry and ntree values, we selected uncorrelated and most relevant variables from
the dataset. The data for each sampled tree species and anthropogenic features were randomly split;
two thirds of each class were used to train the RF model on all classification combinations and levels.
The remaining one third of the data were used to validate the RF model and to calculate the classification
accuracies. The classification accuracies were based on the label (species or phylum) the delineated tree
crown should have had based on field observations and what it was predicted to be by the RF model.
Finally, for each automatically delineated tree crown in the entire research area, we predicted its species
and phylum using the best performing RF model.

3. Results

3.1. Model Performance

We found that the highest classification accuracies were obtained by the RF model that combined
both the crown structural and the multitemporal spectral features (Table 4). The all variables
classification on tree species level (AVS) used 15 out of 25 possible variables (Appendix A Table A4) and
showed the highest accuracy, 78.5% (Kappa value 0.75), of all models. Without anthropogenic features,
the classification accuracy was 74.9% (Kappa value 0.70). On tree phylum level, all models showed
higher accuracies compared to the classification of tree species (Table 4). The highest accuracy,
84.5% (Kappa value 0.72), was also obtained when all spectral and crown structural variables (AVP)
were used by the RF model. The accuracy was 82.9% (Kappa value 0.63) when anthropogenic features
were excluded from the accuracy assessment.

Table 4. Accuracy and Kappa values of classifications based on different combinations of variables, for
both tree species and tree phylum level.

Level Classification Accuracy Kappa

Species All variables (AVS) 78.5% 0.75
Crown structural
variables (StVS) 58.4% 0.51

Spectral variables (SpVS) 73.7% 0.69
Summer image (SuIS) 70.9% 0.66
Winter image (WIS) 63.1% 0.57
Spring image (SpIS) 67.1% 0.61
Autumn image (AIS) 65.0% 0.59

Phylum All variables (AVP) 84.5% 0.73
Crown structural
variables (StVP) 78.3% 0.61

Spectral variables (SpVP) 83.1% 0.70
Summer image (SuIP) 81.1% 0.67
Winter image (WIP) 80.5% 0.66
Spring image (SpIP) 82.0% 0.68
Autumn image (AIP) 81.6% 0.67

The classification based on only crown structural variables (species crown structure variables
(StVS) and phylum crown structure variables (StVP)) resulted in the lowest accuracies for the species
and the phylum classifications, while the classification using only spectral variables (species spectral
variables (SpVS) and phylum spectral variables (SpVP)) resulted in a slightly lower accuracy compared



Remote Sens. 2020, 12, 3710 10 of 25

to the species all variables (AVS) and the phylum all variables (AVP). Of the models that used bands
from only one Sentinel-2 image, the highest accuracy for species classification was obtained from the
summer image (species summer image (SuIS)), and for phylum classification from the spring image
(phylum spring image (SpIP)).

We evaluated the RF model prediction accuracy on different ranges of tree crown area, which were
obtained for each delineated tree crown from the CHM. The number of trees per species for every crown
area class is shown in Figure 3a. Some tree species predominantly had small crown areas, for instance,
common oak (Quercus robur) and silver birch (Betula pendula). In Figure 3b, the classification accuracy as
a function of crown area class is plotted on species and phylum levels. While classification accuracies
slightly varied over different crown area classes, we could not detect a clear relationship between
crown area and classification accuracy.
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The mean spectral reflectance of the eight common tree species and the two tree phyla are presented
in Appendix A Figures A4 and A5. Some species showed spectral overlap, such as the Japanese larch
(Larix kaempferi) with the Norway spruce (Picea abies). The results showed higher reflectance values in
the near infrared band (B08) for angiosperm trees compared to gymnosperm trees. European beech
(Fagus sylvatica) and northern red oak (Quercus rubra) showed the highest near infrared reflectance
values. The values of all bands used in this study differed mostly for the bands from autumn and
winter and less for the band from the spring images.

3.2. Object-Based Classification of Tree Species

The confusion matrix in Figure 4 summarizes the results for the classification of the eight most
common tree species and anthropogenic features. The classification was based on the model that
used all variables (AVS). The misclassifications mostly occurred between common oak (Quercus robur),
Scots pine (Pinus Sylvestris), and silver birch (Betula pendula). Species with the highest relative
classification accuracies were Douglas fir (Pseudotsuga menziesii; 95.3%), northern red oak (Quercus rubra;
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82.2%), and European beech (Fagus sylvatica; 81.8%). The lowest relative classification accuracies
occurred for Norway spruce (Picea abies; 43.8%) and Japanese larch (Larix kaempferi; 55%).
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height range had the highest MDG value.
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3.3. Object-Based Classification of Tree Phyla

The results of the classification accuracy of the tree phylum model using all variables (AVP)
are presented in Figure 6. Of the 343 angiosperm trees, 29 trees were misclassified as gymnosperm
trees (8.5%) and two as anthropogenic features (0.6%). Gymnosperm trees were only misclassified as
angiosperm trees for 69 out of 218 tree crowns (31.2%). Scots pine had the highest contributions in the
misclassifications; 41 out of 69 misclassified tree crowns were Scots pines (59.4%). The variable with
the highest MDA was the median tree height (Figure 7).
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3.4. Extrapolation Over the Entire Study Area

The AVS and the AVG classification models were used to identify all delineated tree crowns in
the study area to species and phylum levels (Figure 8). First, the individual tree crown polygons
were delineated on the CHM using a variable window filter, the size of which was determined by
the tree crown area–height relationship (Figure 8a). The crown structural features were calculated
from the CHM. Then, the spectral information was extracted for each delineated tree crown from the
Sentinel-2 imagery (Figure 8b). The spectral and the crown structural information combined were
used to construct a RF classification model with the field samples. This model was subsequently
applied to predict the tree species (Figure 8c) and the tree phylum (Figure 8d) for each delineated
tree crown. The tree species prediction was based on the eight most common tree species and included
anthropogenic features. We used all 26 sampled species in the tree phylum prediction (Table 3).

The total number of the eight most common tree species in the study area is tabulated in
Table 5. The tree species with the highest number of trees and highest tree density were common oak
(Quercus robur; 63.5 trees/ha), Scots pine (Pinus sylvestris; 40.7 trees/ha), and silver birch (Betula pendula;
36.0 tree/ha). Norway spruce (Picea abies; 3.0 trees/ha) and Douglas fir (Pseudotsuga menziesii; 4.9 trees/ha)
were less common. The tree density in the study area was, on average, 178.8 trees per hectare.

Table 5. The number of trees and density of the eight most common tree species on the Veluwe.
The numbers are based on the prediction which combined the multitemporal Sentinel-2 spectral data
with the ALS-derived crown structural variables.

Table Number of Trees Percentage Trees/Ha

Betula pendula 501,529 20.1% 36.0
Fagus sylvatica 178,841 7.2% 12.8
Larix kaempferi 118,407 4.8% 8.5

Picea abies 41,251 1.7% 3.0
Pinus sylvestris 567,283 22.8% 40.7

Pseudotsuga menziesii 68,576 2.8% 4.9
Quercus robur 884,630 35.5% 63.5
Quercus rubra 128,875 5.2% 9.3

All species 2,489,392 100% 178.8
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4. Discussion

Here, we demonstrate the high potential of integrating spectral and structural data to automatically
delineate individual tree crowns and subsequently classify these crowns to the species level. Our method
enables the development of detailed tree species distribution maps over large areas on the condition
that high resolution elevation data for these areas are available.

4.1. Detection of Tree Tops and Segmentation of Tree Crowns

The aim of this study was to develop a tree species classification method that could be easily
upscaled and applied on a nationwide level. In our study, the automatic segmentation of tree crowns
was performed by applying a local maximum filter with a variable window size in combination with
a watershed algorithm [53] over a canopy height model. We derived the function prescribing the
window size by fitting a relationship between field measured crown area and CHM derived tree height.
This approach resulted in relatively low errors in estimation of the crown area in the gymnosperm
trees (e.g., Scots pine: 31.7 m2) and the silver birch (RMSE: 27.9 m2) and relatively high errors in the
estimation of crown area in other angiosperm trees (e.g., European beech: 67.0 m2). The LM filter
performed very well in the detection of tree tops of trees with a single well-defined apex, such as most
gymnosperm trees [43]. The detection of tree tops was more challenging for most angiosperm trees,
as large variations in the crown topography are typical, resulting in a single crown having several
smaller local maxima. Consequently, a single individual tree could be overly segmented into several
connected tree crowns. This logically resulted in the underestimation of tree crown area and the
overestimation of individual trees per unit of ground surface area. Another challenge in crown
delineation was the detection of relatively small or covered trees. It was difficult to separate tree
crowns in a dense forest with a homogenous canopy [45]. Accordingly, the number of trees may be
underestimated since a delineated tree crown can cover several trees.

Some field-measured trees, 26 in total, were removed from the dataset, as the distance between
the field-measured tree and the centre of the delineated tree crown exceeded 6 m. The mean field
measured crown area of those trees was 30.7 m2. The relatively small crown area of the omitted trees
suggests that the detectability of trees increases with crown area. This can be explained as short
and small crown area trees have a higher probability of being covered by larger neighbouring trees,
hampering the detection of some small trees in the CHM. The detection of tree crowns in our LM filter
may thus perform better in forest stands occupied by mainly large and mature trees.

Other techniques to delineate tree crowns exist, which include point cloud-based methods to
derive vertical and horizontal characteristics of forests [20,54,55]. These methods, however, are only
applied in studies focussing on the structural characteristics of a forest [56,57], and to our knowledge
have not yet been applied in studies with a focus on tree species classification. Previous studies on tree
species classification used manually segmented individual tree crowns, e.g., [17,19]. Manual tree crown
delineation cannot be upscaled over large areas, as it is highly labour-intensive [20,58]. In this study,
we overcame this problem by developing an automated tree species classification method.

4.2. Variable Combinations

The highest classification accuracies were obtained by the RF models that used both spectral and
crown structural variables (AVS and AVP). The overall accuracies were 78.5% (Kappa value 0.75) for
tree species and 84.5% (Kappa value 0.73) for tree phyla. For the classifications at both species and
phylum level, models only leveraging spectral information consistently outperformed models that
only included structural information. However, overall accuracy was the highest when spectral and
structural information were combined in a single classifier.

The classification model combining spectral data for all seasons resulted in higher accuracies
compared to those that used the spectral bands from an image captured in only one season. The power
of the RF model thus increased by using multitemporal spectral dataset. In studies conducted in boreal
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regions with angiosperm trees and gymnosperm trees, similar results regarding the use of multitemporal
imagery have been reported [14,33,59]. Persson et al. [18] classified trees in homogenous plots with
Sentinel-2 data in Sweden. The authors reported an overall accuracy of 88.2% (Kappa value 0.84)
and showed that gymnosperm trees can be more easily separated from angiosperm trees with a
multitemporal dataset. In their study, the May (spring) image resulted in the highest accuracy of
all seasons, which the authors attributed to the fact that phenological variation between species is
highest in late spring. In our study, the highest accuracy was obtained with the August (summer)
image for species classification and with the April (spring) image for phylum classification. In spring
and autumn, the phenological variation between tree species should be the highest due to leaf onset
and senescence, respectively [60]. Using only the September (autumn) image resulted in a classification
model with the second lowest accuracy of all models used in our study (Table 4). This may be due to
the fact that the timing of the image may not have fully captured the period of leaf senescence. Indeed,
a visual inspection of the Sentinel-2 imagery from September 2018 did not show large colour variations
of the canopy for different trees species.

Including crown structural variables in the RF model also improved the overall classification
accuracies. Similar results were reported with both multispectral imagery [61] and hyperspectral
imagery [30,62,63]. Jones et al. [64] showed that mapping accuracy increased for species that are
dominated by a distinct growth stage, as it is characterized by ALS-derived information. In that study,
the accuracies also improved for classes with similar spectral properties but different mean canopy
heights [13,64].

4.3. Classification of Tree Species and Phyla

On tree species level, the classes with the highest user’s accuracies were Douglas fir
(Pseudotsuga menziesii), northern red oak (Quercus rubra), and European beech (Fagus sylvatica). Scots pine
(Pinus sylvestris), common oak (Quercus robur), and silver birch (Betula pendula) were relatively often
misclassified as one another. This was probably due to the fact that these species often occurred together
in a single forest stand, thus the spectral signature of a tree from one species influenced the spectral
signature of a neighbouring tree from another species in the relatively large Sentinel-2 pixels (10 m).
Furthermore, next to the potential spatial overlap, spectral can also contribute to misclassifications
of tree species, as, for example, was observed with the high similarity of the spectral signature of
Japanese larch (Larix kaempefri) and Norway spruce (Picea abies) (Figure A4). The angiosperm trees
showed higher reflectance values in the near infrared band compared to gymnosperm trees, and the
values differed mostly for autumn and winter images (Figure A4). Similar results in spectral reflectance
and variability in classification accuracies are also reported by Immitzer et al. [7] and are contributed
to spectral overlap. Finally, in areas with an open canopy, the reflectance of soil and undergrowth
might also be present in the spectral signature of single tree crowns [11]. For example, the silver birch
(Betula pendula) individuals in our dataset were often found as solitary trees on the open heathlands.
The spectral signal of the birch trees might therefore be influenced by the spectral reflectance of the
heather that is present in the Sentinel-2 pixel covering these individual crowns.

To limit the “mixing” of the spectral signal in single tree crowns, our study only employed the
Sentinel-2 bands with a 10 m spatial resolution: blue, green, red, and NIR bands. The importance
of the Sentinel-2 red edge bands with 20 m spatial resolution for tree species classification has been
pointed out in previous studies [7,18,65]. However, spectral mixing in the coarser Sentinel-2 red edge
pixels has been found to offset the added information in the red edge, resulting in a lower classification
accuracy compared to classification accuracies based on only the 10 m resolution bands [17]. Therefore,
in this study, the red edge bands were not included in the analysis.

The spatial resolution of Sentinel-2 imagery was significantly lower compared to the 0.5 m spatial
resolution of the CHM. This discrepancy could limit the accuracy of the RF models, as a Sentinel-2
pixel can cover multiple individual trees as well as soil and undergrowth. It can be expected that
larger tree crowns are more accurately classified as they cover more complete Sentinel-2 pixels and
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therefore should show a spectral signature that is less influenced by inference from neighbouring
trees and undergrowth. However, we found that classification accuracies did not improve or decrease
with increasing crown area (Figure 3). This suggests that species and phylum prediction of trees with
relatively large crowns is not necessarily more accurate. We note that the lack of a trend may also
partly be explained by the unequal distribution of the number of trees per species over the crown
area classes. Improvements in classification accuracy would be possible by using higher resolution
spectral data, such as airborne acquisitions. This imagery, however, would be expensive to acquire,
in contrast to the freely available Sentinel-2 imagery.

Despite potential improvements in prediction accuracy that could follow from including higher
resolution multispectral data, our study demonstrated relatively high classification accuracies for the
most common tree species in our study area. The results were comparable to another tree classification
study [30], although comparison to other studies is difficult since studies were conducted with
different imagery and methods for different tree species and numbers and in other geographical areas.
Our approach likely performs well in ecosystems with relatively low tree density and diversity,
such as temperate and boreal forests and savanna ecosystems. In dense and diverse ecosystems,
such as tropical forests, our method may have difficulties in delineating individual tree crowns
and separating the spectral signals of individual trees [66]. To our knowledge, we were the first to
combine an automatic tree crown delineation algorithm with a species classification routine based
on high resolution ALS derived structural data and multitemporal Sentinel-2 imagery. Furthermore,
in contrast to many earlier studies, we applied this object-oriented method to mixed forest stands.
In summary, our approach performed well for classifying tree species and phyla in a temperate forest
in The Netherlands, even obtaining relatively high classification accuracies of 78.5% (Kappa value 0.75)
for tree species and 84.5% (Kappa value 0.73) for tree phyla.

5. Conclusions

In this study, we developed a novel method to automatically delineate individual tree crowns
and subsequently classify these crowns to the species level using freely available Sentinel-2 satellite
imagery and ALS data. Using this method, we created a detailed tree species distribution map of
eight dominant tree species for a 140 km2 mixed temperate forest in the Veluwe, The Netherlands.
Trees were sampled in heterogeneous field plots or as individual trees, resulting in a sample size
of 2460 trees. We delineated tree crowns automatically from a constructed canopy height model on
which tree tops were detected with a local maximum filter. The local maximum filter used a linear
tree crown area–height relationship fitted from our field data, and tree crowns were delineated using
a watershed segmentation. The local maximum filter and the watershed segmentation performed
well for gymnosperm trees but experienced difficulties with large angiosperm trees with a complex
crown structure. The automatic crown delineation method was also not able to detect small understory
trees beneath a closed canopy.

We used reference data in an object-based random forest model, and the results were validated
with an independent dataset. Different combinations of feature sets were tested. The features
included spectral variables of the 10 m resolution bands of Sentinel-2 images and crown structural
variables calculated from the ALS derived canopy height model dataset. Sentinel-2 imagery
was acquired for 18 September 2018, 17 November 2018, 21 April 2019, and 26 August 2019 to cover
phenological changes. After variable reduction, the model obtained the highest accuracies for the
classification with spectral and crown structural variables combined (78.5%, Kappa value 0.75 for
tree species; and 85.5%, Kappa value 0.73 for tree phyla). Adding phenological and crown structural
information thus improved classification results. Still, misclassifications occurred, probably due to
mixing of understory reflectance, clustered trees from different species due to the coarse resolution of
Sentinel-2 imagery, and unequal distribution of samples over the classes.

We extrapolated the RF models over the entire 140 km2 study area to generate tree species and
tree phyla maps of individual trees. These maps of detailed tree species distributions can be a highly
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valuable tool for forest management, ecological surveys, and forest fire management. Our classification
models can also be extended to other forest areas that are characterised by the presence of the same
species and by a comparable forest structure.
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Table A1. Root mean square error (RMSE) of the number of trees measured in the field against the number
of trees from the model. The RMSE is calculated to optimize the tree crown area–height relationship.
The table shows the RMSE for the linear function y = a + b ∗ Height. The rows indicate the
parameter a and the columns parameter b. The RMSE is the most optimal with the function
Crown area = 1.2 + 0.3 ∗ Height.

a
b

0.1 0.2 0.3 0.4 0.5

1.1 132.3 31.1 11.8 15.3 19.2
1.2 113.5 27.8 11.5 15.8 19.7
1.3 101.4 24.0 11.6 16.3 20.3
1.4 89.3 21.3 12.2 16.5 20.7
1.5 78.3 18.3 12.4 16.8 20.8

Table A2. RMSE of the number of trees measured in the field against the number of trees from the model.
The table shows the RMSE for the quadratic function y = a + b ∗ Height2. The rows indicate the
parameter a and the columns parameter b. The RMSE is the most optimal with the function Crown
area = 3.1 + 0.0091∗ Height2.

a
b

0.0091 0.0092 0.0093 0.0094 0.0095

2.5 16.1 15.9 15.5 15.2 15.1
2.6 14.2 14.1 13.9 13.6 13.6
2.7 12.8 12.7 12.3 12.2 12.3
2.8 12.3 12.3 12.0 11.8 11.8
2.9 11.4 11.4 11.4 11.3 11.2
3 10.9 10.8 10.8 10.9 11.0

3.1 10.6 10.8 10.9 11.1 11.1
3.2 11.0 11.1 11.2 11.2 11.2
3.3 11.5 11.5 11.6 12.0 12.0
3.4 11.8 12.0 12.0 12.0 12.0

Table A3. The RMSE of predicted tree crown area (m2) as a linear or quadratic function of tree height (H).
The table contains the RMSE values for the eight most common tree species on the Veluwe. The RMSE
is calculated to determine whether linear or quadratic tree crown area–height relationship fits the data
the best. The linear function showed to be the most robust and was therefore chosen.

Tree Species
Function

1.2 + 0.3 ∗ H 3.1 + 0.0091 ∗ H2

Betula pendula 27.9 28.1
Fagus sylvatica 67.0 67.4
Larix kaempferi 39.9 40.9

Picea abies 27.4 27.4
Pinus sylvestris 31.7 29.2

Pseudotsuga menziesii 49.8 52.2
Quercus robur 48.3 48.0
Quercus rubra 56.6 56.6

All species 54.1 54.4
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Table A4. The spectral and crown structural variables used in the Random Forest model. The black X’s
indicate the selected variables at species level; the blue X’s indicate the ones selected at phylum level.

Description Feature
Classification

All
Variables

Crown
Structural Spectral Autumn Winter Spring Summer

Blue band–
September 2018 B02 Autumn X X X X X X

Green band–
September 2018 B03 Autumn X X X X

Red band–
September 2018 B04 Autumn X X X

NIR band–
September 2018 B08 Autumn X X X X X

Blue band–
November 2018 B02 Winter X X

Green band–
November 2018 B03 Winter X X X X

Red band–
November 2018 B04 Winter X X X X X X

NIR band–
November 2018 B08 Winter X X X X

Blue band–
April 2019 B02 Spring X X X X X X

Green band–
April 2019 B03 Spring X X

Red band–April 2019 B04 Spring X X X X X X
NIR band–April 2019 B08 Spring X X X X X X

Blue band–
August 2019 B02 Summer X X X X X X

Green band–
August 2019 B03 Summer X X X X X

Red band–
August 2019 B04 Summer X X X X X X

NIR band–
August 2019 B08 Summer X X X X X X

Crown area Crown area X X
Maximum height Height maximum X X X X X X X X X X X X
Minimum height Height minimum X X

Mean height Height mean X X X X X
Median height Height median X X X X X X X X X X X

Height sum Height sum X X
Standard deviation

height Height std X X X X X X X X X X X

Height range Height range X X X X X X X X X X X X
Height variance Height variance X X X
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