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Abstract: To minimize the damage caused by wildfires, a deep learning-based wildfire-detection
technology that extracts features and patterns from surveillance camera images was developed.
However, many studies related to wildfire-image classification based on deep learning have
highlighted the problem of data imbalance between wildfire-image data and forest-image data.
This data imbalance causes model performance degradation. In this study, wildfire images were
generated using a cycle-consistent generative adversarial network (CycleGAN) to eliminate data
imbalances. In addition, a densely-connected-convolutional-networks-based (DenseNet-based)
framework was proposed and its performance was compared with pre-trained models. While training
with a train set containing an image generated by a GAN in the proposed DenseNet-based model,
the best performance result value was realized among the models with an accuracy of 98.27% and
an F1 score of 98.16, obtained using the test dataset. Finally, this trained model was applied to
high-quality drone images of wildfires. The experimental results showed that the proposed framework
demonstrated high wildfire-detection accuracy.

Keywords: wildfire detection; convolutional neural networks; densenet; generative adversarial
networks; CycleGAN; data augmentation

1. Introduction

Wildfires cause significant harm to humans and damage to private and public property; they pose
a constant threat to public safety. More than 200,000 wildfires occur globally every year, with a
combustion area of 3.5–4.5 million km2 [1]. In addition, climate change is gradually accelerating the
effects of these wildfires; there is thus considerable interest in wildfire management [2–4]. As wildfires
are difficult to control once they spread over a certain area, early detection is the most important
factor in minimizing wildfire damage. Traditionally, wildfires were primarily detected by human
observers, but a deep learning-based automatic wildfire detection system with real-time surveillance
cameras has the advantage of the possibility of constant and accurate monitoring, compared to
human observers. The available methods for the early detection of wildfires can be categorized as a
sensor-based technology and image-processing-based technology, using a camera. Sensors that detect
changes in smoke, pressure, humidity, and temperature are widely used for fire detection. However,
this method has several disadvantages, such as high initial cost and high false-alarm rates, as the
performance of sensors is significantly affected by the surrounding environment [5–7].
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With the rapid development of digital-cameras and image-processing technologies, traditional
methods are replaced by video- and image-data-based methods [8]. Using these methods, a large area
of a forest can be monitored, where fires and smoke can be detected immediately after the outbreak of a
wildfire. In addition, owing to intelligent image-analysis technology, image-based methods can be used
to address the problem of the inflexibility of sensing technology to new environments [9]. Such early
approaches include the use of support vector machines (SVM) [10,11] for classifying wildfire images,
and fuzzy c-means clustering [12] for identifying potential fire regions. Recently, convolutional neural
networks (CNNs), which provide excellent image classification and object detection by extracting
features and patterns from images, made many contributions to the wildfire-detection field [13–16].
CNN is one of the most popular neural networks and was successfully used in many research and
industry applications, such as computer vision and image processing [17,18]. These networks were
developed and successfully applied to many challenging image-classification problems, such as for
improving a model’s performance [19,20]. Muhammad et al. [21] developed a modified model from
GoogleNet Architecture for fire detection, to increase the model’s accuracy, and proposed a framework
for fire detection in closed-circuit television surveillance systems. Jung et al. [22] developed a decision
support system concept architecture for wildfire management and evaluated CNN-based fire-detection
technology from the Fire dataset. As noted by Jain et al. in their review of machine-learning applications
in wildfire detection [23], Zhang et al. found that CNN outperforms the SVM-based method [24],
and Cao et al. reported a 97.8% accuracy rate for smoke detection, using convolutional layers [25].
Recently, advances in mobile communication technology made it possible to use unmanned aerial
vehicles (UAVs), which are more flexible than fixed fire-monitoring towers; images obtained from
UAVs are used to learn fire-detection models [26,27].

Despite the contributions of these successful studies, some issues still need to be resolved in
order to apply this technology in the field. Mountain-image data are easy to obtain, owing to the
availability of various built-up datasets. However, not only is there a dearth of fire or smoke images of
wildfires in datasets, but such data are also relatively difficult to obtain because they require the use
of installed surveillance cameras or operational drones at the site of the wildfire [28,29]. Therefore,
research on damage detection is frequently faced with a data imbalance problem, which causes
overfitting; overfitting results in the deterioration of the model performance [30]. In order to solve
this data imbalance problem, in a recent study, synthetic images were generated and used to expand
the fire/smoke dataset [24,31]. In early studies, the data were increased using indoor artificially
generated smoke and flames or artificial images that comprised cut-and-pasted images of flames in
their background. However, this requires considerable manpower, and it is difficult to emulate the
characteristics of wildfire images using indoor images. Generative adversarial networks (GANs) [32]
are models that create new images using two networks—a generator and a discriminator. The generator
creates similar data using the training set, and the discriminator distinguishes between the real data
and the fake data created by the generator. The image rotation and image cropping data augmentation
method can also be used to expand the training dataset; however, GANs can be used to increase
dataset diversity as well as to increase the amount of data. They recently exhibited impressive
photorealistic-image-creation results [33–36]. GANs were proven to improve performance when
learning the classifier, mainly in areas where it is difficult to obtain damage data [37–39]. However,
there are relatively few related studies in the field of wildfire detection. Namozov et al. used GANs to
create fire photographs with winter and evening backgrounds in the original photographs, and added
a variety of seasons and times [28]. However, it is difficult to provide various types of fire scenarios in
various places as the resultant image retains not only the background of the original photo, but also the
shape of the flame and smoke. To apply the early wildfire detection model to the field, it is necessary
to learn various types of wildfire images using new backgrounds, such that wildfire detection can be
actively performed even in a new environment.

With the development of the CNN model and the deepening of neural networks, problems such
as vanishing gradients arise, which causes overfitting and deterioration of the model performance.
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An algorithm constructed using the latest neural network architecture of DenseNet [40] could be used
to address this issue. DenseNet improves the performance of a model by connecting the feature maps
of the previous layers to the inputs of the next layer using concatenation to maximize the information
flow between layers.

Inspired by recent works, we generated synthetic wildfire images using GANs to change the
image of a fire-free mountain to that of a mountain with a wildfire. The k-folds (k = 5) cross validation
scheme was used on the models, and the train set was separated, train sets A and B, consisting of
only the original images and of the original and generated images, respectively. Each dataset was
divided to obtain the training data and test data, and was used to train a model that was developed
based on DenseNet; this facilitated the comparison of the performance with two pre-trained models,
VGG-16 [19] and ResNet-50 [20]. This paper is organized as follows. Section 2 describes the architecture
of cycle-consistent adversarial networks (CycleGANs) [41], which is one of the main GANs algorithms
used for data augmentation, and DenseNet [40], which is used for wildfire-image classification (wildfire
detection). The experiment results obtained using both the models and the classification performance
comparison with those of the pre-trained models are presented in Section 3. Section 4 presents the
conclusion of this study.

2. Materials and Methods

2.1. Data Collection

The wildfire and non-fire images that were used for training the GAN model and CNN classification
models were collected. The mountain datasets were obtained from eight scene-categories databases [42]
and a Korean tourist spot database [43]. However, there is no open data benchmark available for
fire or smoke images of wildfires [28]. The collection was, thus, solely obtained using web crawling;
this limitation resulted in a data imbalance. Considering that the early fire-detection model is intended
for application in drones and surveillance cameras for the purpose of monitoring, both categories of
datasets were crawled from images or videos obtained using a drone. The sample of the dataset is
presented in Figure 1. A total of 4959 non-wildfire images and 1395 wildfire images were set up in our
original dataset and resized to 224 × 224 for the network input.
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Figure 1. Sample mountain and wildfire images from conducted data collection. (a) Mountain
images from eight scene categories database. (b) Mountain images from Korean tourist spot database.
(c) Drone-captured mountain images obtained via web image crawling. (d) Drone-captured wildfire
images obtained via web image crawling. (e) Drone-captured wildfire images obtained via web
video crawling.
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2.2. CycleGAN Image-to-Image Translation

To generate wildfire images, CycleGAN [41] was used, which is a method used for image-to-image
translation from the reference image domain (X) to the target image domain (Y), without relying on
paired images. As illustrated in Figure 2, in the CycleGAN, two loss functions called the adversary
loss [33] and cycle-consistency loss [41] were used.
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Our objective was to train Gx→y such that the discriminator Dy cannot distinguish the image data
distribution from Gx→y and the image data distribution from domain Y. This objective can be written
as follows:

L GAN
(
Gx→y, DY, X, Y

)
= Ey∼pdata(y)[logDY(y)] +Ex∼pdata(x)

[
log(1−DY(Gx→y(x)))

]
. (1)

LGAN
(
Gy→x, Dx, X, Y

)
= Ex∼pdata(x)[logDx(x)] +Ey∼pdata(y)

[
log(1−Dx(Gy→x(y)))

]
. (2)

However, in a general GAN, the model is not trained over the entire distribution of actual data;
it is only trained for reducing the loss. Therefore, a mode collapsing problem occurs in which the
optimization fails, as the generator cannot find the entire data distribution, and all input images are
mapped to the same output image. To solve this problem, in the CycleGAN, inverse mapping and
cycle-consistency loss (Lcyc) were applied to Equations (1) and (2), respectively, and various outputs
were thus produced. The equations of the cycle-consistency loss were as follows:

Lcyc
(
Gx→y, Gy→x

)
= Ex∼pdata(x)

[
‖Gy→x

(
Gx→y(x)

)
− x‖

1

]
+Ey∼pdata(y)

[
‖Gx→y

(
Gy→x(y)

)
− y‖

1

]
. (3)

In addition, by converting the X domain into Gy→x while adding an identity loss (Lim) that
regularized the generator, such that the calculated output was the same as the input, the converted
image could be generated, while minimizing the damage to the original image.

Lim
(
Gx→y, Gy→x

)
= Ey∼pdata(y)

[
‖Gx→y(y) − y‖1

]
+Ex∼pdata(x)

[
‖Gy→x(x) − x‖1

]
. (4)

The final loss combined with all losses was as follows. Using CycleGAN with this method, it was
possible to create various wildfire images, while maintaining the shape and background color of the
forest site.

L

(
Gx→y, Gy→x, Dx, Dy

)
= LGAN

(
Gx→y, D, X, Y

)
+ LGAN

(
Gy→x, D, X, Y

)
+

λLcyc
(
Gx→y, Gy→x

)
+Lim

(
Gx→y, Gy→x

)
.

(5)
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2.3. DenseNet

The early wildfire-detection algorithm was constructed using the state-of-the-art net architecture,
DenseNet, which is known to perform well in wildfire detection, while alleviating the vanishing
gradient problem and reducing the training time [40]. It is a densely connected CNN structure that
has a connection strategy. Figure 3 illustrates the original dense block architecture. The network
comprises layers, each of which contain a non-linear transformation, and includes functions such
as batch normalization, rectified linear unit (ReLU), and convolution. X0 is a single image, and the
network output of the (l− 1)th layer after passing through a convolution is Xl−1. The lth layer receives
the feature maps of all preceding layers as its input (Equation (6)).

Xl = Hl([X0, X1, X2, . . . , Xl−1]) (6)

Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 16 

 

structure that has a connection strategy. Figure 3 illustrates the original dense block architecture. The 
network comprises layers, each of which contain a non-linear transformation, and includes functions 
such as batch normalization, rectified linear unit (ReLU), and convolution. 𝑋  is a single image, and 
the network output of the 𝑙 1  layer after passing through a convolution is 𝑋 . The 𝑙  layer 
receives the feature maps of all preceding layers as its input (Equation (6)). 𝑋  𝐻 𝑋 , 𝑋 , 𝑋 , … , 𝑋  (6) 

 
Figure 3. Architecture of five-layer densely connected convolution networks. 

2.4. Performance Evaluation Metrics 

To compare the performance of the models, five commonly used metrics were 
calculated—accuracy, precision, sensitivity, specificity, and F1-Score [44–46]. Accuracy is the ratio of 
accurately predicted observations to the total number of observations and is the most intuitive 
performance measurement. Precision is the ratio of correctly predicted positive observations to the 
total predicted positive observations. Sensitivity is the ratio of correctly predicted positive 
observations to the actual true observations. Specificity is the ratio of correctly predicted negative 
observations to the total number of predicted negative observations. The F1 score is the harmonic 
average of precision and sensitivity, which is generally useful for determining the performance of a 
model in terms of accuracy. The expressions for the evaluation metrics are presented as follows. Accuracy       . (7) Precision   . (8) Sensitivity   . (9) Specificity   . (10) F1  score       . (11) 

In the aforementioned equations, the number of true positives that the model predicts, i.e., the 
number of wildfire images predicted as wildfires and the number of true negatives that model the 
predicts, i.e., the number of non-fire images identified as non-fire, are denoted by true positive (TP) 
and true negative (TN), respectively. In addition, the number of false positives that the model 
predicts, i.e., the non-fire images predicted as wildfires, and the number of false negatives that 
model predicts, i.e., the wildfire images predicted as non-fire, are denoted as false positive (FP) and 
false negative (FN), respectively. These four types of data are defined using a confusion matrix in the 
binary classification. The overall performance-evaluation metrics were evaluated using the wildfire 
and non-wildfire testing sets. 
  

Figure 3. Architecture of five-layer densely connected convolution networks.

2.4. Performance Evaluation Metrics

To compare the performance of the models, five commonly used metrics were calculated—accuracy,
precision, sensitivity, specificity, and F1-Score [44–46]. Accuracy is the ratio of accurately predicted
observations to the total number of observations and is the most intuitive performance measurement.
Precision is the ratio of correctly predicted positive observations to the total predicted positive
observations. Sensitivity is the ratio of correctly predicted positive observations to the actual
true observations. Specificity is the ratio of correctly predicted negative observations to the total
number of predicted negative observations. The F1 score is the harmonic average of precision and
sensitivity, which is generally useful for determining the performance of a model in terms of accuracy.
The expressions for the evaluation metrics are presented as follows.

Accuracy =
TP + TN

TP + TN + FP + FN
. (7)

Precision =
TP

TP + FP
. (8)

Sensitivity =
TP

TP + FN
. (9)

Specificity =
TN

TN + FP
. (10)

F1− score =
2 × precision × Sensitivity

precision + Sensitivity
. (11)

In the aforementioned equations, the number of true positives that the model predicts,
i.e., the number of wildfire images predicted as wildfires and the number of true negatives that
model the predicts, i.e., the number of non-fire images identified as non-fire, are denoted by true
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positive (TP) and true negative (TN), respectively. In addition, the number of false positives that the
model predicts, i.e., the non-fire images predicted as wildfires, and the number of false negatives that
model predicts, i.e., the wildfire images predicted as non-fire, are denoted as false positive (FP) and
false negative (FN), respectively. These four types of data are defined using a confusion matrix in the
binary classification. The overall performance-evaluation metrics were evaluated using the wildfire
and non-wildfire testing sets.

3. Experimental Results

The following sections present the obtained results of the dataset balancing and wildfire detection
models. The experiment environment was CentOS (Community enterprise operating system) Linux
release 8.2.2004, which was constructed as an artificial intelligence server. The hardware configuration
of the server consists of an Intel(R) Xeon(R) Gold 6240 central processing unit, 2.60 GHz, with an Nvidia
Tesla V100 GPU, 32 GB memory. The experiences were conducted using the PyTorch deep learning
framework [47] with Python language. The result and the example experiment code is available online
at Github repository (https://github.com/pms5343/pms5343-WildfireDetection_by_DenseNet).

3.1. Dataset Augmentation Using GAN

To alleviate the data imbalance of the collected images, new wildfire images were generated using
the CycleGAN as a data augmentation strategy. The objective of using the image-generation model
is to convert non-wildfire images from a part of the collected data into wildfire images. A total of
1294 wildfire images (Domain A) and 2311 non-wildfire images (Domain B) from our original dataset
were used.

As can be observed from Figure 4, the training was performed by increasing the number of epochs
until there was a slight change in each loss, in order to improve the model. The generator loss was
learned in the direction of increasing loss as the number of epochs increased because the objective of
the generators was to create a fake image such that the discriminator could not determine whether
the generated image was real or fake. Conversely, the discriminator losses were trained to reduce the
loss, in order to distinguish between the generated and original images. Figure 4b shows that the
cycle consistency loss added for the purpose of increasing the diversity of the generated image and
the identity mapping loss added for the purpose of minimizing changes in the background of the
generated image were also trained in the direction of decreasing exposure. After 650 epochs, there was
no significant change in loss, and the training was thus terminated.
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Figure 5 illustrates the overall process of the model and an example of when the images of domains
A and B undergo the model-training process. The mountain image without a fire in domain B was

https://github.com/pms5343/pms5343-WildfireDetection_by_DenseNet
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converted into a wildfire image through the generator GBA and then compared with the image of domain
A (original wildfire image), by discriminator A (DA) ( 1O→ 2O→ 3O process in Figure 5). The converted
image was the image reconstructed by generator GAB, and the result was not significantly different
from that of domain B ( 1O→ 2O→ 4O process in Figure 5). In addition, it was confirmed that there was
no difference in the image converted by generator GAB from domain B ( 1O→ 5O process in Figure 5).
Conversely, the process was conducted in the same manner, and 1195 new 224 × 224-pixel fire images
were created from domain B (Figure 6) and included in the wildfire dataset.
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3.2. Wildfire Detection

The wildfire detection was realized through the use of a DenseNet-based classification
network model consisting of three dense blocks and two transition layers to identify the fire with
224 × 224-pixel-size image inputs. The architecture of the simple network is illustrated in Figure 7.

The dense block included a two-kernel filter. One filter was a 1 × 1 size convolution, which was
used to decrease the number of input feature map channels, and the other was a 3 × 3 size convolution.
After the dense block, the feature maps passed through a phase layer consisting of batch normalization,
ReLU, 1 × 1 convergence, and 2 × 2 average pooling, which reduced the width and length of the feature
map and the number of feature maps. Finally, after three dense block sessions, the result was drawn
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after the linear layer at the end, after passing through the global average pooling and softmax classifier
sequentially, as in the case of a traditional CNN.
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The following section presents the results of the wildfire-detection performance obtained using
the deep learning classification model based on DenseNet, as compared to the pre-trained model.
Two results were derived for each model—one for train set A and the other for train set B.

3.2.1. Dataset Partition

The train and test set partition are specified in the following section. From the collected original
dataset, several images were used to generate new images. The forest image used as the GAN domain
was deleted from the dataset for the classification model; however, the wildfire domain was not
eliminated because it was used as a reference; it was thus not deleted from the dataset. A total
of horizontal flip and random crop (by 200 pixel) were used to expand the number of samples of
the training sets. The train sets were divided into trainset A, consisting only of photographs taken,
and trainset B, consisting of wildfire images generated by the GAN. Many precedent research showed
that accuracy becomes lower when the number of data points is imbalanced [48]. In order to avoid the
disadvantages of already well-known data imbalances, Train set A kept the data ratio between the two
classes similar, even if the total number of data is set less than B. The test set only contains the original
photograph and not the generated image. Twenty percent of the total collected original image dataset
was selected as the test dataset. Partition of the datasets are shown in Table 1.

Table 1. Image datasets for wildfire-detection model.

Original
Non-Fire Images

Original
Wildfire Images

Generated
Wildfire Images

Train set A
[Real database] 3165 2427

Train set B
[Real + synthetic database] 6309 2427 3585

Test set 545 486

3.2.2. Model Training and Comparison of the Models

To demonstrate the performance of the proposed method, two train sets were used in the
proposed model and well-known pre-trained models, ResNet-16 and VGG-50, for the performance
evaluation. To improve the models’ performance of each model, the learning rate and optimizer were
tested. Ten values of the initial learning rate between 0.1 and 0.00001 were tested, while changing
three representative optimizers—stochastic gradient descent (SGD), Adam [49], and PMSprop [50].
The number of epochs was fixed at 250, and batch size was fixed at 64. The best hyperparameter
combination was found based on the average accuracy from the k-folds (k = 5) cross-validation process;
presented in Table 2.
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Table 2. Selected hyperparameters for CNN architectures.

VGG-16 ResNet-50 DenseNet

Batch Size 60 60 60
Initial Learning Rate 0.0002 0.0002 0.01

Number of Training Epochs 250 250 250
Optimizer Adam Adam SGD

The training process of each model using the selected hyperparameter combination is illustrated
in Figure 8. The training accuracy curve obtained as the number of epochs increased is presented in
Figure 8a. The accuracy of the six models increased most significantly between epochs 1 and 10 and
then increased steadily until epoch 250.
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Figure 8. Learning curve of training process over epochs. (a) Accuracy curve. Final accuracy: VGG-16,
trainset A (0.954); VGG-16, trainset B (0.969); ResNet-50, trainset A (0.989); ResNet-50, trainset B (0.995);
DenseNet trainset A (0.985); and DenseNet trainset B (0.995). (b) Loss curve. Final loss: VGG-16,
trainset A (0.123); VGG-16 trainset B (0.085); ResNet-50, trainset A (0.028); ResNet-50, trainset B (0.016);
DenseNet, trainset A (0.0003; SGD); and DenseNet, trainset B (0.00006; SGD).

The DenseNet-based proposed model demonstrated the highest training accuracy, with an
approximate accuracy of 99% in the final learning approach, followed by ResNet-50 and then VGG-16.
In addition, it was demonstrated that the accuracy performance of trainset B, which included generated
images, was greater than that of trainset A for all three models. The training loss curve obtained as the
number of epochs increased is presented in Figure 8b. The DenseNet and ResNet-16 losses rapidly
decreased until epoch 20, whereas the loss of VGG-16 continued to decrease steadily. The training loss
also exhibited a better performance for trainset B than that for trainset A in the case of both the initial
and final losses.

The classifier models were evaluated based on the performance results, using the five metrics
presented in Table 3. DenseNet yielded the best results in terms of all five metrics. Although the
VGG-50 model exhibited a slightly lower accuracy, sensitivity, and F1-score, the results obtained on
using trainset B were at a similar level as (or better than) those obtained with trainset A. For example,
in the case of DenseNet, the accuracy increased from 96.734% to 98.271%, the precision increased from
96.573% to 99.380%, sensitivity increased from 96.573% to 96.976, specificity increased from 96.881% to
99.450%, and the F1-score increased from 96.573 to 98.163. The experimental results showed that a new
image created by changing a normal image of a mountain into an image of a mountain on which a fire
had occurred could maintain the performance of the CNN and also improve the model performance
via the input of various data as training.
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Table 3. Comparisons of performance evaluation.

VGG-16 ResNet-50 Proposed Method

Train Set A Train Set B Train Set A Train Set B Train Set A Train Set B

Accuracy (%) 93.756 93.276 96.734 96.926 96.734 98.271
Precision (%) 93.890 97.973 97.727 97.934 96.573 99.380

Sensitivity (%) 92.944 87.702 95.363 95.565 96.573 96.976
Specificity (%) 94.495 98.349 97.982 98.165 96.881 99.450

F1-Score 93.414 92.553 96.531 96.735 96.573 98.163

The bold is the best result among other methods.

3.2.3. Influence of Data Augmentation Methods

In this section, proposed model performance is compared with and without using CycleGAN-based
data augmentation, to verify the influence of the proposed method. Horizontal flip, random zoom
(200 pixel), rotation (original images were rotated by 10◦ and 350◦), and random brightness (two values
were selected arbitrarily from lmin = 0.8 to lmax = 1.2) methods were used in this section, as traditional
data augmentation without GAN. The F1-score was obtained from a combination of training sets
consisting of various augmentation methods.

Based on the experimental results, it could be seen that data augmentation from CycleGAN
improved the accuracy of wildfire detection models. As can be seen from Table 4, the F1 score trained
from data combination including the GAN method was higher by 1.154, 0.902, and 0.821, respectively,
than the model trained from traditional method without GAN.

Table 4. F1-scores for model trained by various combination sets.

Data Augmentation Method Training Images F1-Score

Original + GAN + Horizontal flip + Zoom (200) 6312 98.163
Original + GAN + Rotation (10◦ and 350◦) 6312 97.911

Original + GAN + Random brightness (from lmin to lmax) 6312 97.830
Original + Traditional augmentation (Without GAN) 6363 97.009

3.2.4. Visualization of the Contributed Features

In order to visualize the output result of the model that exhibits the best performance, a class
activation map (CAM) [51] was used to determine the features of the image that were extracted to
detect the wildfire. As can be observed from the example of the CAM results in Figure 9, the detection
was made primarily based on the presence of smoke or flames in the image, and the elements used
for the classification as wildfires were found even in the early stages of the fire, with no flame and
little smoke.
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The smoke in the part of the image that comprises the forest could be detected well, but the smoke
in the part that comprises sky was not judged as a factor. It is hypothesized that this occurred because
the model confused smoke with clouds or fog, and the smoke near the sky background could thus not
be treated as a powerful factor for classifying the features.

3.3. Model Application

To apply the learned model to on-site drones or surveillance cameras used to monitor forests,
a method of application for higher-resolution images than the model input-image size (224 × 224)
is required. There is also a method used for resizing a remote camera image to a lower resolution;
however, the method proposed in this study comprises cropping high-resolution images at regular
intervals—considering that surveillance cameras are generally used to observe large areas—to derive
the result values for each image.

Figures 10–12 present an example of a model application based on a drone-tested forest video [52].
This is a 1280 × 720-size drone video of a wildfire that occurred in Daejeon, Korea, in 2015. The white
and jade green boxes denote the cropped areas of size 224 × 224 and are indicated in alternate colors
for visualization convenience. The cropped images were cut to overlap each other at a certain interval,
and 28 images per video frame were cut and input to the classification model. The text in the square
box indicates the value derived from the softmax layer of the model, which was the final layer of the
model (as it was trained using two classes; if the softmax value of the model was greater than 0.5,
it was determined that the range comprised a fire, otherwise, it was determined that the range did not
comprise a fire.)
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Figure 10 presents the result of the application of the model to the image captured approximately
1 min after the wildfire occurred. The photos include not only the forest, but also parts of the nearby
villages. The model detected the smoke generated in the forest and determined the location at which
the fire had occurred. However, a greenhouse at the bottom right of the photo was falsely detected as a
wildfire (0.829). It was suggested that this was a problem caused by the error of not properly taking
into consideration specific images like cities, roads, and farmland, when training the initial model.
This phenomenon was also found when applied to other sites.
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As can be seen from the class activation map in Figure 11, the model mistook the building feature.
Although it could not be judged that this was falsely detected by all artifacts, it was confirmed that false
positives might occur when more than half of the cropped images were not natural objects. Conversely,
there were no false positives caused by natural objects, such as confusion of distinguishing between
clouds and smoke.

Figure 12 presents the result of the application of the model, approximately 10 min after the
wildfire progression. As the fire was accompanied by flames after the fire had grown to some extent,
the softmax layer provided a prediction with 100% probability, and the fire could be detected more
easily than at the beginning of the fire. After applying the method of cropping without resizing the
image, damaging the original image becomes unnecessary. As each cropped image is discriminated
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individually, the location of the fire can be tracked, while continuously obtaining real-time video
footage, using a surveillance camera.

4. Conclusions

With the development of remote camera sensing technology, many researchers attempted to
improve existing wildfire-detection systems using CNN-based deep learning. In the damage-detection
field, it is difficult to obtain a sufficient amount of the necessary data for training models; data imbalance
or overfitting problems have thus caused the deterioration of the models’ performance. To solve
these problems, traditional image transformation methods such as image rotation were primarily
used. A method of increasing the learning data was also adopted, wherein the flame image was
artificially cut and pasted over a forest background. However, these two methods have their
respective weaknesses—failure to increase the diversity of images and the necessity of manual labor,
while providing unnatural images. The results of this study addressed this issue.

Our study had several advantages. First, a data augmentation method based on the same rules as
those of artificial intelligence was used. It could also generate data while requiring minimal manpower.
Using adversary, cycle-consistency, and identity losses, the optimized model could be used to produce
various flame scenarios. The model could also be pre-trained for various wildfire scenarios in new
environments, prior to the management of the forest; higher detection accuracy could, thus, be expected.
Second, we improved the detection accuracy by applying a dense block based on DenseNet in the
model. The training history and test results showed that the proposed methods facilitated good model
performance. Third, it was proposed that the model could be applied to high-resolution images to
overcome the limitations that depend primarily on the use of small-sized images, as inputs to the model.
This allows us to identify the approximate location of the wildfire from a wide range of photographs.

There were also several limitations to our study. The model training was conducted using a limited
forest class. Although during the experiment conducted with drone images the model identified the
cloud and wildfire areas well (the upper part of the cropped photos in Figure 11), the smoke in the
part of the image comprising the sky was not captured as a feature when the test data was obtained
using CAM. This could be adjusted by increasing the class range or by learning additional models
using images that are likely to confuse the model. Another potential problem was that the model
performance for detection of wildfires in the nighttime was not considered. This temporal variable
was excluded from the study because the purpose of this study was to check the efficiency of the
data augmentation from artificial intelligence method and the efficiency of dense block in wildfire
detection models. However, these details should be considered in further studies because of the
different characteristics in the nighttime detection and in the day-time detection.

By improving upon the achievements and limitations of this study, in a future study, we intend to
implement a forest-fire detection model in the field, by installing real-time surveillance cameras in
Gangwon-do, Korea, which is exposed to the risk of wildfires every year.

In addition, by developing a technology that calculates the location of fires using image processing
to measure fire area distance from camera and displays it on a map user interface, we intend to provide
disaster-response support information for decision makers to realize a quick response in the event of
the occurrence of a wildfire.
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