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Abstract: With the recent advances of deep learning, automatic target recognition (ATR) of synthetic
aperture radar (SAR) has achieved superior performance. By not being limited to the target category,
the SAR ATR system could benefit from the simultaneous extraction of multifarious target attributes.
In this paper, we propose a new multi-task learning approach for SAR ATR, which could obtain the
accurate category and precise shape of the targets simultaneously. By introducing deep learning
theory into multi-task learning, we first propose a novel multi-task deep learning framework with
two main structures: encoder and decoder. The encoder is constructed to extract sufficient image
features in different scales for the decoder, while the decoder is a tasks-specific structure which
employs these extracted features adaptively and optimally to meet the different feature demands
of the recognition and segmentation. Therefore, the proposed framework has the ability to achieve
superior recognition and segmentation performance. Based on the Moving and Stationary Target
Acquisition and Recognition (MSTAR) dataset, experimental results show the superiority of the
proposed framework in terms of recognition and segmentation.

Keywords: synthetic aperture radar (SAR); automatic target recognition (ATR); multi-task learning;
deep learning

1. Introduction

Synthetic aperture radar (SAR) is an important microwave remote sensing system in the domains
of military and civilian applications. With the high-resolution coherent imaging capability of all
weather and all day penetration, it can obtain more distinct information than optical sensors, infrared
sensors, etc. [1,2]. Moreover, it is able to acquire abundant backscattering characteristics of the
targets. These backscattering characteristics contain unique identifying information of target attributes,
which is often difficult to accurately interpret from the perspective of human vision. Besides, it is
usually a hard task to accomplish real-time processing when the size and number of SAR images are
increasing. Therefore, SAR automatic target recognition (ATR) has become one of the most crucial and
challenging issues in SAR application.

Basically, the fundamental problem of SAR ATR is to locate and recognize the objects of interest
in an environment with clutters in SAR images [3]. The standard architecture of the SAR ATR
system proposed by MIT Lincoln Laboratory has three main stages: detection, discrimination and
classification [4]. In the detection stage, a constant false alarm rate (CFAR) detector is employed to
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localize where a potential target is likely to exist in the SAR image. Then, in the discrimination stage,
some specific discriminating criteria are adopted to reject cultural and natural clutter false alarms.
In the classification stage, an elaborate and efficient classifier provides additional false alarm rejection
and categorizes the remaining detections as specific target types.

Many novel classification algorithms and systems have been proposed in recent years and
performed well in applications [5–7]. These various methods for the classification stage in
general can be taxonomized into two mainstream paradigms: template-based and model-based.
The template-based taxon is a pattern recognition approach solely relying on templates to represent
the targets [8]. These templates could be two-dimensional target templates or extracted feature vectors.
The process of the template-based taxon involves two distinctive stages: offline classifier training and
online classification. Despite templated-based taxon’s simplicity and popularity [9], it may be unable
to cope with extended operating conditions (EOCs). Unlike the template-based taxon, the model-based
taxon mainly focuses on representing the characterization of the physical structure of the target [10].
Typically, a model-based taxon consists of two main stages: holistic physical model construction for
the target and the online classification prediction that yields close resemblance to the input SAR chips.
Despite model-based taxon can circumvent the EOCs to some extent, it also faces the problem of the
additional complexity in the SAR ATR system.

In recent decades, deep learning has been applied in signal and image processing fields and
demonstrated its superior performance. As for the SAR ATR application, many excellent studies
have proposed many deep learning methods with outstanding results [11–15]. Chen et al. [16]
proposed an all-convolutional network replacing all the dense layers with the convolutional layers,
which leads to outstanding recognition performance. Wagner et al. [17] proposed a combination of
a convolutional neural network and support vector machines to incorporate prior knowledge and
enhance its robustness against imaging errors. Jiao et al. [18] proposed a multi-scale and multi-scene
ship detection approach for SAR images, which could detect small scale ships and avoid the interference
of inshore complex background. Li et al. [19] proposed block sparse Bayesian learning (BSBL) to
synthetic aperture radar (SAR) target recognition, which considers the azimuthal sensitivity of SAR
images and the sparse coefficients on the local dictionary.

However, most of the existing SAR ATR methods only focus on improving the detection or
recognition performance and still need various separate subsystems for different functions. In practice,
the whole system of SAR ATR has great demand in acquiring multifarious information of the
given target, such as location, category, shape, morphological contour, ambient relationships, etc.
Furthermore, when multiple subsystems are employed to achieve the goals of detection, recognition,
etc., the complexity of the whole SAR ATR system will be too high to meet the practical demand.

In practice, for analyzing the purpose of the detected targets, it is necessary to get enough target
attributes which are composed of multi-dimensional information. For example, it is critical to gain
the categories and the tracks of detected ships simultaneously to judge if they are going to transport
or attack. The category and geometric structure of the target contain substantial information among
the multifarious target attributes [20]. Therefore, it is necessary and valuable to extract the category
and geometric structure of the given target with one system, namely one SAR ATR system deals with
multiple tasks simultaneously.

Fortunately, multi-task learning (MTL) can handle different related tasks simultaneously,
which can refer to the joint learning of multiple problems, enforce a common intermediate
parameterization and replace multiple subsystems with one system. With the relevance of the
different tasks, it could improve the generalization performance of the system, which is caused
by leveraging the domain-specific information contained in the training dataset of related tasks [21–23].
Besides, these related tasks are learned simultaneously by extracting and utilizing appropriate shared
information across tasks. From a machine learning point of view, MTL could be regarded as a form of
inductive transfer, which could improve a model by introducing an inductive bias provided by the
related tasks [24,25].



Remote Sens. 2020, 12, 3863 3 of 19

Considering that the superior performance of deep learning, by introducing the deep learning
theory into the framework of MTL, MTL will acquire the capability of adaptive feature learning and
powerful feature representation to promote its performance [26], which would be a perfect encounter in
SAR ATR. Furthermore, it is possible that a neural network MTL module can increase the performance
of the whole SAR ATR system using the relevance between tasks.

Therefore, in this paper, we propose a novel multi-task deep learning framework for recognition
and segmentation of the SAR target to obtain both its category and shape information. First,
we construct a multi-task deep learning framework to complete target recognition and segmentation in
SAR images, which consists of two parts: encoder and decoder. Second, a shared encoder is designed
to extract effective features in different scales for morphological segmentation and recognition. Then,
through constructing two different sub-network structures, the two decoders have the capability of
employing these extracted features adaptively and optimally to meet the different feature demands of
the recognition and segmentation. Therefore, the proposed multi-task framework has the capability of
extracting sufficient category and shape information of the SAR target.

The remainder of this paper is organized as follows. An overview of the multi-task deep
learning framework is presented in Section 2. The specific design and instantiation of the proposed
framework are given in Section 3. Section 4 evaluates the performance of our proposed framework
with experiments. Section 5 gives the conclusions.

2. MTL Deep Learning Framework for SAR Target Segmentation and Recognition

As mentioned above, the category and geometric structure of the targets are able to provide
sufficient information of the SAR targets in practice. Therefore, we propose an MTL deep learning
framework to efficiently extract multifarious attributes of the SAR target and achieve the recognition
and segmentation simultaneously.
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Figure 1. Proposed MTL deep learning framework.

The proposed MTL deep learning framework mainly consists of two parts , as shown in Figure 1:
encoder and decoder. The encoder is a special structure which is utilized to extract optimal image
feature from SAR image to achieve accuracy recognition and segmentation. The key point of the
encoder construction is to provide sufficient image features in different scales for the decoder. Then,
the decoder is a task-specific structure which is divided into two sub-decoders. The decoder for the
precise segmentation is constructed to adopt the fusion of the extracted features in different scales.
These features represent the overall contour and local details of the target. Meanwhile, the structure
for recognition should finish further extraction and fusion of optimal image features to realize the
accurate recognition of the targets. Through the above structures, the proposed multi-task deep
learning framework can extract optimal features layer by layer from SAR images and employ these
extracted features adaptively and optimally to meet the different feature demands of the recognition
and segmentation.
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3. Network Architecture of MTL Deep Learning Framework

In this section, a specific implementation of the proposed MTL deep learning framework and the
details of its configuration are presented. First, we elucidate the structure of the specific implementation.
Then, the configurations of each layer are presented. Finally, the joint loss of the proposed network
and the training implementation are given.

3.1. Specific Implementation

The specific implementation of the proposed MTL deep learning framework is presented in
Figure 2.
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Figure 2. Specific implementation of the proposed framework.

To gain sufficient image information to achieve the recognition and segmentation of the targets,
the encoder is designed to consist of three convolutional layers and three max pooling layers to extract
different forms of image features in different scales. A rectified linear unit (ReLU) [27] is adopted as an
activation function after each convolutional layer, which could increase nonlinear capability. A batch
normalization [28] is adopted before each convolutional layer, which could make the middle data
distribution more consistent with the distribution of the input data and ensure the nonlinear expression
ability of the whole architecture. Therefore, the encoder gets the capability of fitting nonlinear data
distribution and acquiring a different form of optimal image features.

Then, owing to the different demands of structure and image feature for the recognition and
segmentation, the decoder is designed, respectively, for the two tasks, whose specific forms are two
different sub-decoders with two different feature utilizations. The sub-decoder for the recognition
consists of two convolutional layers and one max pooling layer. At the last convolutional layer,
SoftMax is adopted as a classifier to get the normalized probability distribution of the recognition
results. As for the segmentation, the sub-decoder is designed as the structure consist of three transposed
convolutional layers [29] and three convolutional layers. After each convolutional layer, there is one
skip connection [30] for being combined with the image features extracted by the encoder. There are
no activation functions after each convolutional layer. Through the two specific structures of decoder
for the recognition and segmentation of the targets, the decoder gets the capability of gaining accurate
recognition and precise segmentation.

The details of those layers, activation functions, etc. are described in the following.

3.2. Convolutional Layer and Transposed Convolutional Layer

The convolutional layer is the main component of the whole architecture to percept the local image
information and extracts the image feature. Sparse connectivity and weight sharing are two advantages
in the convolutional layer to reduce the number of parameters. Sparse connectivity means that the
size of connection fields between the feature maps of the (l − 1)th layers and the lth convolutional
layer is the same as the size of convolutional kernels. Weight sharing means that each convolutional
kernel is employed to be calculated with all the spatial area in the convolutional layer. Given the ith
feature map in the (l − 1)th layers as xl−1

i , wl−1
i as one convolutional kernel and bl−1

i as the bias in the
lth convolutional layer. The operation of the lth convolutional layer can be presented as
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xl
j = ∑

i=1
(xl−1

i ) ∗ (wl
ij) + bl

j (1)

where ∗ denotes the convolution.
At the same time, the operation of the convolutional layers can be presented as

xl = Wlxl−1 + bl (2)

where xl denotes the nl dimension output vector which is reshaped into the matrix, xl−1 denotes
the nl−1 dimension input vector which is reshaped from the matrix and Wl denoted the reshaped
convolutional kernel whose size is nl × nl−1.

The transposed convolutional layer is an up-sampling method, which could seek for the
optimal parameter to up-sample the images. The transposed convolutional layer is actually the
reverse operation of the convolutional layer, which means that the forward and backward of the
transposed convolutional layer are reverse to the convolutional layers. The operation of the transposed
convolutional layer can be described as follows. First, the input image is padded with zero to expand
the size. Then, the padded input images are convolved with the transposed convolutional kernels [29].
After each operation of convolution, the position of the next convolution is shifted by the set stride.

The transposed convolutional layer is a main component of the decoder for the segmentation,
which is adopted to up-sample and integrates the extracted feature maps adaptively layer by layer.
The output size of the lth transposed convolutional layer with the factor sl

T is equal to the convolutional
layer with a fractional stride 1

sl
T

. Given the ith feature map in the (l − 1)th layers as xl−1
i , the operation

of the transposed convolutional layer can be presented as

xl=(Wl)Txl−1 + bl (3)

where Wl denotes the reshaped convolutional kernel, whose size is nl × nl−1.

3.3. Batch Normalization and Rectified Linear Unit

Batch normalization is a trick to train a deep learning network. It not only can accelerate the
convergence speed of the network, but also solve the problem called gradient dispersion to a certain
extent, which makes it easier and more stable to train a deep learning network [31]. The processing of
batch normalization could be divided into three steps as following. First, given a batch of the input
images as B = {x1, x2, . . . , xm}, the average value and the variance of each training data batch are
calculated by

µB =
1
m

m

∑
i=1

xi (4)

σ2
B =

1
m

m

∑
i=1

(xi − µB)
2 (5)

where µB is the average value of this batch B and σ2
B is the variance. Then, the batch B =

{x1, x2, . . . , xm} is normalized by µB and σ2
B to get the 0–1 distribution:

x̂i =
xi − µB√

σ2
B + ε

(6)
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where ε is a small positive number to avoid the divisor as zero. Finally, the normalized batch B is
subjected to scale transformation and translation by

BNγ,β (xi) = γx̂i + β (7)

where γ is the scale factor and β is the translation factor. BNγ,β (·) is denoted as the operation of the
batch normalization. The two learnable parameters, γ and β, are introduced to solve the problem that
the expression ability of the network is decreased, which is caused by the normalized batch being
basically limited to the normal distribution [32].

The Rectified linear unit (ReLU) is an activation function which has less computational complexity
than other activation functions [33], such as sigmoid, and solves the problem called vanishing gradient
to a certain extent. The formula of the ReLU can be presented as

f
(

xj
i

)
= ReLU(xj

i) =

{
xj

i i f xj
i > 0

0 i f xj
i ≤ 0

(8)

The ReLU will make the output of some feature maps zero, which leads to the sparsity of the
network and alleviates the occurrence of the overfitting problem.

3.4. Max Pooling and SoftMax

The max pooling layer is utilized to integrate the information of the feature maps with reducing
the number of parameters and the computational complexity of the whole network. The operation of
the max pooling layer is to get the maximum value in the window of the feature maps as

pi = max
(u,v)∈P

xi (u, v) (9)

where u, v is the coordinate of the pixels in the pooling window, pi is the output of the max pooling
layer and P is the pooling window. Although the max pooling layer has many advantages, it could
also pool some crucial information for the segmentation or other tasks.

SoftMax is adopted as a classifier that could normalize the output of the network to be understood
as posterior probability with the original intention to make the effect of the feature on probability
multiplicative. Given the output vector of the network before SoftMax as xL=

{
xL

1 , xL
2 , . . . , xL

C
}

, the
formula of SoftMax can be presented as

p
(

yi

∣∣∣xL
)
=

exp(xL
i )

C
∑

k=1
exp(xL

k )

(10)

where C is the number for the target types, yi is the one-hot vector of the target type and exp (·) is
the power of e. Through the operation of SoftMax, the probability of each type of target is acquired
corresponding to each element in the output vector of SoftMax.

3.5. Joint Loss and Backpropagation

The Joint loss is the combination of each task’s loss, which could highly influence the performance
of the whole framework. Through choosing the appropriate weights between each task’s loss, the joint
loss not only consider the difference between tasks, but also take the advantage of the relevance
between tasks, which could lead to a better performance of the whole framework [34]. As for the target
recognition and segmentation, the target recognition needs to utilize the features of the scattering
distribution and target morphology, which is the same as the target segmentation [35]. Therefore,
there is a strong coherence and relevance between the recognition and segmentation of target in the
SAR image.
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In the proposed multi-task deep learning framework, the joint loss is set as the weighted sum of
the recognition loss and the segmentation loss. The recognition loss is set as the cross-entropy cost
function, which is presented as

Lr (w, b) = −
C

∑
i=1

yi log
(

p
(

yi

∣∣∣xL
))

(11)

In nature, the target segmentation is a kind of classification in pixel level. To achieve accurate
segmentation, the distance between the segmentation result and the ground truth should be calculated.
Therefore, the segmentation loss is set as the cross-entropy cost function of all the pixels in a SAR chip.
The segmentation loss is averaged to the same unified scale as the recognition loss, which leads to
better and more robust performance [36]. The function of the segmentation loss is defined as

Ls (w, b) = − 1
n

V

∑
i=1

si log
(

p
(

si

∣∣∣xL
))

(12)

where p
(
si
∣∣xL ) is the probability vector f segmentation result of all pixel on the ith SAR chip, n is

the number of pixels in a SAR chip, si is the segmentation labels in the form of one hot and V is the
number of the segmentation types. Therefore, the joint loss can be presented as

L (w, b) = Lr (w, b) + Ls (w, b) (13)

After the joint loss is obtained, the optimal performance of the whole architecture could be
obtained through minimizing the joint loss using backpropagation [37].

First, the total error is computed by comparing the output of the architecture with the ground truth.

δtotal = ∑
i=1

(
p
(

yi

∣∣∣xl
)
− yi

)
(14)

Then, the error is spread from the high layer to the low layer in the architecture by computing the
intermediate error of each layer. When the lth layer is one convolutional layer, the intermediate error
can be calculated by

δl =

((
wl+1

)T
δl+1

)
� f ′

(
xl
)

(15)

where f ′ denote the 1st derivative of the ReLU, δl denotes the intermediate error of the lth
convolutional layer and � denotes Hadamard multiplication. As for the transposed convolutional
layers, the formula is

δl =
(

wl+1δl+1
)
� f ′

(
xl
)

(16)

The derivatives for updating wl and bl of the lth layer can be presented as

∂Ll
w

∂wl
ij
= xl−1

j δl
i (17)

∂Ll
b

∂bl
i
= δl

i (18)
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This step is the same for the convolutional and transposed convolutional layers. When the
backpropagation comes across the max pooling layers, only the unit with the max value in every
pooling field receives the error term and the intermediate error on other units is set as zero.

Finally, Backpropagation updates the trainable parameters of the architecture by

wl → wl − lr× ∂Ll
w

∂wl (19)

bl → bl − lr×
∂Ll

b
∂bl (20)

where wl denotes the convolutional kernels of the lth layer, bl denotes the bias of the lth layer and lr
denotes the learning rate.

Through the process of the backpropagation, the network gradually achieves the optimal
performance, which could achieve accuracy and effective target recognition and segmentation
simultaneously. Its performance is presented and compared in the next section.

4. Experiments and Results

In this section, the performance of the multi-task deep learning framework is evaluated. First,
the information of the used dataset is introduced in detail. Then, the steps of the data preprocessing
are described and the hyperparameter and set-up of the specific implementation of the multi-task deep
learning framework are described. Finally, the results and comparisons of the target recognition and
segmentation are presented.

4.1. Dataset

The experiment dataset used to evaluate our proposed multi-task deep learning framework is
collected from the Moving and Stationary Target Acquisition and Recognition (MSTAR) program.
This dataset is released by the Defense Advanced Research Projects Agency and the Air Force Research
Laboratory. The dataset is as part of the MSTAR program and collected using the Sandia National
Laboratory STARLOS sensor platform [38]. As a benchmark dataset for SAR ATR performance
assessment, this dataset has a significant quantity of SAR images containing different types of
military vehicles and clutter images. Ten different classes of ground targets (tank, T62 and T72;
rocket launcher, 2S1; truck, ZIL131; armored personnel carrier, BTR70, BTR60, BRDM2 and BMP2;
air defense unit, ZSU23/4; and bulldozer, D7) were captured as 1-ft resolution X-band SAR images with
full aspect coverage (in the range of 0◦–360◦). They were collected under varying operating conditions,
such as different aspect angles, depression angles and serial numbers. As for the segmentation labels,
the segmented binary labels are a precise manual marking by the tool called OpenLabeling. The SAR
images and corresponding optical images of the target at similar aspect angles are depicted in Figure 3.

BMP2 BTR70 T72 2S1 BRDM2 ZSU234 BTR60 D7 T62 ZIL131
Figure 3. SAR images and corresponding optical images of targets at similar aspect angels. From left to
right: BMP2, BTR70, T72, 2S1, BRDM2, ZSU234, BTR60, D7, T62 and ZIL131.

To comprehensively assess the performance of recognition, the proposed multi-task deep learning
framework was evaluated under the standard operating condition (SOC) and extended operating
condition (EOC) [38]. SOC refers to that the serial numbers and target configurations of the train
and test set are the same, but with different aspects and depression angles. EOC includes three
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extended operating conditions: depression variant, configuration variant and version variant. As for
the performance of segmentation, the proposed multi-task deep learning framework was assessed
with the merit of the visual and objective aspect at the same time as the assessment of the recognition
performance.

4.2. Data Preprocessing

Before assessing the performance of the proposed multi-task deep learning framework, data
preprocessing was employed to augment the training images and manually annotate the segmentation
of the training and testing images. The specific processes are described as follows. At first, we
employed data augmentation to generate more training images [39]. The numbers of the training and
testing images before the data augmentation are listed in Table 1. The training images were augmented
10 times by randomly sampling ten 88× 88 SAR image chips from one original 128× 128 SAR image,
which ensures the central target was complete [16]. Then, the training and testing datasets of the
segmentation were acquired by manual annotation using the tool named OpenLabeling. The manual
annotation was based on the intensity and the contour of the target and shadow. The number of the
segmentation labels was the same as the one of the original images, and, when the original images
encountered the data augmentation, the segmentation labels also went through the data augmentation
in the same way. Therefore, the segmentationwas synchronous with the recognition above when
the proposed network architecture was being trained or tested. After the data preprocessing, the
proposed multi-task deep learning framework could be regarded as a whole network to be trained
and evaluated.

Table 1. Number of training and testing images for SOC before the data augmentation.

Training Testing

Class Depression Number Depression Number

BMP2-9563 17◦ 233 15◦ 196

BTR70-c71 17◦ 233 15◦ 196

T72-132 17◦ 232 15◦ 196

BTR60-7532 17◦ 256 15◦ 195

2S1-b01 17◦ 299 15◦ 274

BRDM2-E71 17◦ 298 15◦ 274

D7-92 17◦ 299 15◦ 274

T62-A51 17◦ 299 15◦ 273

ZIL131-E12 17◦ 299 15◦ 274

ZSU234-d08 17◦ 299 15◦ 274

4.3. Network Setup

On the basis of the proposed multi-task deep learning framework, a specific implementation was
employed to evaluate the proposed framework for SAR ATR. The specific implement is presented in
Figure 2. There are three convolutional and three max pooling layers forming the feature extractor.
Two convolutional layers, one max pooling layers and one SoftMax layer are composed to accomplish
the recognition task. Meanwhile, three de-convolutional layers and three convolutional layers are
organized to segment the SAR images. The size of the input SAR images is 88× 88, the stride size of
every convolutional layer is 1× 1 and the stride size for each max pooling layer is 2× 2. Other hyper
parameters in our network instances are shown in Figure 2. The weights of convolutional layers are
initialized from Gaussian distributions with zero mean and a standard deviation of 0.01, and biases
are initialized with a small constant value of 0.1. The initial learning rate is set as 0.001 and is reduced
by a factor of 0.1 after 5 epochs.
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4.4. Recognition Results under SOC

In this SOC experimental setup, the performance of the proposed architecture was assessed on
the classification of ten targets in the MSTAR dataset. The training and testing images have the same
serial number, but are different in the depression angle. As listed in Table 1, the training images were
captured at 17◦ depression angle, while the testing images were captured at 15◦ depression angle.
A summary of this experimental setup for training and testing datasets is listed in Table 1. In Table 1,
the number of each target serial is the number of the original SAR images in MSTAR dataset before the
data augmentation. The number of each class of the target after the data augmentation is 2700.

The recognition result of the proposed multi-task deep learning is presented in Table 2. Table 2
is a confusion matrix of ten targets, which is widely used to present the classification performance
in SAR ATR [40]. The numbers at the diagonal of the confusion matrix are the numbers of correct
recognitions for each target.

Table 2. Recognition result of the proposed MTL deep learning framework under SOC (recognition
ratio 99.13%).

BMP2 BTR70 T72 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU234

BMP2 100 0 0 0 0 0 0 0 0 0

BTR70 0 100 0 0 0 0 0 0 0 0

T72 0 0 100 0 0 0 0 0 0 0

BTR60 0 0.51 0 97.95 0 1.54 0 0 0 0

2S1 0 0.38 0.38 0.38 96.71 0 0 0 1.77 0.38

BRDM2 0 0 0 0 0 99.64 0 0 0.36 0

D72 0.36 0 0 0 0 0 97.81 0 0 1.83

T62 0 0 0.37 0 0 0 0 99.63 0 0

ZIL131 0 0 0 0 0 0 0 0 100 0

ZSU234 0 0 0 0 0 0 0 0 0 100

In Table 2, the recognition ratios of BTR60, I2S1 and D7 are above 96.5%, the recognition ratios of
BRDM_2 and T62 are above 99.5%, and the others have achieved 100% recognition ratio. The overall
recognition ratio is 99.13%, which is obviously satisfactory. From the recognition result, it is clear that,
through the deep convolutional structure, there are some stable features extracted for the recognition of
the ten targets among the different targets. Therefore, the proposed network architecture can achieve a
satisfactory performance for the ten-target recognition, and these results can also verify the superiority
of the proposed architecture in the SOC experiment.

4.5. Recognition Results under EOC

In realistic battlefield situations, there is more complex target recognition in varied operation
conditions, such as the variances of the depression angle and target type. Therefore, it is necessary
to assess the performance of the SAR ATR algorithm in the EOC. In this section, the stability and
effectiveness of the proposed network architecture are evaluated in the variances of the depression
angle, target configuration and version, which are denoted as EOC-D, EOC-C and EOC-V, respectively.

The SAR images are extremely sensitive to the variance of the depression angle, so it is important
to evaluate the performance of the proposed network architecture at the variance of depression angle,
EOC-D. However, the limitation that the MSTAR dataset only contains four targets (2S1, BRDM_2, T-72
and ZSU-234) which have a larger enough variance of depression angle to evaluate EOC-D. The SAR
images at 17◦ depression angle are set as the training dataset and the corresponding SAR images
at 30◦ depression angle are set as the testing dataset. The training dataset is generated by the same
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data augmentation as the SOC experiment. A summary of the training and testing dataset is listed in
Table 3. The number of each class of the training dataset was augmented to 2700, while the number of
the training dataset was 10,800.

Table 3. Number of training and testing images for EOC-D before the data augmentation.

Training Testing

Class Depression Number Depression Number

2S1 17◦ 299 30◦ 288

BRDM2 17◦ 298 30◦ 287

T72 17◦ 232 30◦ 288

ZSU234 17◦ 299 30◦ 288

The recognition performance of the proposed network architecture in the variance of depression
angle is presented in Table 4. It can be seen that the recognition performance of the proposed multi-tasks
is superior. The total recognition ratio is above 94.00% and the recognition ratios of 2S1, BRDM-2 and
ZSU-234 at 30◦ depression angle are higher than 93.00%. The relatively low recognition ratio for T-72
is caused by the difference between the training and testing dataset at the depression angle and the
serial number. From the recognition performance in Table 4, the proposed network architecture is still
stable and effective when the depression angle varies greatly.

Table 4. Recognition result of the proposed MTL deep learning framework under EOC-D (recognition
ratio 94.01%).

2S1 BRDM2 T72 ZSU234

2S1 99.31 0.345 0.345 0

BRDM2 4.88 95.12 0 0

T72 11.81 0 88.19 0

ZSU234 1.45 0 5.45 93.10

The performance of the proposed network architecture with the variance of target configuration
and version (EOC-C and EOC-V) was also evaluated. Limited by the difficulty of acquiring the SAR
images of different configurations and versions of targets, the training datasets for EOC-C and EOC-V
could only be set as four targets (BMP-2, BRDM_2, BTR-70 and T-72) at 17◦ depression angle and the
testing datasets are set as the corresponding SAR images of the targets with different configurations
and versions. The numbers of the training data of the four targets before the data augmentation are
listed in Table 5, and the testing datasets are listed in Tables 6 and 7. The number of each class of the
four targets in the training dataset was augmented to 2700. In Tables 5 and 6, there are two different
configurations of BMP2 and five different configurations of T72 captured at 17◦ and 15◦ depression
angles to evaluate the recognition performance under the EOC of the target configuration varieties.
In Tables 5 and 7, it can be seen that the testing dataset for EOC-V has four different serial types of T72
from the training dataset, which are captured at 17◦ and 15◦ depression angles and utilized to evaluate
the recognition performance of the proposed multi-task deep learning framework under the EOC of
the target version varieties.
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Table 5. Number of training images for EOC-C and EOC-V.

Training

Class Depression Number

BMP2-9563 17◦ 233
BTR70-c71 17◦ 233

T72-132 17◦ 232
BRDM2-E71 17◦ 256

Table 6. Number of testing images for EOC-C.

Class Serial No. Depression Number

BMP2
9566 15◦, 17◦ 428

C21 15◦, 17◦ 429

T72

812 15◦, 17◦ 426

A04 15◦, 17◦ 573

A05 15◦, 17◦ 573

A07 15◦, 17◦ 573

A10 15◦, 17◦ 567

Table 7. Number of testing images for EOC-V.

Class Serial No. Depression Number

T72

S7 15◦, 17◦ 419

A32 15◦, 17◦ 572

A62 15◦, 17◦ 573

A63 15◦, 17◦ 573

A64 15◦, 17◦ 573

The recognition performance of the proposed network architecture in EOC-C is presented in
Table 8. The recognition performance of the proposed network architecture is 98.36% for the variance
of target configuration. It can be proved that the proposed network architecture has the ability to
recognize the targets with different configurations. As for the recognition performance in EOC-V,
which is presented in Table 9, the recognition ratio has reached 99.21% for the five versions of T72.
The proposed network architecture is resilient to the variance of the target version.

From the four experiment results of SOC, EOC-D, EOC-C and EOC-V, the proposed network
architecture has obtained superior recognition performance. It demonstrates that the proposed
multi-task deep learning framework has the ability to extract optimal and effective target features
from SAR images, which are also resilient to the variances of the depression angle, target configuration
and version.



Remote Sens. 2020, 12, 3863 13 of 19

Table 8. Recognition result of the proposed MTL deep learning framework under EOC-C (recognition
ratio 98.36%).

Class BMP2 BRDM2 BTR70 T72

BMP2sn-9566 96.93 0.23 1.64 4.21

BMP2sn-c21 96.04 0.47 0.47 3.03

T72sn-812 0.00 0.47 0.47 99.06

T72-A04 0.17 0.17 0.00 99.65

T72-A05 0.00 0.00 0.00 100.00

T72-A07 0.17 0.00 0.00 99.83

T72-A10 0.00 0.00 0.00 100.00

Table 9. Recognition result of the proposed MTL deep learning framework under EOC-V (recognition
ratio 99.21%).

Class BMP2 BRDM2 BTR70 T72

T72sn-s7 1.19 0.23 0.23 98.33

T72-A32 0.00 0.00 0.00 100.00

T72-A62 1.57 0.17 0.00 98.25

T72-A63 0.17 0.00 0.35 99.48

T72-A64 0.00 0.00 0.00 100.00

4.6. Results of SAR Target Segmentation

As mentioned above, the segmentation of the targets in SAR images not only is able to obtain
more refined structural features in morphology, but also could obtain the semantic information in the
pixel level. Some examples of the segmentation labels for targets are presented in Figure 4. In Figure 4,
the left image is the original image in the MSTAR dataset and the middle one is the segmentation
ground truth. The right image is the original image masked by the ground truth, which is denoted as
the masked original image.

(a) (b) (c)

Figure 4. Some examples of the segmentation labels for ten targets: (a) SAR image; (b) segmentation
ground truth; and (c) masked original image.

To present the segmentation results visually, some segmentation results of the proposed network
architecture for different targets are shown in Figure 5. The first three columns are the original SAR
images from the MSTAR dataset, the segmentation ground truth and their corresponding masked
original SAR images, respectively. The fourth column is the segmentation results of the proposed
multi-task deep learning framework. The last column is the original SAR images masked by the
segmentation results. It can be seen that the segmentation results of the proposed multi-task deep
learning framework are quite close to the segmentation ground truth in the morphological contour.
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It can be concluded that the proposed network architecture can segment precisely when the contour
and intensity of the targets are varying.

(a) (b) (c) (d) (e)

Figure 5. Some segmentation results of the proposed network architecture for different targets:
(a) original SAR image; (b) segmentation ground truth; (c) masked original image; (d) segmentation
results; and (e) masked segmentation results.

To evaluate the segmentation results more objectively, the pixel accuracy of the segmentation
results is employed, which evaluates the accuracy of segmenting the targets from the background.
The pixel accuracy is calculated as follows.

Ppa = sum
(

Pp
)

/ (Pa) (21)

where Ppa is the pixel accuracy, Pp is the correct predicted pixel and Pa is the total pixels in one SAR
image. It means that the higher the pixel accuracy is, the better the performance is.

The pixel accuracy of the proposed multi-task deep learning framework is presented in the form
of a confusion matrix in Table 10. In Table 10, the accuracy for the target or background is above 98.00%
and the overall accuracy of the segmentation is higher than 99.00%. From the quantitative analyses,
it is quite clear that the proposed network architecture has the ability to segment the targets from the
backgrounds precisely and effectively.

From the evaluations of the performance of the target recognition and segmentation, it can be
proved that, through the deep learning structure of multiple convolutional layers and the multi-task
framework design of the encoder and two sub-decoders, the proposed multi-task deep learning
framework can achieve the target recognition and segmentation accurately and effectively and finish
those two tasks simultaneously with only one system.
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Table 10. Pixel accuracies for the targets and the backgrounds (pixel accuracy 99.03%).

Pixel Accuracy Target Background

Target 98.92 1.08

Background 0.87 99.13

4.7. Comparison of Performance of Segmentation and Recognition

In this section, we compare our proposed algorithm with other algorithms in recognition and
segmentation. For recognition, seven SAR ATR algorithms are considered: support vector machine
(SVM) [41], adaptive boosting (AdaBoost) [41] IGT [41], CGM [42], two DCNNs and gcForest [43].
SVM and AdaBoost, both traditional algorithms, IGT, based on the probabilistic graphical model,
and the two DCNNs [44,45] are state of the art in SAR ATR, while gcForest is recently published.
For segmentation, two other algorithms are considered, namely Maximum Between-Class Variance
(Otsu Method) [46] and Canny edge detector (Canny) [47], which are traditional algorithms for
segmentation in SAR images.

For recognition performance comparison, we compare those algorithms with our proposed
algorithm in terms of the recognition performance. The recognition performances are listed in Table 11
under SOC and EOC. In Table 11, the performance of our proposed algorithm is better than other
algorithms under SOC and has significant improvement under EOC. Therefore, can be concluded that
our proposed algorithm is superior to other algorithms in recognition performance.

Table 11. Recognition performance for various methods.

Methods SOC EOC-D EOC-V

SVM [41] 90.00% 75.00% 81.00%

AdaBoost [41] 92.00% 78.00% 82.00%

IGT [41] 95.00% 80.00% 85.00%

CGM [42] 97.00% 79.00% 80.00%

DCNN [45] 92.30% − −
DCNN [44] 94.56% − −

gcForest [43] 96.70% − −
Proposed method 99.13% 94.01% 99.21%

For segmentation performance comparison, some segment images of different SAR images using
Otsu, Canny and our proposed algorithm are shown in Figure 6. In Figure 6, it is obvious that our
proposed algorithm has better performance than other algorithms when the image intensity varies
and the contour of images is complicated. At the same time, the pixel accuracies of Otsu, Canny and
our proposed algorithm are listed in Table 12. In Table 12, it is clear that the proposed multi-task deep
learning framework has higher pixel accuracy than the other algorithms. From the comparisons of the
segmentation above, it can be concluded that the proposed multi-task deep learning framework could
obtain more accurate segmentation at both the overall contour and local details of the targets.
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Table 12. Pixel accuracies of Otsu, Canny and our proposed algorithm.

Methods Pixel Accuracy of Target Pixel Accuracy of Background Pixel Accuracy

Otsu 58.17% 88.35% 73.26%

Canny 79.12% 90.13% 85.12%

Proposed 98.92% 99.13% 99.03%

(a) (b) (c) (d)

Figure 6. Some segmentation results of the proposed network architecture for different targets present:
(a) masked original SAR images; (b) masked segmentation results of the proposed method; (c) masked
segmentation results of Otsu; and (d) masked segmentation results of Canny.

From the above all the contrast experiments, it is clear that, through the deep learning structure
and the multi-task capability, the proposed multi-task deep learning framework not only could extract
the optimal effective target feature to achieve the accurate robust recognition, but also could obtain the
overall contour and local details of the targets to achieve elaborate segmentation at the same time as
the recognition. All the evaluations and the contrast experiments verify that our proposed algorithm
has the superiority in both recognition and segmentation with the capability of simultaneous target
recognition and segmentation.

5. Conclusions

When deep learning meets multi-task learning, multi-task learning will acquire the capability of
adaptive feature learning and powerful feature representation to promote the performances of multiple
tasks simultaneously in SAR ATR. Hence, we propose a novel multi-task deep learning framework to
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obtain accurate category and precise shape of the targets simultaneously. With an elaborately designed
encoder, the optimal image features are extracted from different scales to represent the overall contour
and local details of the target. With employing these extracted features adaptively and optimally to
meet the different feature demands of the recognition and segmentation, the task-specific decoder
achieves superior performance in terms of recognition and segmentation simultaneously. Extensive
experiments were carried out on the MSTAR dataset, and the results show clearly that the proposed
framework not only achieves higher recognition performance than existing SAR ATR methods in SOC
and EOCs, but also obtains more precise and stable segmentation performance than other segment
methods. With the sufficient target attributes extracted by the proposed multi-task framework, it could
make some contributions to the practical application of SAR ATR systems.
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