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Abstract: Accurate vegetation detection is important for many applications, such as crop yield estimation,
land cover land use monitoring, urban growth monitoring, drought monitoring, etc. Popular conventional
approaches to vegetation detection incorporate the normalized difference vegetation index (NDVI),
which uses the red and near infrared (NIR) bands, and enhanced vegetation index (EVI), which uses red,
NIR, and the blue bands. Although NDVI and EVI are efficient, their accuracies still have room
for further improvement. In this paper, we propose a new approach to vegetation detection based
on land cover classification. That is, we first perform an accurate classification of 15 or more land
cover types. The land covers such as grass, shrub, and trees are then grouped into vegetation and
other land cover types such as roads, buildings, etc. are grouped into non-vegetation. Similar to
NDVI and EVI, only RGB and NIR bands are needed in our proposed approach. If Laser imaging,
Detection, and Ranging (LiDAR) data are available, our approach can also incorporate LiDAR in the
detection process. Results using a well-known dataset demonstrated that the proposed approach
is feasible and achieves more accurate vegetation detection than both NDVI and EVI. In particular,
a Support Vector Machine (SVM) approach performed 6% better than NDVI and 50% better than EVI
in terms of overall accuracy (OA).

Keywords: land cover classification; hyperspectral; EMAP; synthetic bands; NDVI; LiDAR

1. Introduction

The normalized difference vegetation index (NDVI) [1,2] has been applied to the monitoring of land
use and land cover change [3] drought, desertification [4], desertification [5], soil erosion [6], vegetation
fires [7], biodiversity and conservation [8], and soil organic carbon (SOC) [9]. Although NDVI has
been widely used due to its simplicity, its accuracy still has room for improvement. Liu and Huete [10]
proposed an enhanced vegetation index (EVI) that incorporates the blue band into the calculation.
Although the EVI performs better than the NDVI in some applications, it was shown in [11] that it is
more sensitive to topographic conditions than the NDVI.

Land cover classification using multispectral and hyperspectral images [12–16] has been widely
used for urban growth monitoring, land use monitoring, flood and fire damage assessment, etc.
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In recent years, Laser imaging, Detection, and Ranging (LiDAR) has also been used for land
cover classification. There are many land cover classification methods in the literature, including
conventional and deep learning methods. In many land cover classification papers, researchers
use all of the multispectral and hyperspectral bands for classification. Recently, there have been
some investigations [17–19] that only use a few bands such as RGB and NIR bands, and yet can
still achieve reasonable classification accuracy. In [17], it was found that synthetic bands using
Extended Multi-attribute Profiles (EMAP) [20–23] can help improve the land classification performance
quite significantly.

In some applications, such as construction planning, land surveying, etc., an accurate digital
terrain model (DTM) is essential [24]. However, the terrain may be covered by vegetation (trees,
shrubs, grass). Although digital surface model (DSM) obtained by radar or LiDAR can provide a
general idea of the terrain, the presence of vegetation such as trees conceals the actual terrain elevation.
In some past research in construction surveying [24], people have used NDVI to detect the vegetation,
followed by a trimming step that removes the elevation due to trees and grass. Few studies
carried out some quantitative comparisons of normalized difference vegetation index (NDVI) with
other methods provided, except [18]. In [18], NDVI only method achieved 75% accuracy whereas
some alternative methods-based machine learning and deep learning yielded 10% better accuracy.
In this paper, a Support Vector Machine (SVM) approach performed 6% better than NDVI and 50%
better than EVI in terms of overall accuracy (OA). Moreover, based on our sponsor’s (US Dept.
of Energy) independent assessment, the NDVI approach is not accurate enough and urged us to
develop some sophisticated land cover classification-based methods to accurately detect vegetation.

We would like to raise several important research questions in the land cover classification
approach to vegetation detection. First, will the vegetation detection performance be improved if
hyperspectral images are used instead of using only the RGB and NIR bands? This is an important
question because, if the use of hyperspectral data does not improve the vegetation detection, then it
will be better to only use RGB and NIR bands, which can be acquired inexpensively. Second, if only
RGB and NIR bands are used, will the vegetation detection performance be improved with EMAP
enhanced bands? This question is important, because EMAPs have been found to yield good land
cover classification performance before. It will be interesting to investigate whether or not EMAPs
can help the vegetation detection as well. Third, since there are many classification algorithms in
the literature, does there exist any simple and efficient algorithms that can yield good vegetation
detection performance? Fourth, if the classification approach is better than NDVI or EVI approaches,
how much gain will that be? The quantification will help decision makers to decide on whether to
deploy the land classification approach to vegetation detection. Fifth, in some cases, LiDAR data may
be available. Will LiDAR help the vegetation detection performance?

In this paper, we propose a new vegetation detection approach based on land classification.
The approach is very simple, intuitive, and uses only RGB and NIR bands. We first apply proven land
cover classification algorithms to RGB and NIR bands to classify the land cover types. The resulting
classification maps are then grouped into vegetation and non-vegetation categories. Experimental
results showed that the proposed approach is highly accurate and practical. In our investigations,
we also provide answers to the five questions raised earlier.

Our paper focuses on an application that demands higher vegetation detection accuracy and also
that training data are available. In such application scenarios, it is necessary to call for more accurate
vegetation detection approaches. The contributions of our paper are to answer those questions raised
earlier and are as follows:

• Although hyperspectral data have been used for various land cover classification applications,
our experiments showed that the vegetation detection performance using hyperspectral data did
not yield better results than those obtained using only the RGB and NIR bands.

• Although the use of an EMAP enhanced dataset does help the land cover classification,
our experiments demonstrated the EMAP enhanced dataset does not improve the vegetation
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detection performance. This is counter intuitive, and we will address this important observation
in Section 3.

• Using a benchmark dataset, our experiments demonstrated that the land classification approach
using only red-green-blue (RGB) and near infrared (NIR) bands can perform better than the NDVI
and EVI approaches for this dataset. In particular, a Support Vector Machine (SVM) approach
performed 6% better than NDVI and 50% better than EVI in terms of overall accuracy (OA).

• Our results demonstrated that, if LiDAR data are available, the vegetation detection performance
can be improved slightly.

The rest of our paper is organized as follows. Section 2 describes the methods and data. Section 3
summarizes the experimental results. Concluding remarks and future directions will be given
in Section 4.

2. Methods and Data

2.1. Land Cover Classification Methods

For land cover classification, there are pixel-based and object-based methods. In this paper,
we focus on pixel-based methods because the 2013 Institute of Electrical and Electronic Engineers
(IEEE) GRSS Data Fusion Contest dataset [25] only contains training and testing samples in pixels.

We applied nine pixel-based classification algorithms that have been widely used in hyperspectral
images, including Matched Signature Detection (MSD), Adaptive Subspace Detection (ASD),
Reed-Xiaoli Detection (RXD), and their kernel versions, and also Sparse Representation (SR),
Joint SR (JSR), and Support Vector Machine (SVM) to the IEEE dataset [25] for land cover classification.
These algorithms are detailed in [26] and short descriptions of them can also be found in [17].
For completeness, we include some brief descriptions for each method below. In addition, we also
include a deep learning-based approach for land cover classification.

2.1.1. Matched Subspace Detection (MSD)

In MSD [26], there are two separate hypotheses: H0 (target absent) and H1 (target present) which
are defined as:

H0 : y = Bζ+ n, (1)

H1 : y = Tθ+ Bζ+ n = [T B]
[
θ
ζ

]
+ n, (2)

where T and B are the orthogonal matrices that span the subspace of the target and
background/non-target, θ and ζ are the unknown vectors that account for the various different
corresponding column vectors of T and B, respectively, and n represents random noise. A generalized
likelihood ratio test (GLRT) to predict whether a specific pixel will be a target or background pixel is
given by:

L2(y) =
yT(I − PB)y
yT(I − PTB)y

, (3)

where PB = B
(
BTB

)−1
BT, PTB = [T B]

(
[T B]T[T B]

)−1
[T B]T.

The reason that we chose MSD as one of the nine methods is because MSD has been proven to
work well in some hyperspectral target detection applications [26].

2.1.2. Adaptive Subspace Detection (ASD)

ASD [26] has a very similar process to MSD with a slightly varying set of hypotheses:

H0 : x = n, (4)
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H1 : x = Uθ+ σn, (5)

where U is the orthogonal matrix, whose column vectors are eigenvectors of the target subspace, θ is
the unknown vector whose entries are coefficients for the target subspace, and n is the random
Gaussian noise. Those equations are then solved in order to create a similar GLRT to MSD.
The classification is performed for each class first and the final decision is made by picking the
class label that corresponds to the maximum detection value at each pixel location.

Similar to MSD, we adopted ASD simply because it has been proven to work quite well in target
detection with hyperspectral images [26,27].

2.1.3. Reed-Xiaoli Detection (RXD)

RXD [28] is normally used for anomaly detection and it is simple and efficient. For land cover
classification, RXD follows the same procedure as MSD and ASD, using H0 (target absent) and H1

(target present) hypotheses in its formulation and combining them to generate a GLRT. The background
pixels come from training samples to detect pixels in class i. That is, RXD can be expressed as:

RX(r) = (r− µb)
TCb

−1(r− µb), (6)

where r is the test pixel, µb is the estimated sample mean of the background classes, and Cb is the
covariance of the training samples in the background classes.

The kernel versions of each of the above methods—ASD, MSD, and RXD—all follow a similar fashion.

2.1.4. Kernel MSD (KMSD)

In [26], it was demonstrated that KMSD has a better performance than MSD. In KMSD, the input
data have been implicitly mapped by a nonlinear function Φ into a high dimensional feature space F.
The detection model in F is then given by:

H0Φ : Φ(y) = BΦζΦ + nΦ Target absent (7)

H1Φ : Φ(x) = TΦθΦ + BΦζΦ + nΦ Target present (8)

where the variables are defined in [26]. The kernelized GLRT for KMSD can be found in Equation (9) of [26].

2.1.5. Kernel ASD (KASD)

Similar to KMSD, KASD [26] was also adopted in our investigations because of its good
performance in [26]. In KASD, similar to KMSD, the detection formulation can be written as:

H0Φ : Φ(x) = nΦ Target absent (9)

H1Φ : Φ(x) = UΦθΦ + σΦnΦ Target present (10)

The various variables are defined in [26]. The final detector in kernelized format can be found in
Equation (30) of [26].

2.1.6. Kernel RXD (KRXD)

In KRXD, every pixel is transformed to a high dimensional space via a nonlinear transformation.
The kernel representation for the dot product in feature space between two arbitrary vectors xi and x j
is expressed as:

k(xi, x j) = 〈Φ(xi), Φ
(
x j

)
〉 = Φ(xi) ·Φ

(
x j

)
(11)
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A commonly used kernel is the Gaussian radial basis function (RBF) kernel:

k(x, y) = exp
(
(−

∣∣∣∣∣∣x, y
∣∣∣∣∣∣2)/c

)
(12)

where c is a constant and x and y are spectral signatures of two pixels in a hyperspectral image.
The above kernel function is based on the well-known kernel trick that avoids the actual computation
of high dimensional features and enables the implementation of KRXD. Details of KRXD can be found
in [28,29].

2.1.7. Sparse Representation (SR)

In [30], we applied SR to detect soil due to illegal tunnel excavation. It was observed that SR was one
of the highest performing methods. We also included SR in this paper because of the above. SR exploits
the structure of only having a few nonzero values by solving the convex l1,q-norm minimization problem:

min
S
‖S‖q ≤ s0 s.t. Y = DS (13)

where ‖S‖q is defined as the number of non-zero rows of S, the signature values of a given pixel, s0 is a
pre-defined maximum row-sparsity parameter, q > 1 is a norm of matrix S that encourages sparsity
patterns across multiple observations, and D is the dictionary of class signatures.

2.1.8. Joint Sparse Representation (JSR)

Similar to SR, JSR was used in our earlier study in soil detection [30]. Although JSR is more
computationally demanding, it exploits neighborhood pixels for joint land type classification. In JSR,
3 × 3 or 5 × 5 patches of pixels are used in the S target matrix. It is the same Equation as Equation (13),
but with an added dimension to S that accounts for each pixel within whatever patch size is used.
Details of the mathematics can be found in [30].

2.1.9. Support Vector Machine (SVM)

An SVM is a general architecture that can be applied to pattern recognition and classification [31],
regression estimation and other problems, such as speech and target recognition. An SVM can be
constructed from a simple linear maximum margin classifier that can be trained by solving a convex
quadratic programming problem with constraints.

2.1.10. Our Customized Convolutional Neural Network (CNN)

In recent years, deep learning-based methods have attracted a lot of attention in remote sensing
applications. See [32–35] and references therein. Some exhaustive reviews were given in [32,33].
In this paper, we used the same structure that was used in our previous work [36]. Only the filter size in
the first convolution layer was changed accordingly to be consistent with the input patch sizes. This CNN
model has four convolutional layers with various filter sizes and a fully connected layer with 100 hidden
units as shown in Figure 1. When we designed the network, we tried different configurations for the
number of layers and the size of each layer, and selected the one that provided the best results. We did
this for all the layers (convolutional and FC layers). The choice of “100 hidden units” is the outcome
of our design studies. This model was also used for soil detection due to illegal tunnel excavation
in [37]. Each convolutional layer utilizes the Rectified Linear Unit (ReLu) as activation function.
The last fully connected layer uses the SoftMax function for classification. We added dropout layer
for each convolutional layer with a dropout rate of 0.1 to mitigate overfitting [38]. It should be noted
that the network size changes depending on the input size. In Figure 1, the network should be the
same for 5 × 5 than for 7 × 7, the only difference would be that the first layer is deleted. For 3 × 3,
the first 2 layers are deleted. The number of bands (N) in the input image can be any integer numbers.
In the experiments, we found that 5 × 5 patch size gave the best performance.
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Figure 1. Our customized Convolutional Neural Network (CNN) model.

2.2. NDVI

The methods in Section 2.1 were also compared against the Normalized Difference Vegetation
Index (NDVI) method. NDVI is simply a ratio of [1]

NDVI =
(NIR − R)
(NIR + R)

(14)

where R and NIR denote the red and near infrared bands. The values that correspond to vegetation for
NDVI are inclusively between −1 and 1. The values that correspond to non-vegetation are less than 0.

2.3. Enhanced Vegetation Index (EVI)

The EVI is defined as [10]

EVI =
G ∗ (NIR − R)

(NIR + C1 ∗R−C2 ∗ B + L)
(15)

where G = 2.5, C1 = 6; C2 = 7.5; L = 1. The values that correspond to vegetation for EVI are inclusively
between −1 and 1. The values that correspond to non-vegetation are less than 0. It was demonstrated
that EVI has some advantages over NDVI in some applications [10].

2.4. EMAP

Mathematically, given an input grayscale image f and a sequence of threshold levels
{Th1, Th2, . . . , Thn}, the attribute profile (AP) of f is obtained by applying a sequence of thinning and
thickening attribute transformations to every pixel in f .

The EMAP of f is then acquired by stacking two or more APs while using any feature reduction
technique on multispectral/hyperspectral data, such as purely geometric attributes (e.g., area, length of
the perimeter, image moments, shape factors), or textural attributes (e.g., range, standard deviation,
entropy) [20–23].

In this paper, the “area (a)” and “length of the diagonal of the bounding box (d)” attributes of
EMAP [39] were used. For the area attribute of EMAP, two thresholds used by the morphological
attribute filters were set to 10 and 15. For the Length attribute of EMAP, the thresholds were set to 50,
100, and 500. The above thresholds were chosen based on experience, because we observed them to
yield consistent results in our experiments. With this parameter setting, EMAP creates 11 synthetic
bands for a given single band image. One of the bands comes from the original image.

EMAP has been used in hyperspectral image processing before. More technical details and
applications of EMAP can be found in [20–23]. In fact, in [25,40], EMAP has been used for land cover
classification before. One key difference between the above references and our approach here is that
we applied EMAP to only RGB+NIR and RGB+NIR+LiDAR, whereas the above methods all used the
original hyperspectral data.
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2.5. Data

From the IEEE GRSS Data Fusion package [25], we obtained the hyperspectral image of the
University of Houston area, the ground truth land cover information for the training and test pixels
and the LiDAR data of the same area. The instruments used to collect the dataset are a hyperspectral
sensor and a LiDAR sensor. The hyperspectral data contain 144 bands that range in wavelength from
380–1050 nm, with a spatial resolution of 2.5 m. Each band has a spectral width of 4.65 nm. The LiDAR
data contain elevation information with a resolution of 2.5 m. The LiDAR sensor has a laser wavelength
in three channels of 1550 nm, 1064 nm, and 532 nm with an operating altitude from 300 to 2500 m.
The vertical accuracy is between 5–15 cm and the horizontal accuracy is a factor of the altitude at
1/5500 × altitude.

Table 1 displays the number of training and testing pixels per class. Figure 2 below shows the
Houston area with the validation classifications for the test data set that is used to compare and
determine the overall accuracy.

Table 1. Number of pixels per class in the IEEE Geoscience and Remote Sensing Society (GRSS) data.

Class

Name Number Color Legend
Samples

Train Test
Healthy grass 1 198 1053
Stressed grass 2 190 1064
Synthetic grass 3 192 505

Tree 4 188 1056
Soil 5 186 1056

Water 6 182 143
Residential 7 196 1072
Commercial 8 191 1053

Road 9 193 1059
Highway 10 191 1036
Railway 11 181 1054

Parking lot 1 12 192 1041
Parking lot 2 13 184 285
Tennis court 14 181 247

Running track 15 181 473
1–15 2832 12,197
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right-hand side, there is a shadow area due to cloud. The land cover classification accuracy suffers in
that area.

The predetermined training data set includes 2832 pixels and the testing data included the
remaining 12,197 pixels from the University of Houston dataset.

Some of the land cover classes in Table 1 may need some further explanations. Stressed grass
differs from healthy grass since it is not watered enough and has brown spots whereas healthy grass is
all green with no brown spots. An example picture showing stressed grass can be seen in Figure 3.
The differences between synthetic and normal grasses can be clearly seen in Figure 4. Assuming that
some of the building structures in the U. of Houston campus did not change, we looked at the
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same geographical site from Google Earth and we identified a number of ground truth pixels for
“Parking lot-1” and “Parking-lot2” type land covers. The differences between the two parking lot types
can be examined in the following screenshot in Figure 5. The materials that form these two types of
parking lots seem to be quite different. Moreover, assuming that some of the building structures did
not change, we looked at the same geographical site from Google Earth and we identified a number
of ground truth pixels for “Residential” and “Commercial” type land covers in the IEEE dataset.
A screenshot showing some of these locations using these ground truth pixels for these two land covers
can be both seen in the Google Earth image and the hyperspectral dataset in Figure 6 to better visualize
how these two land cover types differ. The other remaining land cover types, such as water, trees, soil,
tennis courts, roads, etc., are self-explanatory.
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Google Earth image. (a) Google Earth image; (b) IEEE dataset.

There are six datasets used for analysis in this paper, as shown in Table 2. The first group is the
RGB (band # 60, 30, 22 in the hyperspectral data) and the NIR band (band #103). The other datasets
are self-explanatory.
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Table 2. Dataset labels and the corresponding bands.

Dataset Label Short Label Bands Present in the Corresponding Dataset

RGBNIR DS-4 RGB and the NIR bands (respectively bands # 60, # 30, # 22
and # 103 in the hyperspectral data).

RGBNIR_LiDAR DS-5 RGB and the NIR bands; LiDAR data

EMAP_RGBNIR DS-44 RGB and the NIR bands. Forty bands obtained by EMAP
augmentation applied to RGB and the NIR bands.

EMAP_RGBNIR_LiDAR DS-55 RGB and the NIR bands; LiDAR data; 50 bands obtained by
EMAP augmentation applied to RGB, NIR and LiDAR.

HYPER DS-144 Hyperspectral data set

HYPER_LiDAR DS-145 Hyperspectral data set; LiDAR data

3. Vegetation Detection Results

For the six datasets mentioned in Section 2.5, we will present the land cover classification results
using 10 algorithms mentioned in Section 3.1. We will then present the vegetation classification
results in Section 3.2 by using 12 methods. Some interesting observations and explanations are then
summarized in Section 3.3.

3.1. Fifteen-Class Land Cover Classification Results

There are 15 land cover types in the IEEE data. Here, we present land cover classification results
using the 10 algorithms. The overall accuracy (OA) and average accuracy (AA) values obtained using
six datasets are summarized in Tables 3 and 4, respectively, for the conventional methods as well as for
the deep learning CNN method. Overall accuracy is the total number of correct classifications across
all classes divided by the total number of pixels. Average accuracy is the sum of each classes accuracy
in the dataset divided by the total number of classes. We have the following observations:

• SVM and JSR perform better than other conventional methods.
• CNN performs the best in most cases.
• Land cover classification with EMAP (DS-44 and DS-55) improves over those without EMAP

(DS-4 and DS-5).
• Hyperspectral data (DS-144) do not perform better than EMAP cases. We will offer some explanations

on why this is the case.
• LiDAR (DS-5, DS-55, and DS-145) helps land classification in some cases, but not always.

Table 3. Overall accuracy (OA) of 15-class classification in percentage of each method and band combination.
Red highlighted numbers indicate the best accuracy for each method and bold numbers indicate the
best accuracy for each dataset.

OA DS-4 DS-5 DS-44 DS-55 DS-144 DS-145

ASD 4.28 0.07 27.89 56.92 37.37 38.38

MSD 0.11 4.16 48.65 67.55 55.56 55.57

RXD 28.93 38.87 46.09 33.29 42.69 42.71

KASD 6.16 7.99 79.70 81.28 53.57 53.26

KMSD 26.32 39.15 69.26 51.40 53.61 53.10

KRXD 5.72 7.82 64.14 38.53 71.79 71.79

SR 39.99 42.9 64.4 70.97 57.46 57.46

JSR 59.83 70.81 80.77 86.86 72.57 59.04

SVM 70.43 74.62 82.64 86.00 78.68 81.76

CNN 81.08 79.90 86.02 84.29 80.50 80.97
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Table 4. Average accuracy (AA) of 15-class classification in percentage of each method and band
combination. Red highlighted numbers indicate the best accuracy for each method and bold numbers
indicate the best accuracy for each dataset.

AA DS-4 DS-5 DS-44 DS-55 DS-144 DS-145

ASD 0.70 3.80 65.40 67.39 33.83 47.68

MSD 0.34 2.42 56.39 72.68 59.45 58.71

RXD 39.53 43.83 56.30 32.67 49.04 47.84

KASD 6.16 6.80 83.51 81.43 50.29 60.92

KMSD 41.34 48.98 68.23 58.22 65.89 56.06

KRXD 6.49 6.65 78.63 53.17 75.85 76.21

SR 44.24 46.86 69.82 74.58 61.72 61.72

JSR 60.19 71.21 83.27 88.45 74.80 60.90

SVM 70.74 73.12 85.61 86.48 81.16 81.04

CNN 83.64 82.64 88.30 86.70 83.65 83.65

3.2. Two-class Vegetation Classification Results

We now recast the vegetation detection problem into a two-class classification setting, where all
vegetation classes are grouped into vegetation and the remaining classes into non-vegetation.
This means combining the three land covers shown in Table 1 as vegetation—which are two versions
of grass (healthy and stressed), and also trees—and the other 12 classes as non-vegetation, those being
synthetic grass, soil, water, residential, commercial, road, highway, railway, parking lot 1, parking lot 2,
tennis court, and running track. It should be noted that synthetic grass has the same appearance in
terms of color and texture as real grass but was not considered as vegetation. The OA and AA results
for two-class classification results are shown in Tables 5 and 6. For some datasets, accuracies spike for
each method with some standard methods (ASD, MSD, RXD) nearing OA values of 95%. The kernel
methods also see drastic improvements with a majority resulting in 90% accuracy or higher for those
datasets (DS-44, DS-55, DS-144, DS-145) as can be seen in Table 5. The best in both cases is MSD with
the 55-band version returning 94.77% accuracy and KMSD’s 44-band case returning a value of 99.40%
only missing 78 pixels out of 12,197.

Table 5. Overall accuracy (OA) accuracies of two-class classification in percentage for six datasets
using 11 vegetation detection algorithms. Red highlighted numbers indicate the best accuracy for each
method and bold numbers indicate the best accuracy for each dataset.

OA. DS-4 DS-5 DS-44 DS-55 DS-144 DS-145

ASD 72.98 71.78 85.18 91.03 84.67 84.73

MSD 73.76 64.88 79.81 94.77 91.81 91.81

RXD 94.46 93.92 88.59 82.20 90.87 90.88

KASD 65.52 69.05 97.64 96.36 94.99 95.25

KMSD 79.43 86.51 99.40 85.70 80.32 80.31

KRXD 67.11 69.21 90.57 63.65 97.08 97.08

SR 97.52 98.29 96.34 96.34 99.74 99.74

JSR 98.70 97.93 96.54 96.56 98.44 97.76

SVM 99.54 97.43 96.65 96.66 96.66 96.79

CNN 96.54 96.67 96.53 96.59 96.71 96.55

NDVI 93.74 - - - - -

EVI 49.74 - - - - -
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Table 6. Average accuracy (AA) accuracies in percentage of two-class classification for six datasets
using 11 vegetation detection algorithms. Red numbers indicate the best accuracy for each method and
bold numbers indicate the best accuracy for each dataset.

AA DS-4 DS-5 DS-44 DS-55 DS-144 DS-145

ASD 49.32 48.58 72.38 90.01 82.45 82.21

MSD 49.84 47.08 75.63 90.63 86.80 86.80

RXD 89.37 90.57 83.29 68.42 84.61 84.62

KASD 49.54 50.10 95.52 93.16 93.59 94.13

KMSD 66.70 76.41 98.90 73.41 86.30 86.34

KRXD 54.73 49.32 82.72 57.13 94.43 94.43

SR 95.70 97.17 93.29 93.30 99.80 99.80

JSR 98.85 98.60 97.73 97.74 97.78 96.22

SVM 99.14 95.06 93.59 97.83 93.60 97.86

CNN 97.67 97.77 97.63 97.77 97.74 97.6

NDVI 91.62 - - - - -

EVI 57.96 - - - - -

The objective of our investigation was mainly to compare the performances of all the investigated
methods with the NDVI and EVI techniques. In this setting, SVM using RGB and NIR bands (DS-4:
four bands) without EMAP surprisingly provided an overall accuracy of 99.54% whereas the NDVI
technique’s overall accuracy was 93.74%. SVM with four bands also exceeded the performance of SVM
when using all 144 bands which was 96.66%. In the two-class setting, we also observed that EMAP
improved the accuracies for several methods but SVM was not among them.

The LiDAR band also slightly helped the SR performance to reach 98.29%, but the gain is about 0.77%.
In other methods, the LiDAR band helped more drastically, for KMSD the improvement is a more
substantial 7.08%, but not always, as is seen with MSD where the reduction in accuracy is 8.88%.

For two-class classification results, CNN did not yield the best performance. We think that this is
because CNN has good intra-class classification performance, but not necessarily good performance
for inter-classification. We have some further explanations in Section 3.3.

For completeness, 2 × 2 confusion matrices of vegetation and non-vegetation of all the nine
conventional algorithms and six datasets are shown in Tables 7–9. Table 10 contains the results
for the deep learning method, CNN. Because these results are much more compact than 15 × 15
confusion matrices, they can easily be included in the body of this paper.

The confusion matrices for the vegetation detection results (vegetation vs. non-vegetation) in
Tables 8–10 using the 10 algorithms can now be compared with the NDVI and EVI results. Table 11
shows the results for NDVI. Given the quick computation times of these methods and that they do not
need any training data, we conclude that the resulting percentages for NDVI are quite good. With an
overall accuracy of 93.74%, NDVI beats 23 of the 45 scenarios, where one of the best overall accuracies,
99.54%, comes from the SVM case using four bands. However, NDVI does have its limitations,
specifically that it can only differentiate between vegetation and non-vegetation and it cannot classify
different types of vegetation. In some cases, differentiating trees from grass is important for construction
surveying. The EVI results are shown in Table 12. The detection results for EVI are not good for this
dataset even though EVI may have better performance than NDVI in other scenarios [11].
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Table 7. Standard methods (ASD, MSD, RXD) veg vs. non-veg confusion matrices. GT means ground truth.

ASD 4 GT: veg GT:
Non-veg ASD 5 GT: veg GT:

Non-veg ASD 44 GT: veg GT:
Non-veg ASD 55 GT: veg GT:

Non-veg ASD 144 GT: veg GT:
Non-veg ASD 145 GT: veg GT:

Non-veg

veg 0 3173 veg 7 3166 veg 1450 1723 veg 2789 384 veg 2469 704 veg 2442 731

non-veg 123 8901 non-veg 276 8748 non-veg 85 8939 non-veg 710 8314 non-veg 1166 7858 non-veg 1131 7893

MSD 4 GT: veg GT:
non-veg MSD 5 GT: veg GT:

non-veg MSD 44 GT: veg GT:
non-veg MSD 55 GT: veg GT:

non-veg MSD 144 GT: veg GT:
non-veg MSD 145 GT: veg GT:

non-veg

veg 0 3173 veg 317 2856 veg 2123 1050 veg 2602 571 veg 2423 750 veg 2423 750

non-veg 28 8996 non-veg 1428 7596 non-veg 1412 7612 non-veg 67 8957 non-veg 249 8775 non-veg 249 8775

RXD 4 GT: veg GT:
non-veg RXD 5 GT: veg GT:

non-veg RXD 44 GT: veg GT:
non-veg RXD 55 GT: veg GT:

non-veg RXD 144 GT: veg GT:
non-veg RXD 145 GT: veg GT:

non-veg

veg 2499 674 veg 2652 521 veg 2292 881 veg 1259 1914 veg 2270 903 veg 2271 902

non-veg 2 9022 non-veg 221 8803 non-veg 511 8513 non-veg 257 8767 non-veg 210 8814 non-veg 210 8814

Table 8. Kernel methods (KASD, KMSD, KRXD) veg vs. non-veg confusion matrices.

KASD 4 GT: veg GT:
Non-veg KASD 5 GT: veg GT:

Non-veg KASD 44 GT: veg GT:
Non-veg KASD 55 GT: veg GT:

Non-veg KASD 144 GT: veg GT:
Non-veg KASD 145 GT: veg GT:

Non-veg

veg 508 2665 veg 336 2837 veg 2891 282 veg 2744 429 veg 2877 296 veg 2912 261

non-veg 1528 7496 non-veg 938 8086 non-veg 6 9018 non-veg 15 9009 non-veg 315 8709 non-veg 318 8706

KMSD 4 GT: veg GT:
non-veg

KMSD
5 GT: veg GT:

non-veg KMSD 44 GT: veg GT:
non-veg KMSD 55 GT: veg GT:

non-veg KMSD 144 GT: veg GT:
non-veg KMSD 145 GT: veg GT:

non-veg

veg 1274 1899 veg 1756 1417 veg 3105 68 veg 1516 1657 veg 3134 39 veg 3138 35

non-veg 610 8414 non-veg 228 8796 non-veg 5 9019 non-veg 87 8937 non-veg 2361 6663 non-veg 2366 6658

KRXD 4 GT: veg GT:
non-veg KRXD 5 GT: veg GT:

non-veg KRXD 44 GT: veg GT:
non-veg KRXD 55 GT: veg GT:

non-veg KRXD 144 GT: veg GT:
non-veg KRXD 145 GT: veg GT:

non-veg

veg 917 2256 veg 249 2924 veg 2105 1068 veg 1381 1792 veg 2821 352 veg 2821 352

non-veg 1755 7269 non-veg 831 8193 non-veg 82 8942 non-veg 2641 6383 non-veg 4 9020 non-veg 4 9020
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Table 9. Other methods (SR, JSR, SVM) veg vs. non-veg confusion matrices.

SR 4 GT: veg GT:
Non-veg SR 5 GT: veg GT:

Non-veg SR 44 GT: veg GT:
Non-veg SR 55 GT: veg GT:

Non-veg SR 144 GT: veg GT:
Non-veg SR 145 GT: veg GT:

Non-veg

veg 2916 257 veg 3009 164 veg 2759 414 veg 2760 413 veg 3171 2 veg 3171 2

non-veg 46 8978 non-veg 45 8979 non-veg 33 8991 non-veg 34 8990 non-veg 30 8994 non-veg 30 8994

JSR 4 GT: veg GT:
non-veg JSR 5 GT: veg GT:

non-veg JSR 44 GT: veg GT:
non-veg JSR 55 GT: veg GT:

non-veg JSR 144 GT: veg GT:
non-veg JSR 145 GT: veg GT:

non-veg

veg 3041 26 veg 2923 3 veg 2754 3 veg 2756 3 veg 3100 117 veg 2951 222

non-veg 132 8998 non-veg 250 9021 non-veg 419 9021 non-veg 417 9021 non-veg 73 8907 non-veg 51 8973

SVM 4 GT: veg GT:
non-veg SVM 5 GT: veg GT:

non-veg SVM 44 GT: veg GT:
non-veg SVM 55 GT: veg GT:

non-veg SVM 144 GT: veg GT:
non-veg SVM 145 GT: veg GT:

non-veg

veg 3119 54 veg 2860 313 veg 2767 406 veg 2767 1 veg 2767 406 veg 2787 5

non-veg 2 9022 non-veg 1 9023 non-veg 2 9022 non-veg 406 9023 non-veg 1 9023 non-veg 386 9019

Table 10. Deep learning method (CNN) veg vs. non-veg confusion matrices.

CNN 4 GT: veg GT:
Non-veg CNN 5 GT: veg GT:

Non-veg CNN 44 GT: veg GT:
Non-veg CNN 55 GT: veg GT:

Non-veg CNN 144 GT: veg GT:
Non-veg CNN 145 GT: veg GT:

Non-veg

veg 2758 7 veg 2773 6 veg 2760 10 veg 2759 2 veg 2782 10 veg 2765 13

non-veg 415 9017 non-veg 400 9018 non-veg 413 9014 non-veg 414 9022 non-veg 391 9014 non-veg 408 9011

Table 11. NDVI method confusion matrix. OA: 93.74%; AA: 91.62%.

NDVI GT: veg GT: Non-veg

Classified: veg 3173 258
Classified: non-veg 505 8261

Table 12. EVI confusion matrix. OA: 49.74%; AA: 57.96%.

EVI GT: veg GT: Non-veg

Classified: veg 3174 5345
Classified: non-veg 785 2893
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Finally, we would like to include some vegetation detection maps using different methods. Figure 7
shows the detection maps for the 4-band case. There are twelve maps, including ASD, MSD, RXD,
KASD, KMSD, KRXD, SR, JSR, SVM, CNN, NDVI, and EVI. It can be seen that ASD, MSD, KASD,
KRXD maps are not good. EVI has more false positives and NDVI has more missed detections.
SR, JSR, SVM, and NN have comparable performance. Vegetation maps for DS-5, DS-44, DS-45, DS-144,
and DS-145 can be found in Figures A1–A5, respectively in the Appendix A.
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Figure 7. Vegetation detection maps using eleven approaches. Green indicates vegetation and black
means non-vegetation. (a) ASD; (b) MSD; (c) RXD; (d) KASD; (e) KMSD; (f) KRXD; (g) SR; (h) JSR;
(i) SVM; (j) CNN; (k) NDVI; (l) EVI.

3.3. Discussion

Here, we summarize some observations and offer some plausible explanations for them.
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• Vegetation detection performance using all bands of HS data is not always better performing
than using only four bands

In Section 1, we raised a few important research questions. The first one is about whether or not
the vegetation performance will be better if HS data is used. We would like to answer this question now.
From Tables 5 and 6, we can see that the detection performance using HS data is not always better than
that of using only four bands. There are two possible reasons. First, researchers have observed that land
cover classification results using HS data also do not yield better results than that of using fewer bands.
See results in [17,25,40]. This could be due to the curse of dimensionality. Some people also think that
having redundant bands in the HS data may degrade the classification performance as well. Second,
for vegetation detection, many bands in the HS data do not contribute to the detection of vegetation
because only bands close to the red and NIR bands will have more influence to vegetation detection.

• Synthetic bands do help vegetation detection in most cases

The second research question raised in Section 1 concerns whether or not EMAP can help the
vegetation detection performance. Based on our experiments, the answer is positive. In the 15-class land
cover classification experiments, we observed that the synthetic bands helped the overall classification
performance in both OA and AA (see Tables 3 and 4). In the two-class vegetation detection scenario,
we also see a similar trend, except the SVM and JSR cases. In those SVM and JSR cases, the performance
difference between DS-4 and DS-44 is about 2%. In short, synthetic bands help more on those low
performing methods such as ASD, MSD, etc.

• Questions 3 and 4 raised in Section 1

In Section 1, we also raised the question (Question 3) of whether or not there exist simple and
high performing land cover classification methods for vegetation detection that may perform better
than NDVI. We also brought up the fourth question about the quantification of the performance gain
if there does exist simple and high performing methods. Based on our experiments, SVM performs
better than other methods and achieved 99% accurate vegetation detection. The performance gain
over NDVI is 6%.

• Can LiDAR help the vegetation detection performance?

The last question raised in Section 1 is about whether or not LiDAR can help the vegetation detection.
Based on our experiments, the performance gain of using LiDAR is small. This is mainly because most
vegetation pixels are grass.

• EVI is worse than NDVI in this application

Although EVI has shown some promising vegetation detection in some cases than that of NDVI,
EVI has inferior performance in this application. Since it was mentioned in [11] that EVI is sensitive to
topographic changes, we speculate that the reason for the poor performance of EVI in this application
is perhaps due to topological variations in the IEEE dataset, given that the U. Houston area is primarily
urban area and EVI is most responsive to the canopy variations of completely forested areas. Before we
carried out our experiments, we anticipated that EVI may have better performance than NDVI.
However, this turns out not be the case. This shows that one cannot jump to conclusions before one
actually carries out some actual investigations.

• SVM in two-class case is better than SVM in the 15-class case using four bands

Initially, we were puzzled by the SVM results in the 4-band (DS-4) case. From Tables 3 and 5,
we observe that the OA of SVM in the 15-class is 70.43%. However, the OA of SVM in the two-class
case jumps to 99.52%. Why is there a big jump? To answer the above question, it will be easier to
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explain if we use the confusion matrices. Table 13 shows the confusion matrix of the 15-class case using
4 bands. The red and blue numbers indicate the vegetation and non-vegetation classes, respectively.
We can see that there are over 300 off-diagonal numbers in the red group, indicating that there are
mis-classifications among the vegetation classes. Similarly, there are also a lot of off-diagonal blue
numbers in the non-vegetation classes. When we aggregate the vegetation and non-vegetation classes
in Table 12 into the two-class confusion matrix as shown in Table 14, one can see that the off-diagonal
numbers are much smaller. This means that even though there are a lot of intra-class mis-classifications,
the inter-class mis-classifications are not that many. In other words, SVM did a good job in reducing
the mis-classifications between vegetation and non-vegetation classes.

Table 13. Confusion matrix for SVM in the 15-class case using 4-bands. OA: 70.43%; AA: 73.28%.

Total Accuracy 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1053 82.62% 1 870 1 0 172 0 0 10 0 0 0 0 0 0 0 0
1064 83.08% 2 12 884 0 124 0 0 44 0 0 0 0 0 0 0 0
505 99.60% 3 0 0 503 0 0 0 0 0 0 0 1 1 0 0 0

1056 98.58% 4 9 6 0 1041 0 0 0 0 0 0 0 0 0 0 0
1056 96.78% 5 0 0 0 0 1022 0 1 0 17 4 3 0 0 8 1
143 93.01% 6 0 0 0 0 0 133 0 0 0 2 0 2 6 0 0

1072 82.18% 7 0 1 0 1 0 32 881 0 0 7 25 24 0 101 0
1053 18.23% 8 0 0 0 0 18 9 178 192 7 34 4 90 444 76 1
1059 55.90% 9 0 0 0 0 21 0 10 6 592 135 61 124 110 0 0
1036 53.38% 10 0 0 0 0 0 324 2 0 17 553 95 45 0 0 0
1054 56.45% 11 0 0 0 0 0 68 317 0 14 55 595 5 0 0 0
1041 50.62% 12 0 0 0 0 2 0 36 1 288 124 6 527 57 0 0
285 33.33% 13 0 0 0 0 3 15 15 17 24 14 3 98 95 0 1
247 98.38% 14 0 0 0 0 0 0 4 0 0 0 0 0 0 243 0
473 97.04% 15 0 0 0 0 3 0 0 6 0 0 0 0 0 5 459

Table 14. Confusion matrix of SVM for the two-class case using 4-bands. OA: 99.52; AA: 99.23%.

SVM 4 GT: veg GT: Non-veg

Classified: veg 3622 56

Classified: non-veg 2 8517

• Comparison between deep learning and other conventional classification methods

It can be seen from Tables 3 and 4 that CNN outperforms other conventional methods for 15-class
classification. However, from Tables 5 and 6, we observe that the CNN results are not as good
as SVM. This can be explained by following the same analysis as the previous bullet. CNN may have
better intra-class classification performance, but it may have slightly inferior inter-class classification
performance due to lack of training data.

It will be interesting to compare with some other deep learning-based approaches here. The OA
of three CNN based methods (CNN, EMAP CNN, and Gabor CNN) in Table 10 of Paoletti et al.’s
paper [33] are 82.75, 84.04, and 84.12, respectively. These numbers are slightly better than ours.
However, we would like emphasize that we only used RGB and NIR bands, whereas those CNN
methods use all the hyperspectral bands.

• Imbalanced data issue

One reviewer brought up an important issue about imbalanced data in Table 1. It is true that
unbalanced data can induce lower classification accuracies for those classes with fewer samples.
We did try to augment the classes with fewer samples. For instance, we introduced duplicated
samples, slightly noisy samples, and random downsampling classes with more samples. However,
the performance metrics did not change much. In some cases, the accuracies were actually worse
than that of no augmentation. We believe that the key limiting factor in improving the CNN is that



Remote Sens. 2020, 12, 3880 19 of 29

the training sample size is too small. There are only 2832 samples for training and 12,197 samples
for testing. See Table 1. For deep learning methods to flourish, it is necessary to have a lot of
training data. Unfortunately, due to lack of training data in the Houston data, the power of CNN cannot
be materialized. Actually, in other CNN methods [33] for the same dataset, the overall performance
gain is slightly above 80%. This implies that the lack of training data is the key limiting factor for the
CNN performance.

• Generation of NDVI and EVI

One reviewer pointed out that the NDVI and EVI should be calculated using reflectance data.
However, the Houston data only have radiance data. It will require some atmospheric compensation
tools to transform the radiance data to reflectance data. This is out of the scope of our research.
Moreover, according to a discussion thread in Researchgate [41], it is still possible to use radiance
to compute NDVI or EVI. One contributor in that thread, Dr. Fernando Camacho de Coca, who is
a physicist, argued that “Even it, in general, is much convenient to use reflectance at the top of the
canopy to better normalize atmospheric effects, it is not always needed. It could depend on what is the
use of the NDVI. For instance, if you want to make a regression with ground information using high
resolution data (e.g., Landsat), to use a NDVI _rad is perfectly valid. However, if you want to use
NDVI for multi-temporal studies to assess for instances changes in the vegetation canopy, you must use
NDVI_ref to assure that observed changes are no affected by atmospheric effects.” Since our application
is not about “instances changes in the vegetation canopy”, the use of radiance to compute NDVI or
EVI is valid.

We would also like to argue that the hyperspectral imager was onboard a helicopter, which flew
at a very low altitude above the ground. Consequently, the atmospheric effects between the imager
and the ground were almost negligible and can be ignored. In other words, the Houston hyperspectral
dataset was not collected at the “top of the atmosphere (TOA)”. In addition, we observed that the
NDVI results are quite accurate (Table 11), meaning that the use of radiance is valid in this special case
of low flying airborne data acquisition.

• Computational Issues

The nine land cover classification algorithms vary a lot in computational complexity. In our
earlier papers, we compared them and found that SVM was the most efficient. Using an Intel® Core™
i7-4790 CPU and a GeForce GTX TITAN Black GPU, it took about 5 min for SVM to process the
DS-4 dataset. Details can be found in [17,19], and we omit the details here for brevity. The CNN method
requires GPU and is not fair to compare CNN’s computational times with other conventional methods.

4. Conclusions

In this paper, we present an improved vegetation detection approach based on land cover
classification algorithms. Similar to conventional NDVI and EVI approaches, we also only use RGB and
NIR bands. Nine conventional and one deep learning-based classification algorithms were customized
and compared to NDVI and EVI approaches. Experiments using a benchmark IEEE dataset clearly
show that the proposed approach is more accurate and feasible for practical applications. In particular,
the SVM approach yielded more than 99% of accuracy, which is 6% better than that of NDVI. A similar
observation of vegetation detection improvement can be found in [18] where the vegetation detection
performance was improved by 10% using non-NDVI methods. Moreover, our experiments showed
that the vegetation detection performance using hyperspectral data did not yield better results than
those obtained using only the RGB and NIR bands. Although the use of an EMAP enhanced dataset
does help the land cover classification, our experiments demonstrated the EMAP enhanced dataset
does not improve the vegetation detection performance. In our studies, we also investigated the
vegetation detection performance when LiDAR data are available. We observed that LiDAR does
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improve the performance slightly. One limitation of the land cover classification approach is that
training is required.

One future direction is on accurate digital terrain model (DTM) extraction by removing vegetation
and man-made structures from the digital surface model (DSM).
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• Vegetation detection maps of nine methods for the EMAP enhanced dataset (DS-44)

Visually speaking, only ASD and KRXD maps do not look good. All others look reasonable.

Remote Sens. 2020, 12, x; doi: 22 of 30 

 

• Vegetation detection maps of nine methods for the EMAP enhanced dataset (DS-44) 

Visually speaking, only ASD and KRXD maps do not look good. All others look reasonable. 

 
(a) ASD 

 
(b) MSD 

 
(c) RXD 

 
(d) KASD 

 
(e) KMSD 

 
(f) KRXD 

 
(g) SR 

Figure A2. Cont.



Remote Sens. 2020, 12, 3880 23 of 29
Remote Sens. 2020, 12, x; doi: 23 of 30 

 

 
(h) JSR 

 
(i) SVM 

 
(j) CNN 

Figure A2. Vegetation detection maps of nine algorithms for the RGB + NIR + EMAP (DS-44) dataset. 
(a) ASD; (b) MSD; (c) RXD; (d) KASD; (e) KMSD; (f) KRXD; (g) SR; (h) JSR; (i) SVM; (j) CNN. 

• Vegetation detection maps of nine methods for the EMAP enhanced dataset (DS-55) 

RXD and KRXD maps do not look good. Others appear fine. 

(a) ASD 

(b) MSD 

(c) RXD 

(d) KASD 

Figure A2. Vegetation detection maps of nine algorithms for the RGB + NIR + EMAP (DS-44) dataset.
(a) ASD; (b) MSD; (c) RXD; (d) KASD; (e) KMSD; (f) KRXD; (g) SR; (h) JSR; (i) SVM; (j) CNN.

• Vegetation detection maps of nine methods for the EMAP enhanced dataset (DS-55)

RXD and KRXD maps do not look good. Others appear fine.

Remote Sens. 2020, 12, x; doi: 23 of 30 

 

 

(h) JSR 

 

(i) SVM 

 

(j) CNN 

Figure A2. Vegetation detection maps of nine algorithms for the RGB + NIR + EMAP (DS-44) dataset. 

(a) ASD; (b) MSD; (c) RXD; (d) KASD; (e) KMSD; (f) KRXD; (g) SR; (h) JSR; (i) SVM; (j) CNN. 

• Vegetation detection maps of nine methods for the EMAP enhanced dataset (DS-55) 

RXD and KRXD maps do not look good. Others appear fine. 

 

(a) ASD 

(b) MSD 

(c) RXD 

(d) KASD 

Figure A3. Cont.



Remote Sens. 2020, 12, 3880 24 of 29

Remote Sens. 2020, 12, x; doi: 24 of 30 

 

(e) KMSD 

(f) KRXD

(g) SR 

(h) JSR 

(i) SVM 

(j) CNN 

Figure A3. Vegetation detection maps of nine algorithms for the RGB + NIR + LiDAR +EMAP (DS-55) 
dataset. (a) ASD; (b) MSD; (c) RXD; (d) KASD; (e) KMSD; (f) KRXD; (g) SR; (h) JSR; (i) SVM; (j) CNN. 

• Vegetation detection maps of nine methods for the HS dataset (DS-144) 

RXD and KMSD maps do not look good. Others look just fine. 

(a) ASD 

Figure A3. Vegetation detection maps of nine algorithms for the RGB + NIR + LiDAR +EMAP (DS-55)
dataset. (a) ASD; (b) MSD; (c) RXD; (d) KASD; (e) KMSD; (f) KRXD; (g) SR; (h) JSR; (i) SVM; (j) CNN.

• Vegetation detection maps of nine methods for the HS dataset (DS-144)

RXD and KMSD maps do not look good. Others look just fine.

Remote Sens. 2020, 12, x; doi: 24 of 30 

 

(e) KMSD 

(f) KRXD

(g) SR 

(h) JSR 

(i) SVM 

(j) CNN 

Figure A3. Vegetation detection maps of nine algorithms for the RGB + NIR + LiDAR +EMAP (DS-55) 
dataset. (a) ASD; (b) MSD; (c) RXD; (d) KASD; (e) KMSD; (f) KRXD; (g) SR; (h) JSR; (i) SVM; (j) CNN. 

• Vegetation detection maps of nine methods for the HS dataset (DS-144) 

RXD and KMSD maps do not look good. Others look just fine. 

(a) ASD 

Figure A4. Cont.



Remote Sens. 2020, 12, 3880 25 of 29
Remote Sens. 2020, 12, x; doi: 25 of 30 

 

(b) MSD 

(c) RXD 

(d) KASD 

(e) KMSD 

(f) KRXD 

(g) SR 

(h) JSR 

Figure A4. Cont.



Remote Sens. 2020, 12, 3880 26 of 29
Remote Sens. 2020, 12, x; doi: 26 of 30 

 

(i) SVM 

 
(j) CNN 

Figure A4. Vegetation detection maps of nine algorithms for the HS (DS-144) dataset. (a) ASD; (b) 
MSD; (c) RXD; (d) KASD; (e) KMSD; (f) KRXD; (g) SR; (h) JSR; (i) SVM; (j) CNN. 

• Vegetation detection maps of nine methods for the HS dataset + LiDAR (DS-145) 

ASD, RXD, and KMSD maps do not look good. Others look fine. 

 
(a) ASD 

(b) MSD 

 

(c) RXD 

(d) KASD 

Figure A4. Vegetation detection maps of nine algorithms for the HS (DS-144) dataset. (a) ASD; (b) MSD;
(c) RXD; (d) KASD; (e) KMSD; (f) KRXD; (g) SR; (h) JSR; (i) SVM; (j) CNN.

• Vegetation detection maps of nine methods for the HS dataset + LiDAR (DS-145)

ASD, RXD, and KMSD maps do not look good. Others look fine.

Remote Sens. 2020, 12, x; doi: 26 of 30 

 

(i) SVM 

 
(j) CNN 

Figure A4. Vegetation detection maps of nine algorithms for the HS (DS-144) dataset. (a) ASD; (b) 
MSD; (c) RXD; (d) KASD; (e) KMSD; (f) KRXD; (g) SR; (h) JSR; (i) SVM; (j) CNN. 

• Vegetation detection maps of nine methods for the HS dataset + LiDAR (DS-145) 

ASD, RXD, and KMSD maps do not look good. Others look fine. 

 
(a) ASD 

(b) MSD 

 

(c) RXD 

(d) KASD 

Figure A5. Cont.



Remote Sens. 2020, 12, 3880 27 of 29
Remote Sens. 2020, 12, x; doi: 27 of 30 

 

 

(e) KMSD 

 

(f) KRXD 

(g) SR 

 

(h) JSR 

 

(i) SVM 

     

(j) CNN 

Figure A5. Vegetation detection maps of nine algorithms for the HS + LiDAR (DS-145) dataset. (a) 
ASD; (b) MSD; (c) RXD; (d) KASD; (e) KMSD; (f) KRXD; (g) SR; (h) JSR; (i) SVM; (j) CNN. 

References 

1. Measuring Vegetation. Available online: https://earthobservatory.nasa.gov/features/ 
MeasuringVegetation/measuring_vegetation_2.php (accessed on 27 May 2020). 

2. Yengoh, G.T.; Dent, D.; Olsson, L.; Tengberg, A.E.; Tucker, C.J., III. Use of the Normalized Difference Vegetation 
Index (NDVI) to Assess Land Degradation at Multiple Scales: Current Status, Future Trends, and Practical 
Considerations; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2015. 

Figure A5. Vegetation detection maps of nine algorithms for the HS + LiDAR (DS-145) dataset. (a) ASD;
(b) MSD; (c) RXD; (d) KASD; (e) KMSD; (f) KRXD; (g) SR; (h) JSR; (i) SVM; (j) CNN.

References

1. Measuring Vegetation. Available online: https://earthobservatory.nasa.gov/features/MeasuringVegetation/

measuring_vegetation_2.php (accessed on 27 May 2020).
2. Yengoh, G.T.; Dent, D.; Olsson, L.; Tengberg, A.E.; Tucker, C.J., III. Use of the Normalized Difference Vegetation

Index (NDVI) to Assess Land Degradation at Multiple Scales: Current Status, Future Trends, and Practical
Considerations; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2015.

https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2.php
https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2.php


Remote Sens. 2020, 12, 3880 28 of 29

3. Bajocco, S.; De Angelis, A.; Perini, L.; Ferrara, A.; Salvati, L. The Impact of Land Use/Land Cover Changes on
Land Degradation Dynamics: A Mediterranean Case Study. Environ. Manag. 2012, 49, 980–989. [CrossRef]

4. Anyamba, A.; Tucker, C.J. Historical Perspectives on AVHRR NDVI and Vegetation Drought Monitoring.
NASA Publ. 2012, 23, 20.

5. Herrmann, S.M.; Sop, T. The map is not the territory. How satellite remote sensing and ground evidence
have (Re-)Shaped the image of Sahelian desertification. In Desertification: Science, Politics and Public Perception;
Behnke, R., Mortimore, M., Eds.; Earth System Science Series; Springer: New York, NY, USA, 2015.

6. Mulianga, B.; Bégué, A.; Simoes, M.; Clouvel, P.; Todoroff, P. Estimating potential soil erosion for
environmental services in a sugarcane growing area using multisource remote sensing data. In Remote
Sensing for Agriculture, Ecosystems, and Hydrology XV; SPIE Remote Sensing: Dresden, Germany, 2013.

7. De Angelis, A.; Bajocco, S.; Ricotta, C. Modelling the phenological niche of large fires with remotely sensed
NDVI profiles. Ecol. Model. 2012, 228, 106–111. [CrossRef]

8. Pettorelli, N.; Safi, K.; Turner, W. Satellite remote sensing, biodiversity research and conservation of the future.
Phil. Trans. R. Soc. 2014, B36920130190. [CrossRef]

9. Pan, C.; Zhao, H.; Zhao, X.; Han, H.; Wang, Y.; Li, J. Biophysical properties as determinants for soil organic
carbon and total nitrogen in grassland salinization. PLoS ONE 2013, 8, e54827. [CrossRef]

10. Liu, H.Q.; Huete, A.R. A feedback based modification of the NDVI to minimize canopy background and
atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [CrossRef]

11. Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.; Qiu, G. Sensitivity of the Enhanced Vegetation Index (EVI)
and Normalized Difference Vegetation Index (NDVI) to Topographic Effects: A Case Study in High-density
Cypress Forest. Sensors 2007, 7, 2636–2651. [CrossRef]

12. Kwan, C.; Ayhan, B.; Larkin, J.; Kwan, L.M.; Bernabé, S.; Plaza, A. Performance of Change Detection
Algorithms Using Heterogeneous Images and Extended Multi-attribute Profiles (EMAPs). Remote Sens. 2019,
11, 2377. [CrossRef]

13. Kwan, C.; Larkin, J.; Ayhan, B.; Kwan, L.M.; Skarlatos, D.; Vlachos, M. Performance Comparison of Different
Inpainting Algorithms for Accurate DTM Generation. In Proceedings of the Geospatial Informatics X
(Conference SI113), Anaheim, CA, USA, 21 April 2020.

14. Ayhan, B.; Kwan, C.; Kwan, L.M.; Skarlatos, D.; Vlachos, M. Deep learning models for accurate vegetation
classification using RGB image only. In Proceedings of the Geospatial Informatics X (Conference SI113),
Anaheim, CA, USA, 21 April 2020.

15. Ayhan, B.; Kwan, C. Tree, Shrub, and Grass Classification Using Only RGB Images. Remote Sens. 2020,
12, 1333. [CrossRef]

16. Ayhan, B.; Kwan, C. Application of deep belief network to land cover classification using hyperspectral
images. In Proceedings of the International Symposium on Neural Networks, Sapporo, Japan, 21 June 2017;
Springer: Cham, Switzerland; pp. 269–276.

17. Kwan, C.; Gribben, D.; Ayhan, B.; Bernabe, S.; Plaza, A.; Selva, M. Improving Land Cover Classification Using
Extended Multi-attribute Profiles (EMAP) Enhanced Color, Near Infrared, and LiDAR Data. Remote Sens.
2020, 12, 1392. [CrossRef]

18. Kwan, C.; Larkin, J.; Ayhan, B.; Budavari, B. Practical Digital Terrain Model Extraction Using Image
Inpainting Techniques. In Recent Advances in Image Restoration with Application to Real World Problems; InTech:
München, Germany, 2020.

19. Kwan, C.; Ayhan, B.; Budavari, B.; Lu, Y.; Perez, D.; Li, J.; Bernabe, S.; Plaza, A. Deep learning for Land Cover
Classification using only a few bands. Remote Sens. 2020, 12, 2000. [CrossRef]

20. Bernabé, S.; Marpu, P.R.; Plaza, A.; Mura, M.D.; Benediktsson, J.A. Spectral–spatial classification of multispectral
images using kernel feature space representation. IEEE Geosci. Remote Sens. Lett. 2014, 11, 288–292. [CrossRef]

21. Bernabé, S.; Marpu, P.R.; Plaza, A.; Benediktsson, J.A. Spectral unmixing of multispectral satellite images with
dimensionality expansion using morphological profiles. In Proceedings of the SPIE Satellite Data Compression,
Communications, and Processing VIII, San Diego, CA, USA, 19 October 2012; Volume 8514, p. 85140Z.

22. Mura, M.D.; Benediktsson, J.A.; Waske, B.; Bruzzone, L. Morphological attribute profiles for the analysis of
very high resolution images. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3747–3762. [CrossRef]

23. Mura, M.D.; Benediktsson, J.A.; Waske, B.; Bruzzone, L. Extended profiles with morphological attribute
filters for the analysis of hyperspectral data. Int. J. Remote Sens. 2010, 31, 5975–5991. [CrossRef]

http://dx.doi.org/10.1007/s00267-012-9831-8
http://dx.doi.org/10.1016/j.ecolmodel.2012.01.003
http://dx.doi.org/10.1098/rstb.2013.0190
http://dx.doi.org/10.1371/journal.pone.0054827
http://dx.doi.org/10.1109/TGRS.1995.8746027
http://dx.doi.org/10.3390/s7112636
http://dx.doi.org/10.3390/rs11202377
http://dx.doi.org/10.3390/rs12081333
http://dx.doi.org/10.3390/rs12091392
http://dx.doi.org/10.3390/rs12122000
http://dx.doi.org/10.1109/LGRS.2013.2256336
http://dx.doi.org/10.1109/TGRS.2010.2048116
http://dx.doi.org/10.1080/01431161.2010.512425


Remote Sens. 2020, 12, 3880 29 of 29

24. Skarlatos, D.; Vlachos, M. Vegetation removal from UAV derived DSMS using combination of RGB and
NIR imagery. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, Riva del Garda, Italy, 4–7 June 2018; Volume IV-2.

25. Khodadadzadeh, M.; Li, J.; Prasad, S.; Plaza, A. Fusion of Hyperspectral and LiDAR Remote Sensing Data Using
Multiple Feature Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2971–2983. [CrossRef]

26. Nasrabadi, N.M. Kernel-based spectral matched signal detectors for hyperspectral target detection.
In Proceedings of the International Conference on Pattern Recognition and Machine Intelligence, Kolkata,
India, 18–22 December 2007; Springer: Berlin/Heidelberg, Germany.

27. Nguyen, D.; Kwan, C.; Ayhan, B. A Comparative Study of Several Supervised Target Detection Algorithms
for Hyperspectral Images. In Proceedings of the IEEE Ubiquitous Computing, Electronics & Mobile
Communication Conference, New York, NY, USA, 19–21 October 2017; pp. 192–196.

28. Kwon, H.; Nasrabadi, N.M. Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery.
IEEE Trans. Geosci. Remote Sens. 2005, 43, 388–397. [CrossRef]

29. Zhou, J.; Kwan, C.; Ayhan, B.; Eismann, M. A Novel Cluster Kernel RX Algorithm for Anomaly and Change
Detection Using Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6497–6504. [CrossRef]

30. Dao, M.; Kwan, C.; Koperski, K.; Marchisio, G. A Joint Sparsity Approach to Tunnel Activity Monitoring
Using High Resolution Satellite Images. In Proceedings of the IEEE Ubiquitous Computing, Electronics &
Mobile Communication Conference, New York, NY, USA, 19–21 October 2017; pp. 322–328.

31. Qian, T.; Li, X.; Ayhan, B.; Xu, R.; Kwan, C.; Griffin, T. Application of support vector machines to vapor
detection and classification for environmental monitoring of spacecraft. In Advances in Neural Networks—ISNN
2006, Proceedings of the Third International Symposium on Neural Networks, Chengdu, China, 28 May–1 June 2006;
Springer: New York, NY, USA, 2006.

32. Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.-S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing:
A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [CrossRef]

33. Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review.
ISPRS J. Photogram. Remote Sens. 2019, 158, 279–317. [CrossRef]

34. Zhang, C.; Pan, X.; Li, H.P.; Gardiner, A.; Sargent, I.; Hare, J.; Atkinson, P.M. A hybrid MLP-CNN classifier for very
fine resolution remotely sensed image classification. ISPRS J. Photogram. Remote Sens. 2018, 140, 133–144. [CrossRef]

35. Li, W.; Fu, H.; Yu, L.; Gong, P.; Feng, D.; Li, C.; Clinton, N. Stacked Autoencoder-based deep learning for
remote-sensing image classification: A case study of African land-cover mapping. Int. J. Remote Sens. 2016,
37, 5632–5646. [CrossRef]

36. Bernabé, S.; Sánchez, S.; Plaza, A.; López, S.; Benediktsson, J.A.; Sarmiento, R. Hyperspectral Unmixing
on GPUs and Multi-Core Processors: A Comparison. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013,
6, 1386–1398.

37. Perez, D.; Banerjee, D.; Kwan, C.; Dao, M.; Shen, Y.; Koperski, K.; Marchisio, G.; Li, J. Deep Learning for Effective
Detection of Excavated Soil Related to Illegal Tunnel Activities. In Proceedings of the IEEE Ubiquitous Computing
Electronics and Mobile Communication Conference, New York, NY, USA, 19–21 October 2017; pp. 626–632.

38. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

39. Dao, M.; Kwan, C.; Bernabé, S.; Plaza, A.; Koperski, K. A Joint Sparsity Approach to Soil Detection Using
Expanded Bands of WV-2 Images. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1869–1873. [CrossRef]

40. Liao, W.; Pižurica, A.; Bellens, R.; Gautama, S.; Philips, W. Generalized Graph-Based Fusion of Hyperspectral
and LiDAR Data Using Morphological Features. IEEE Geosci. Remote Sens. Lett. 2015, 12, 552–556. [CrossRef]

41. Discussion Thread about Whether NDVI Can Be Generated Using Radiance Data. Available online: https://
www.researchgate.net/post/What_is_the_difference_between_Radiance_and_Reflectance_for_Vegetation_Indices
(accessed on 20 November 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JSTARS.2015.2432037
http://dx.doi.org/10.1109/TGRS.2004.841487
http://dx.doi.org/10.1109/TGRS.2016.2585495
http://dx.doi.org/10.1109/MGRS.2017.2762307
http://dx.doi.org/10.1016/j.isprsjprs.2019.09.006
http://dx.doi.org/10.1016/j.isprsjprs.2017.07.014
http://dx.doi.org/10.1080/01431161.2016.1246775
http://dx.doi.org/10.1109/LGRS.2019.2911923
http://dx.doi.org/10.1109/LGRS.2014.2350263
https://www.researchgate.net/post/What_is_the_difference_between_Radiance_and_Reflectance_for_Vegetation_Indices
https://www.researchgate.net/post/What_is_the_difference_between_Radiance_and_Reflectance_for_Vegetation_Indices
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods and Data 
	Land Cover Classification Methods 
	Matched Subspace Detection (MSD) 
	Adaptive Subspace Detection (ASD) 
	Reed-Xiaoli Detection (RXD) 
	Kernel MSD (KMSD) 
	Kernel ASD (KASD) 
	Kernel RXD (KRXD) 
	Sparse Representation (SR) 
	Joint Sparse Representation (JSR) 
	Support Vector Machine (SVM) 
	Our Customized Convolutional Neural Network (CNN) 

	NDVI 
	Enhanced Vegetation Index (EVI) 
	EMAP 
	Data 

	Vegetation Detection Results 
	Fifteen-Class Land Cover Classification Results 
	Two-class Vegetation Classification Results 
	Discussion 

	Conclusions 
	
	References

