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Abstract: This study assesses the spatial and temporal characteristics of nighttime surface urban heat
island (SUHI) effects over Greater Cairo: the largest metropolitan area in Africa. This study employed
nighttime land surface temperature (LST) data at 1 km resolution from the Moderate Resolution
Imaging Spectroradiometer (MODIS) Aqua sensor for the period 2003–2019. We presented a new
spatial anomaly algorithm, which allowed to define SUHI using the most anomalous hotspot and
cold spot of LST for each time step over Greater Cairo between 2003 and 2019. Results demonstrate
that although there is a significant increase in the spatial extent of SUHI over the past two decades,
a significant decrease in the mean and maximum intensities of SUHI was noted. Moreover,
we examined the dependency between SUHI characteristics and related factors that influence
energy and heat fluxes between atmosphere and land in urban environments (e.g., surface albedo,
vegetation cover, climate variability, and land cover/use changes). Results demonstrate that the
decrease in the intensity of SUHI was mainly guided by a stronger warming in daytime and nighttime
LST in the neighborhood of urban localities. This warming was accompanied by a decrease in surface
albedo and diurnal temperature range (DTR) over these areas. Results of this study can provide
guidance to local urban planners and decision-makers to adopt more effective mitigation strategies to
diminish the negative impacts of urban warming on natural and human environments.
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1. Introduction

The Greater Cairo is the largest metropolitan area in Africa. It has witnessed rapid changes
in population, urbanization, and extensive economic activities over both space and time, inducing
critical impacts on the local environment, carbon cycle, and even climate change [1]. For example,
the population of Greater Cairo has increased dramatically over the past decades from 2.4 million (1950)
to 20.58 million (2018) and currently represents more than 20% of the total population of the Egyptian
territory [2]. Greater Cairo is one of the most densely metropolitan areas worldwide, with a population
density approaching 8300 inhabitants per km2. Moreover, it is one of the most polluted cities in the
world, with extremely high levels of particular matter (PM10). The deterioration of air quality is
mainly driven by natural (e.g., sandy and dust storms) and anthropogenic (e.g., traffic, industries,
and biomass burning) emission sources [3]. In addition, Greater Cairo has witnessed rapid urbanization
in the past few decades, with new cities (e.g., 6th October and Al Obour) being born and added to
the “traditional” megacity. This rapid trend of urbanization is projected to continue in the future,
mainly due to demographic forces (e.g., high population growth, continuing internal migration from
surrounding less-developed regions) and urban sprawl into agricultural lands. All these natural and
human stressors, combined with a possible future acceleration of air temperature and intensification of
extreme heat waves, may act to increase the heat load to urban dwellers [4–6].

There is an increasing global interest in characterizing surface urban heat island (SUHI) effects
at different spatial scales, ranging from a unique city, e.g., [7,8] to national, continental, and global
scales, e.g., [9–11]. This interest is motivated mainly by the adverse impacts, associated with SUHI,
on natural and human environments, as well as the potential benefits resulting from their mitigation.
These studies mostly rely on in situ observation, remote sensing data, and/or numerical modelling.
With advancements in remote sensing techniques, it has been feasible to assess characteristics of SUHI
at more detailed spatial and temporal scale and for an increasing span of time [12]. A rich body of
work has employed satellite imagery to analyze the different characteristics of SUHIs using improved
space-based data. Examples of these studies include assessing intensity and spatial extent of SUHI,
e.g., [13,14], their temporal changes; physical mechanisms and driving forces, e.g., [15–17]; impacts on
natural and human environments, e.g., [18,19]; and mitigation strategies, e.g., [20,21].

As the main demographic, administrative, and economic urban center in Egypt, Greater Cairo
has gained the attention of researchers and scientists, with several investigations focusing on air
pollution, e.g., [22,23]; road traffic, e.g., [24,25]; climate variability, e.g., [26]; poverty, e.g., [27]; criminal
behavior, e.g., [28]; health conditions, e.g., [29,30]; land use changes, e.g., [31,32]; and urban growth,
e.g., [30,33–35]. For Greater Cairo, it is quite challenging to make a comprehensive assessment
of SUHI based on ground measurements alone, especially with the large heterogeneity of urban
features. More simply, this is due to the sparse distribution of meteorological stations, which hinders
the capacity to adequately represent the patterns, dynamics, and driving forces of SUHI. As such,
earlier comprehensive attempts have been made to analyze SUHI and its main spatial and temporal
characteristics using remote sensing data, e.g., [36–41]. However, a detailed review of these studies
reveals that they characterized SUHI for individual, arbitrarily selected, and less representative dates
or for a specific portion of the whole domain of Greater Cairo. Moreover, all of these studies employed
different versions of Landsat data, which has a limited revisit time that can even be extended due to
cloud cover influence [42]. From a temporal perspective, the infrequent repeat coverage of Landsat
data was insufficient to provide a temporarily continuous multi-decadal assessment of changes in
SUHI characteristics (e.g., intensity, spatial extent) over Greater Cairo. In addition, these studies lack
the opportunity to address the links of SUHI characteristics with important land-atmosphere drivers
(e.g., surface albedo, diurnal temperature range (DTR), etc.)
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Some remote sensing products (e.g., the Moderate Resolution Imaging Spectroradiometer (MODIS)
sensors on the Terra and Aqua satellites) are temporally-continuous, with a coarser resolution
(250 m–1 km) but still enough when considering the total area (2453 km2) of Greater Cairo. This presents
an opportunity to explore the multitemporal variability of SUHI, with a spatial coverage quite adequate
to describe its morphology and spatial patterns. Due to their relatively high spatial and temporal
resolution, MODIS products have increasingly been used to monitor SUHI in different regions
worldwide e.g., [10,14,17,43]. For Greater Cairo, such a long-term spatially detailed assessment of
SUHI characteristics and attribution of their driving forces is lacking. Importantly, the timely and
spatially explicit characteristics of MODIS-land surface temperature (LST) data used in this study can
provide meaningful results for decision makers to assess the risk and vulnerability associated with
intensification of SUHI and to plan and design adaptation or mitigation measures. Moreover, such an
assessment is needed, recalling that the response to climate change in the Greater Cairo region may be
more complicated and challenging than in other regions, due to rapid and uncontrolled urban and
population growth.

Overall, this study aims to (1) assess the spatial and temporal variability of SUHI in Greater Cairo
from January 2003 to December 2019 using 1 km MODIS nighttime LST data, and to (2) determine
the physical mechanism and drivers (e.g., vegetation cover, surface albedo, land use) that can control
the derived SUHI variability. Results of this study can guide future efforts towards mitigation and
abatement strategies in Greater Cairo.

2. Study Area

With a total area of 2453 km2, Greater Cairo is located between the latitudes of 29◦42′32”N and
30◦17′11”N and the longitudes of 30◦47′35”E and 31◦48′22”E (Figure 1). Greater Cairo represents the
economic heartland of Egypt, including the main national governments, manufacturing industries,
electrical power stations, tourist centers, cultural sites, business establishments, and universities. It is a
rapidly growing metropolitan region, which witnessed continuous changes in its physical and human
environments [26]. While industry and services are the main economic activities in the central areas,
agriculture remains the key activity in suburban areas [40]. However, these suburban areas have also
witnessed a drastic decrease in its agricultural land since 2011, with almost 9600 ha being converted from
agricultural to urban use [31]. The northern and southern portions of the study region are occupied by
two main industrial complex zones, Shoubra El-Khiema and Helwan, respectively [26]. From a climatic
perspective, Greater Cairo is located in the extratropical zone, with hot and dry summers and moderate
and dry winters (BWh according to the Köppen–Geiger classification). The mean annual temperature
is almost 22 ◦C, while the mean annual rainfall is 20.4 mm, with annual rainy days generally below 10
(based on the observed meteorological records for the period 1983–2019). Rainfall is scarce, with less
than 10 rainy days per year, mainly distributed in winter and spring. The climate is continental
with high DTR, high solar radiation, clear sky, and frequent sandstorms [44]. Topography of Greater
Cairo is almost flat, with no clear topographical gradients. The main highest elevations are located
in Moqattam hills to the east, with elevations generally exceeding 300 m (Figure 1). Greater Cairo
is surrounded by sandy deserts from the east and west. In this study, the Greater Cairo region was
defined administratively, incorporating five main cities: Cairo, Giza, Shoubra El-Khiema, 6th October,
and Al Obour. Although this definition is based primarily on aggregation of local administrative
units (N = 68) (e.g., municipalities, small local jurisdictions, etc.) (Figure 1), it also accounts for the
combination of population densities and built-up land, in comparison to other surrounding areas.
Furthermore, this definition did not miss the main functions of the city, particularly as an urban center
whose economic influence extends beyond their traditional boundaries to commuting zones through
what is called “travel-to-work” flows.
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Figure 1. Location of Greater Cairo, its topography, and main administrative divisions. Topography 
was presented based on the SRTM GL1 digital elevation model (DEM) EM at 30-m spatial resolution 
(https://lpdaac.usgs.gov/products/srtmgl1v003/). 
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This study employed the full archive (January 2003–December 2019) of the 8-day composites of 
the LST product (MOD11A2) (https://lpdaac.usgs.gov/). Specifically, nighttime surface temperatures 
were extracted from the Aqua satellite (MYD11A2V.6) for the Greater Cairo domain. MODIS Aqua 
acquires nighttime (1:30 a.m.) near-surface temperature data at a 1 km grid resolution. Herein, it is 
worth noting that a preference was made to analyze the nocturnal (nighttime) SUHI characteristics 
rather than daytime SUHI. This decision is mainly fueled by the notion that SUHI is determined 
largely by the behavior of both surface temperature and sensible heat flux [45]. Typically, in 
continental regions, the differences between surface and air temperatures become much larger during 
nighttime. Furthermore, the intensity and distribution of SUHI are impacted more by anthropogenic 
heat releases and climate forces (e.g., albedo), which are more enhanced during nighttime, mainly 
due to the active outgoing shortwave radiation in the absence of the sun [17]. This makes nighttime 
SUHI more representative of energy and heat fluxes between the surface and atmosphere, as 
compared to daytime SUHI. Here, it is noteworthy to indicate that we also use the daytime LST 
product (MOD11A2) to explore the links between nocturnal SUHI characteristics and daytime LST 
on one hand and to assess the role of DTR in the evolution of SUHI on the other hand. 

Figure 1. Location of Greater Cairo, its topography, and main administrative divisions. Topography
was presented based on the SRTM GL1 digital elevation model (DEM) EM at 30-m spatial resolution
(https://lpdaac.usgs.gov/products/srtmgl1v003/).

3. Materials and Methods

3.1. Datasets

3.1.1. MODIS LST

This study employed the full archive (January 2003–December 2019) of the 8-day composites of
the LST product (MOD11A2) (https://lpdaac.usgs.gov/). Specifically, nighttime surface temperatures
were extracted from the Aqua satellite (MYD11A2V.6) for the Greater Cairo domain. MODIS Aqua
acquires nighttime (1:30 a.m.) near-surface temperature data at a 1 km grid resolution. Herein, it is
worth noting that a preference was made to analyze the nocturnal (nighttime) SUHI characteristics
rather than daytime SUHI. This decision is mainly fueled by the notion that SUHI is determined
largely by the behavior of both surface temperature and sensible heat flux [45]. Typically, in continental
regions, the differences between surface and air temperatures become much larger during nighttime.
Furthermore, the intensity and distribution of SUHI are impacted more by anthropogenic heat releases
and climate forces (e.g., albedo), which are more enhanced during nighttime, mainly due to the
active outgoing shortwave radiation in the absence of the sun [17]. This makes nighttime SUHI more
representative of energy and heat fluxes between the surface and atmosphere, as compared to daytime
SUHI. Here, it is noteworthy to indicate that we also use the daytime LST product (MOD11A2) to

https://lpdaac.usgs.gov/products/srtmgl1v003/
https://lpdaac.usgs.gov/


Remote Sens. 2020, 12, 3889 5 of 29

explore the links between nocturnal SUHI characteristics and daytime LST on one hand and to assess
the role of DTR in the evolution of SUHI on the other hand.

3.1.2. MODIS Albedo

There are a variety of land-atmospheric conditions that influence characteristics of SUHI (e.g., land
use/cover, surface albedo, relative humidity, cloud cover, soil moisture, wind speed, etc.) Land
surface albedo, defined as the fraction of incident solar radiation reflected by land surface, is one of
the key variables controlling land-atmosphere energy fluxes and can thus determine the intensity
and spatial extension of SUHI [46,47]. Typically, a decrease in the albedo of urban settlement
areas can induce an increase in land and surface air temperatures and accordingly enhance any
warming effect [48]. To explore the feedback between surface albedo and characteristics of SUHI,
we employed the 16-day composites of surface reflectance from the Aqua (MYD) satellite. The standard
MODIS bidirectional reflectance distribution function (BRDF)/albedo product (MCD43A) provides the
weighting parameters (isotropic, volumetric, and geometric) necessary for describing the reflectance
anisotropy at a 1-km grid resolution. The MCD43 series of albedo are produced using the MODIS
(BRDF)/Albedo algorithm [49]. This dataset showed a good performance over a wide variety of land
covers [50–52]. MODIS BRDF/albedo values were only retrieved for multiangular atmospherically
corrected pixels with high-quality data (i.e., cloud-free, low-aerosol optical depth). Specifically,
high-quality BRDF and albedo values were retrieved only when there were a sufficient number of
observations with good angular sampling. Otherwise, the data were considered of poor quality
and assigned error flags. As the MODIS albedo data are estimated at 8-day resolution, with 16-day
acquisition periods, a multi-day average may introduce uncertainties in the obtained results, as it
can offset day-to-day cycle of albedo. Nonetheless, in our study domain, this kind of effect is
non-significant. The possible impacts of both natural (e.g., vegetation growth, wet spells) and
human processes (e.g., harvesting crops, deforestation, and revegetation) are minimized in this arid
environment. Accordingly, the 16-day average albedo is less impacted by diurnal changes and episodic
meteorological and vegetation impacts.

3.1.3. MODIS NDVI

With the high-resolution spectral information from passive sensors, a wide range of remote
sensing vegetation indices have been employed to characterize vegetation dynamics. [53] provided a
comprehensive review of the advantages and limitations of different remotely sensed vegetation indices.
In this study, NDVI was computed using MOD13A2 and MYD13A2 V006 16-day composites for the
period from January 2003 to December 2019 at 1 km grid interval. This resolution is consistent with the
spatial resolution of MODIS LST (1 km). The data were provided by the U.S. Geological Survey (USGS)
through the Land Processes Distributed Active Archive Center (LP DAAC) (https://lpdaac.usgs.gov/).
Similar to all remotely sensed data employed in this study, the raw data were subjected to a quality
control procedure to minimize the possible impacts of atmospheric conditions (e.g., clouds, aerosols),
exclude poor-quality observations, and interpolate missing values. A comprehensive description of
this quality control procedure is outlined in [54]. The NDVI was simply computed using the red
and infrared reflectance of the surface, while the Maximum Value Composite (MVC) of NDVI was
calculated using the algorithm adopted by [55]. MODIS-derived NDVI has been widely used in
applications related to vegetation phenology and greening [56–60].

3.1.4. Land Use/Land Cover Data

Recalling the remarkable diversity of landscape over Greater Cairo, it was important to assess
the effects of land cover/land use (LCLU) types on the spatial morphology and intensity of SUHI
over Greater Cairo. For this purpose, we employed the digital map of LCLU types for Greater
Cairo, which was produced by the Central Agency for Public Mobilization and Statistics (CAPMS)
in 2018 (http://www.capmas.gov.eg/HomePage.aspx). Herein, we defined eight main categories of

https://lpdaac.usgs.gov/
http://www.capmas.gov.eg/HomePage.aspx


Remote Sens. 2020, 12, 3889 6 of 29

LCLU types: cropland, natural vegetation, water bodies, built-up, vacant land, industrial land,
agricultural land, and roads (Supplementary Figure S1). This map was generated based on intensive
field surveys and data processing and retrieval within a Geographic Information Systems (GIS) and
remote sensing environments. The accuracy of the 2018 LCLU classes was assessed using sample
(reference) points generated randomly from high-resolution data (Google Earth) and validated against
field data. The accuracy assessment suggests that the post-processing classes were highly accurate,
with overall accuracies exceeding 95%. Unfortunately, LCLU maps were not available for parts of
the eastern domain of Greater Cairo, mainly occupied by some recently developed cities (e.g., Obour,
Shorouk, and Badr, Egypt).

3.2. Spatial Morphology of SUHI

Although the impacts of SUHI on natural and human environment may be more intensive during
the warm season (i.e., summer), with adverse impacts on human comfort, heat-related mortality,
energy production and consumption, our decision was made to assess characteristics of SUHI on a
seasonal basis. The decision was mainly guided by the notion that Greater Cairo is located in an
extratropical zone, where the climate shows a high intra-annual variability, with strong seasonal
differences. For example, due to its inland location, night-time temperature tends to be much cooler
during winter and much higher during summer. Moreover, it is impacted by northerly winds in winter,
while western flows dominate in spring. In addition, the effects of aerosols, which can significantly
impact the amount of incoming solar radiation, can be more pronounced during spring and fall than in
winter and summer. Accordingly, the response of SUHI to these stressors, as well as their effects, can
vary greatly with season.

One of the key challenges in defining SUHI is how to accurately define both urban and suburban
areas, as there are different quantitative and qualitative criteria that can be used for this purpose.
“Urban” is a complex concept, which makes it difficult to provide a globally acceptable definition
of urban and suburban areas. As such, different approaches have been adopted to make such a
differentiation between urban and suburban areas. These approaches applied a wide variety of criteria
(e.g., population size, land area, total built-up area, population densities, green space ratio, dominant
economic activities, social organization, etc.) [61]. These challenges in making a clear definition of urban
and suburban areas are strongly reflected in characterization of SUHI, as there is also no definitive
criterion for the definition of SUHI. Specifically, while some studies have defined SUHI based on land
cover categories [62], others relied on impervious surface areas [43] or local climate zones [63]. Ref. [34]
provided a comprehensive discussion of how the detection of SUHI can vary considerably according
to the applied methodology and selected criteria.

In this study, we tried to overcome the limitations of defining urban and suburban areas, which can
vary –even in the same city or town- according to the adopted LCLU classification algorithm [64,65],
the spatial resolution of remote sensing products [66], etc. Specifically, to assess changes in the spatial
morphology of the SUHI over Greater Cairo, we adopted a new approach, which accounts for LST
differences between the different parts of the city following a spatial anomaly algorithm. This algorithm
defines SUHI through comparing LST between the most anomalous “hotspot” and “cold spot” across
the city, taking into consideration data structure across the whole spatial domain (i.e., spatial anomaly).
Specifically, our approach depends on defining the intensity and spatial extent of SUHI using spatial
anomaly, in which LST at each grid is compared with all grids for each independent month over the
whole study period (January 2003–December 2019). Fortunately, as opposed to observation stations,
the relatively high spatial resolution (1 km) of MODIS night-time LST allows for the application of
this methodology.

Herein, nighttime LST at each time step (8-day composite) for each grid was compared with those
corresponding to all grids (N = 3289), where this spatial anomaly was computed, as follows:

LSTanomaly= LSTi−µ (1)
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where LSTi refers to nighttime LST at grid i at a particular time step, while µ indicates the average
of nighttime LST for all grids at the same time step. After defining LSTanomaly for each grid for
all time steps within the whole study period, these anomalies were aggregated on a monthly basis.
To define the spatial extent of the most anomalous “hotspot” and “cold spot” across the city for a
particular month from January 2003 to December 2019, the grid (i) was assigned to the most anomalous
hotspot when:

LSTanomaly f or grid i > 0.5 (Q75 f or all grids − Q25 f or all grids) + Q75 f or all grids (2)

Alternatively, the grid is assigned to the most anomalous cold spot when:

LSTanomaly f or grid i < Q25 f or all grids − 0.5 (Q75 f or all grids − Q25 f or all grids) (3)

Following Equations (2) and (3), the first (third) quartile for the anomalies of all grids for each
month was calculated. Specifically, the third quartile (Q75) refers to the value of the 75th percentile
calculated for the values of all LST anomalies for all grids. On the other hand, the first quartile (Q25)
refers to the value of the 25th percentile calculated for LST anomalies for all grids on the same month.
Based on these equations, each grid within the Greater Cairo will be assigned to the most anomalous
hotspot if it meets the conditions of Equation (2), while it will be classified within the most anomalous
cold spot in the city if it fulfills the requirement of Equation (3). Interestingly, this method allows to
define the transitional thermal zones between the most anomalous hot and cold spots, given that the
remaining grids (i.e., those did not meet the requirements of either Equation (2) or (3) will constitute
this transitional zone.

Overall, the main innovative aspects of this proposed methodology are that (i) only grids with
anomalous high (hotspot) and low (cold spot) nighttime LST anomalies are kept, which are likely
to reflect heat and energy budget in the most and less urbanized areas across the city, respectively;
(ii) this approach avoids arbitrarily-based definitions of climate zones within the city, whose results
are site dependent and highly variable amongst months, seasons, and years; (iii) it minimizes
uncertainties in defining SUHI, which are mostly related to how urban and suburban areas are
delineated; (iv) according to this procedure, the grids with the most anomalous high and cold
nighttime LST are defined, using a robust statistical definition, taking into account all grids spanning
the whole study region; (v) this method captures well the spatial gradient (i.e., gradual changes
over space) of LST over the whole domain, which enables to define if there are any changes in the
trajectories and spatial structure of SUHI; (vi) more importantly, this methodology allows to define
the dynamical characteristic of SUHI, as represented by spatial anomalies of LST at an individual
time step but also through assessing the temporal evolution of these anomalies at independent time
scales (e.g., monthly, seasonally and annually), allowing for assessing the varying responses of SUHI
characteristics to different land-atmosphere drivers over time; and (vii) in comparison to some earlier
studies, which define SUHI using normalization or standardized LST values, defining SUHI using
spatial anomalies of LST allows to express differences in LST between the most anomalous hot and
cold spots in the city in absolute values (i.e., ◦C), not normalized or standardized units. This aspect is
important in urban environments, as it gives a direct evaluation of changes in the mean and maximum
intensities of SUHI over time, which facilitates the comparison between cities located in different
geographical and climatic zones.

After defining the spatial extent of the most anomalous hot and cold spots, we computed SUHI
intensity as the difference of spatially-averaged nighttime LST between these markedly contrasted
areas (i.e., hot vs. cold spot) for each month during the period from January 2003 to December 2019.
Here, we employed two indices of SUHI intensity. The first is the mean intensity, which refers to the
difference in the mean between anomalous hot and cold spots. The latter is the maximum intensity,
which is defined as the maximum difference between these two areas. The calculation of the intensity
of SUHI in this manner gives insights into heat stress and surface-atmosphere energy fluxes. Based on
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the derived intensity/spatial extent of the most anomalous hot and cold spots, time-series for the
17-year-period were identified for each grid on a seasonal basis. Seasons are defined as winter (DJF),
spring (MAM), summer (JJA), and fall (SON).

Another important characteristic of SUHI is orientation and growth direction. Herein, we employed
the Standard Deviational Ellipse (SDE) method to examine the spatial distribution of the centroids of
the most anomalous hot and cold spots around their geometric center, which gives insights into trends
(changes over time) in their dispersion and orientation [67,68]. Specifically, SDE can indicate the spatial
shift in these anomalous hot and cold spots through comparing their centers over the study period.
This comparison is based on calculating the standard deviation of the x-coordinates and y-coordinates
of these centers from the mean center to define the axes of the ellipse. Recalling that the centers of
these anomalous hot and cold spots tend to have a Gaussian distribution, as they can relatively be
clustered over space, our decision was made to calculate SDE at one standard deviation, which covers
approximately 68% of all centroids. Based on this ellipse, it is possible to define a particular spatial
orientation of the varying centroids of the anomalous hot and cold spots over time. In particular,
SDE can be described by means of four parameters: center, length of the major axis, length of the minor
axis, and angle of rotation. The center of the ellipse is the mean center of all centroids. The lengths of
the major and minor axes are calculated based on deviations from the mean center, where the long axis
of the SDE indicates the direction of maximum dispersion, and the short axis the minimum dispersion
of all centroids [67,68]. On the other hand, the rotation angle is a function of the deviations in the x-axis
and y-axis from the mean center [67,69]. Overall, this method provides useful spatial information
about directional trends of hot and cold spots (e.g., central tendency, dispersion, and direction).

3.3. Temporal Changes in SUHI and Land-Atmosphere Driving Forces

Temporal changes in the total area corresponding to the anomalous hot and cold spots between
2003 and 2019 were assessed using the ordinary least squares regression model. The slope of the linear
regression model indicates the amount of change in the spatial extent of these anomalous spots, where
higher slope values suggest stronger changes and vice versa. The sign of the trend (i.e., positive and
negative) is determined by the sign of the slope. Here, we expressed the amount of changes in the
areas represented by the hot and cold spots, proportional to the total area of Greater Cairo (%/decade).
To assess the statistical significance of the detected trends, we employed the non-parametric modified
Mann–Kendall statistic [70]. This is a non-parametric rank-based statistic that is less impacted by
data distribution or the presence of outlier values in the data. Importantly, this test limits the possible
influence of serial correlation, which is common in climate series, on the significance of the trends.
The statistical significance was assessed at the 95% confidence interval (p < 0.05). Here, we categorized
the statistical significance of the defined trends into four classes: statistically significant and positive
(p < 0.05), statistically significant and negative (p < 0.05), statistically non-significant and positive
(p > 0.05), and statistically non-significant and negative (p > 0.05). Similarly, trend detection (expressed
in ◦C/decade) and its statistical significance were assessed for the intensity of both hot and cold
spot areas on a seasonal basis. Similarly, changes in a range of climatic and environmental variables
(e.g., albedo, vegetation cover, day and nighttime LSTs, and DTR), which have a major influence on
SUHI evolution, were assessed for the period 2003–2019 on a seasonal scale. Herein, changes in the
different characteristics of SUHI and the corresponding environmental drivers were assessed on a
seasonal basis.

4. Results

4.1. Temporal Changes of SUHI

Figure 2 depicts the temporal evolution of the intensity of SUHI over Greater Cairo between 2003
and 2019 using two different indices (i.e., mean and maximum intensity). While the mean intensity
indicates the differences between spatially averaged temperature anomalies of the most anomalous hot
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and cold spots, the maximum intensity summarizes the highest differences in temperature anomalies
between these two areas. As illustrated in Figure 2, results suggest a decrease in the mean intensity of
SUHI over the past 17 years. The largest decrease was found for warm seasons: spring (−0.47 ◦C/decade)
and summer (−0.41 ◦C/decade). Exceptionally, fall was the only season that exhibited an increase
(0.20 ◦C/decade) in the mean intensity of SUHI. Notably, changes in the mean intensity of SUHI were
only statistically significant for warm seasons (i.e., spring and summer) (p < 0.05), while they were
non-significant for cold seasons (i.e., winter and fall). In accordance with the observed decline in
the mean intensity of SUHI, results also reveal a decrease in the maximum intensity of SUHI over
Greater Cairo. Interestingly, we noted that seasons that exhibited larger changes in the mean intensity
of SUHI conversely showed smaller changes in the maximum intensity, and vice versa. For example,
while spring indicated the strongest decline in the mean intensity of SUHI, it showed a weak and
statistically non-significant decrease (−0.09 ◦C/decade, p > 0.05) in the maximum intensity of SUHI.
A similar pattern was also observed during winter, as a strong significant decline (−0.46 ◦C/decade,
p < 0.05) in the maximum intensity of SUHI was noted, compared to a weak and non-significant
decrease in the mean intensity. Notably, fall was the only season that showed a weak and non-significant
decrease in both the mean and maximum intensity of SUHI.
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Figure 2. Seasonal and annual variability of mean (a) and maximum (b) surface urban heat island
(SUHI) intensity over Greater Cairo between 2003 and 2019. Amount of change in the intensity of
SUHI is provided; only numbers given in bold are statistically significant at the 95% confidence interval
(p < 0.05).

The probability distribution function (pdf) of the mean intensity of SUHI indicates that the
long-term (2003–2019) average of the mean intensity of SUHI was 5.6 ◦C (Figure 3). However,
these mean differences between LST of the most anomalous hot- and cold-spot areas show some
considerable seasonal differences. Specifically, a higher mean intensity was found during fall (6.1 ◦C),
whereas a lower intensity occurred in summer (4.5 ◦C). The mean intensity seems to be quite similar
for winter and spring, with values of 5.6 ◦C and 5.7 ◦C, respectively. Indeed, in some exceptional
years, the intensity of SUHI showed high anomalous values. This was the case in fall of 2014 (7.7 ◦C)
and 2017 (7.5 ◦C) (refer to Figure 2). In contrast, the intensity of SUHI occasionally exhibited lower
heating conditions (e.g., for summers of 2018 and 2016), where the mean differences between spatially
averaged temperature of areas of hot and cold spot did not exceed 3.9 and 4.1 ◦C, respectively
(Figure 2). Figure 3 suggests that the strongest gradient in LST between hot- and cold-spot areas,
as revealed by the maximum intensity indicator, was found during fall. The maximum differences in
LST reached on average 11.1 ◦C during fall, compared to 8 and 7.9 ◦C for spring and winter, respectively.
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Rather, the gradient of LST was lower during summertime, as the maximum intensity of SUHI was
only 6.3 ◦C. Overall, an inspection of Figures 2 and 3 reveals that the mean and maximum intensity of
SUHI tended to decrease over the past 17 years, especially during spring and summer. Conversely,
this intensity showed an increasing tendency during fall, with high spatial gradient of nighttime LST
between central and rural areas.Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 30 
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As opposed to the observed decrease in the intensity of SUHI, findings—following the results of
the modified Mann–Kendall statistic—show that the spatial extent exhibited a statistically significant
increase (p < 0.05) from 2003 to 2019 (Figure 4). This statistically significant increase was evident for all
seasons and annually. However, a stronger increase in the domains of most anomalous hotspot (SUHI)
was found during springtime (3.33%/decade) and winter (2.04%/decade). Rather, summer showed
the lowest increase (1.60%/decade). In the same context, the cold spot area, defined climatologically
following Equation (3), showed a decrease in its spatial extension in all seasons, with the strongest
decline found in summer (–5.08%/decade) and fall (–4.26%/decade). Figure 5 confirms this finding,
indicating that on average, the spatial coverage of SUHI during fall and summer was higher than in
winter and spring. As depicted, the SUHI during fall and summer occupied almost 7.23 and 5.69%
of the total area of Greater Cairo. The area of SUHI decreased drastically during spring (4.11%) and
winter (4.82%). A completely reversed picture was found for anomalous cold spots (which are mostly
assigned to sub-urban areas), as they had a broader spatial coverage in winter (13.17%) and spring
(11.29%), compared to summer (8.4%) and fall (9.16%). A comparison of Figures 3 and 5 reveals some
interesting results. First, it can be noted that SUHI with higher intensity had a lower spatial coverage
and vice versa. For example, the mean and maximum intensity of SUHI was lower during summer,
as compared to winter and spring. However, summer indicated a broader spatial coverage of SUHI
(5.69%) than in winter (4.82%) and spring (4.11%).

Exceptionally, fall was the season with the most enhanced spatial extension (7.23%) and more
intense (6.1 ◦C) SUHI. Moreover, it seems that the increase in the spatial coverage of cold-spot areas
corresponds to a decline in the mean and maximum intensities of hotspot domains, and vice versa.
This dependency was evident for most seasons, with the only exception found during the warmest
season (i.e., summer), which is characterized by a less extended cold spots and a less intense hotspots.
Overall, these findings imply that, apart from fall, Greater Cairo has become a city with less intense
but more spatially extended SUHI from 2003 to 2019.
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(b) between 2003 and 2019, as compared to the total area of Greater Cairo. Amount of change in the
total areas of both spots is provided; only numbers given in bold are statistically significant at the 95%
confidence interval (p < 0.05).
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Figure 5. Probability distribution function (pdf) of the areas represented by the most anomalous hot
(a) and cold spots (b), as compared to the total area of Greater Cairo. Results are presented on a seasonal
basis for the period between 2003 and 2019. The provided numbers indicate the mean for each season.

4.2. Spatial Characteristics of SUHI

Figure 6 illustrates the spatial distribution of LST anomaly calculated on a seasonal basis.
LST anomaly was calculated at each grid cell considering the spatial anomaly procedure described
in Section 3.2. These anomalies give indications on the intensity of SUHI in each season. Moreover,
changes in the intensity of LST at each grid were computed using the least squares regression model
and presented for the different seasons between 2003 and 2019 (Figure 6). As depicted, it seems that
SUHI generally showed less spatial differences between the different seasons, where positive LST
anomalies were distributed mainly over central parts of the city, with a distinct northern-southern axis.
Correspondingly, negative anomalies of LST were more pronounced over the eastern and western
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parts of the city, but with stronger negative anomalies at the far boundaries of the city. However,
some distinct seasonal differences can also be noted. Specifically, it seems that the behavior of SUHI
during cold seasons (i.e., winter and fall) is guided mainly by the warmer (positive) anomalies of LST
in central portions of the city, which are markedly higher than suburban areas. In contrast, during
summertime, it seems that this behavior is largely controlled by the stronger negative anomalies in
suburban areas than smaller positive anomalies in core urban areas. Figure 6 also informs that SUHI
had a compacted shape in all seasons, where all grids with strong positive LST are exclusively located
in the inner part of the city. As noted, LST anomalies were more intense over central areas during
winter and fall, and to a lesser extent in summer. Nonetheless, due to stronger negative anomalies of
LST in suburban areas, the intensity of SUHI was much stronger in fall and spring. On the other hand,
although central parts of the city exhibited the strongest positive LST anomaly during wintertime,
LST anomalies at the suburban zone (the lowest anomaly was only −2.6 ◦C) modulated the intensity of
SUHI in winter. As illustrated in Figure 6, the strongest gradient of LST anomaly was found in spring
and fall, with much differences of LST anomalies between areas of hotspot (urban) and cold spots
(mostly suburban areas). The strong negative anomaly of LST over suburban areas in fall and spring,
as compared to winter and spring, is evident in Supplementary Figure S2.
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Figure 6. Left: Spatial anomaly of land surface temperature (LST) over Greater Cairo, averaged for
the study period 2003–2019; right: changes (◦C/decade) in LST anomalies over the period 2003–2019.
Herein, changes were assessed for each season using the ordinary linear least squares regression model.

Figure 6 also illustrates the temporal trends of LST anomalies on a seasonal scale from 2003 to 2019
(right panels). The spatial patterns of these trends seem to be in contradiction to the patterns found for
the climatology of LST anomalies (left panels). Specifically, the core of the city, which exhibited higher
nighttime LST anomalies, showed a tendency towards a decrease over the study period. In contrast,
vast areas of the suburban zone witnessed an increase in LST anomaly in all seasons. These findings
together suggest a decrease in the mean and maximum intensity of SUHI, due to narrowing the
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differences of LST anomaly between urban and suburban areas. This narrowing was more evident
during fall and spring and to a lesser extent in winter.

Figure 7 depicts the smallest and largest spatial domain of the most anomalous hotspot defined
from 2003 to 2019 over Greater Cairo. This definition was simply made considering the highest and
lowest number (frequency) of grids assigned to these hotspots for each particular season over the
whole study period. Specifically, the smallest spatial extension of these hotspots was defined using the
lowest number of grids assigned to SUHI, following Equation (2), for each season during the study
period, while the largest extension was computed considering the highest number of grids that were
classified as anomalous cold spots for each season from 3003 to 2019. Again, a comparison between
the lowest and highest spatial coverage of these hotspots indicates that the shape of SUHI is highly
compacted over space in all seasons, suggesting that Greater Cairo is a monocentric city in terms of
SUHI distribution. As expected, the spatial coverage of these hotspots was more extended during fall,
while the development of these spots over space was less pronounced during summertime.
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Figure 7. The minimum and maximum spatial extents of SUHI over Greater Cairo for the
period 2003–2019.

Figure 8 illustrates the major and minor axes of the Standard Deviational Ellipse (SDE) calculated
for SUHI, represented by anomalous hotspots, across the city, with their main statistics (e.g., central
mean, angle of rotation, etc.) are listed in Table 1. These findings summarize the dynamics of SUHI
over space through defining its varying centroids and spatial orientation over time. As depicted,
there is a shift in the centroid of SUHI towards the north in winter and fall, while this centroid moves
to the south during summer and spring. However, the distance between the most northward and
southward centroids of SUHI is less than 12 km (Figure 8). These main centers remain around Al
Khalifa, Azbakiya, and Basateen districts (refer to Figure 1). An inspection of Figure 8 indicates that
the SUHI during summertime had a less extended spatial distribution, while this distribution reached
its maximum extension during fall. The major axes of SDEs for all seasons indicate that SUHI often
grows in the north and northeast directions in cold seasons (winter and fall), while moving to the south
during warm seasons (spring and summer).
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Figure 8. Standard deviational ellipses (SDEs) of the spatial coverage of the most anomalous hotspot
over Greater Cairo for the period 2003–2019. SDEs were computed using one standard deviation.
The colored circles in the left panel refer to the centroid of hotspot for each season. The right panel
indicates the different elements of SED.

Table 1. The main statistics of the Standard Deviational Ellipse (SDE) method for the most anomalous
hot and cold spot domains.

Indicator
The Most Anomalous Hotspot The Most Anomalous Cold Spot

Winter Spring Summer Fall Winter Spring Summer Fall

Central mean (31.25,
30.06)

(31.26,
29.99)

(31.27,
29.97)

(31.26,
30.01)

(31.15,
29.99)

(31.18,
30.1)

(31.12,
30.13)

(31.36,
30.07)

Rotation 31.66 167.36 155.47 18.08 83.87 81.21 30.45 65.87
Standard deviation along X-axis 4.4 3.3 2.2 7.7 49.5 38.5 3.5 45.1
Standard deviation along Y-axis 7.7 9.9 6.6 9.9 16.5 13.2 6.6 16.5

In the same context, the minor axes show that SUHI rarely extends towards the west direction.
As opposed to SUHI, Table 1 informs that the distribution of cold-spot zones had a northeastern
direction in summer and an eastern orientation in other seasons. As illustrated in Figure 8, the larger
standard deviation along the x-axis suggests that SDE had an extremely enlarged shape, especially for
winter, spring, and fall, with a zonal rather than a meridional expansion. This suggests that cold-spot
areas mainly grow in the east and west directions. The lowest standard deviations of summer SDE
indicate that summer had a small and compacted ellipse, with a minimized spatial shift over time than
other seasons.

4.3. Links to Land-Atmosphere Drivers

Figure 9 shows Pearson’s correlation coefficients calculated between nighttime LST anomaly and
a range of key climatic variables in Greater Cairo. The correlation was computed for the detrended
series to avoid the possible presence of trends in the original series, which can affect the significance
and magnitude of correlation. As depicted in Figure 9, it can be noted that nighttime LST anomaly
was negatively correlated with albedo in all seasons, except for fall. However, it seems that there
was no great difference in LST-albedo association between urbanized and suburban areas during
winter and spring. Rather, Figure 9 indicates that the impact of albedo on the anomaly of night LST
was more pronounced during summer and autumn. However, the direction of this dependency was
different, given that nighttime LST over SUHI correlated negatively with albedo during summertime
(Pearson’s r = −0.41 on average), and positively (Pearson’s r = 0.31 on average) in fall. For NDVI,
results demonstrate weak negative correlations with nighttime LST anomaly in all seasons, albeit with
slightly improved dependency during the rainy seasons (winter and early spring). The influence
of daytime LST on nighttime LST anomaly was seasonally dependent, with a stronger association
during summer and fall. Similar to albedo, this dependency showed a different sign of association
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but with positive correlation (Pearson’s r = 0.31 on average) in summer and negative correlation
(Pearson’s r = −0.41 on average) in fall. For nighttime LST, results indicate that the magnitude of
nighttime LST had a positive impact on the spatial anomaly of nighttime LST (i.e., differences of
LST between the grid and all grids) in most seasons, apart from fall. This means that nighttime
LST rise over a specific grid is reflected directly in an increase in the anomaly of LST in this grid:
i.e., relative intensity as compared to other grids. Figure 9 also indicates that nighttime LST anomaly
was negatively correlated with DTR, suggesting an increase in LST anomaly when DTR decreases,
and vice versa. Such a case was evident for all seasons and for the whole domain, including SUHI
and its neighborhood. However, this dependency was much stronger for areas far from the SUHI
domain, with a stronger association found during fall (Pearson’s r = −0.6 on average) and spring
(Pearson’s r = −0.4 on average).
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Figure 10 depicts the statistical significance of the trends calculated for the different climatic and
environmental variables over the anomalous hotspot (SUHI) area and other parts of Greater Cairo,
while their amounts of change for the 17 year period are illustrated in Figure 11. Figure 10 indicates
a dominant increasing trend of albedo in SUHI area over the past two decades, especially during
spring and summer. However, this increase was not statistically significant (p > 0.05) in the majority of
the area.Remote Sens. 2020, 12, x FOR PEER REVIEW 17 of 30 
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Figure 10. Statistical significance of trends of albedo, NDVI, daytime LST, nighttime LST and DTR
from 2003 to 2019. Statistical significance was assessed using the modified Mann–Kendall statistic at
the 95% confidence interval (p < 0.05). Statistical significance of trends is presented for hotspot (SUHI)
area, as compared to other parts of Greater Cairo (GC).

In summer, almost 29.3% of SUHI area witnessed a statistically significant positive trend.
In contrast, the majority of SUHI (62.9%) exhibited a general non-significant tendency towards
a decrease in albedo during fall. As opposed to SUHI area, other parts of Greater Cairo showed
strong variations of albedo trends, given that almost all categories of trends were presented for these
areas. However, a great portion of these areas showed a significant decreasing trend, mainly in winter
(significant: 46.3%, non-significant: 29.6%) and fall (significant: 50.5%, non-significant: 22.4%).
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Figure 11. Amount of change in the different environmental and climatic variables calculated for SUHI
against other parts of Greater Cairo (GC).

Moreover, changes in vegetation greening, as revealed by NDVI, indicated strong temporal
variations, but with a dominance of non-significant positive trends, especially over SUHI area. Daytime
LST showed a positive trend during spring and fall over SUHI area, while it conversely exhibited more
negative trends in winter and summer. Notably, almost all of the Greater Cairo region exhibited a
warming trend of nighttime LST during all seasons. The trend was only statistically non-significant in
winter (p > 0.05). As guided by the strong warming trend of nighttime LST, DTR showed a decreasing
trend in all seasons, being non-significant in winter alone. Examining Figure 11, it can be noted that
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cold-spot (suburban) areas of Greater Cairo witnessed a stronger cooling trend of albedo and DTR
than SUHI area. In contrast, they exhibited a higher warming trend of both day and nighttime LST
than SUHI area. These patterns can be seen during all seasons, with the spatial distribution of these
trends provided in Supplementary Figures S3–S7.

Figure 12 illustrates the averaged amount of changes in the different environmental and climatic
variables as a function of the dominant LCLU types. It is indicated that the positive trend of albedo
corresponded mainly to agricultural uses, with stronger changes occurring in summer (0.07%/decade,
p < 0.05). In contrast, other LCLU types witnessed a decrease in albedo between 2003 and 2019.
The highest rates of decrease were found for vacant land and areas with a main industrial use.
These trends were much stronger during fall (−1.1%/decade for vacant lands, and −0.5% for industrial
use). On the other hand, an increase of daytime LST was found mainly for the agricultural and
industrial land uses in all seasons. Built-up areas exhibited an increase in daytime LST during spring
and fall, and conversely a declining trend in winter and summer. As opposed to other environmental
and climatic variables, it is obvious that, regardless of the dominant LCLU type, a positive trend
of nighttime LST prevailed over Greater Cairo. Nonetheless, the strongest warming was found for
industrial land use areas, especially in spring (1.9 ◦C/decade) and summer (1.8 ◦C/decade). In contrast,
the weakest changes were found for built-up areas, mainly in winter (0.5 ◦C/decade). For DTR,
apart from vacant land, negative trends were dominant for all LCLU types. Notably, the last panel
of Figure 12 suggests that built-up area, industrial, and agricultural land uses are the main LCLU
types controlling the development of SUHI over Greater Cairo, as the industrial areas witnessed the
most rapid positive changes in nighttime LST anomalies between 2003 and 2019, while agricultural
and built-up areas exhibited the rapid negative changes. The strength of changes in both directions
determines the intensity and growth of SUHI over Greater Cairo.
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5. Discussion

5.1. Spatial and Temporal CharActeristics of SUHI

Due to their relatively high spatial and temporal resolution, MODIS products have been widely
used to determine the spatial and temporal characteristics of SUHI [13,14,16,17]. In this study,
the enhanced spatial resolution of MYD11A2V.6 overcomes the limitations of ground measurements
over Greater Cairo, which are typically sparse in space and time. In this study, the resolution of MODIS
data allows for detecting changes in SUHI characteristics over Greater Cairo at a detailed 1 km spatial
scale and for a continuous 17-year time period (January 2003–December 2019).

Results demonstrated that on average the mean intensity of SUHI over Greater Cairo was 5.6 ◦C
for the period 2003–2019, which is higher than the SUHI intensity found for other cities in Africa [71].
In their assessment of the diurnal and seasonal SUHI intensity for 419 cities across the globe, ref. [71]
estimated an annual intensity of nighttime SUHI over a number of major Africa cities of between 0.8
and 1.2 ◦C, a range that is comparable with other global cities [11]. Our findings also indicate that
the intensity of SUHI shows important seasonal differences. Specifically, the mean intensity of SUHI
tends to be higher during fall (6.5 ◦C), compared to other seasons like winter (5.7 ◦C), spring (5.6 ◦C),
and summer (4.5 ◦C). In the same context, the maximum SUHI intensity reached its highest mean
during fall (12 ◦C), which is also comparable to that found for mega cities like Tokyo and Seoul [72].

Findings indicated that the intensity of SUHI has declined over Greater Cairo between 2003
and 2019, while the spatial extension has been enlarged. Our results on the decline in the intensity
of SUHI over Greater Cairo are opposed to those presented in some earlier studies (e.g., [36,39]).
For example, [39] suggested an increase in the intensity of UHI, mainly attributed to increased
urbanization. This discrepancy can be simply linked to data density and the different methodologies
applied to define SUHI. In earlier studies over Greater Cairo (e.g., [36,39,40]), the intensity of SUHI
was commonly represented for a few unrepresentative and arbitrarily-selected dates, which do not
reflect adequately the “real” dynamical evolution of SUHI over time. This makes those results mostly
biased by the selected date, season, and even the spatial domain for which the differences between
urban and suburban areas were computed. Rather, our approach employed continuous time series
spanning the whole period from January 2003 to December 2019, with a unique time series for each
grid of the 3290 grid cells covering Greater Cairo, which provides a detailed spatiotemporal analysis
of SUHI characteristics. In this study, the mean and maximum intensities of SUHI were computed
using all grids over the study domain, which captures well the high heterogeneous LST anomalies
over Greater Cairo.

According to our study, the decline in the intensity of SUHI over Greater Cairo can be attributed
to the narrowing of the differences of LST between urban and suburban areas (Figure 6). Such a
narrowing may be linked to the rapid increase in nighttime LST over suburban areas, as compared to
SUHI area, particularly during spring and fall (Figure 11). This finding agrees with [73] who found
stronger trends in non-urban areas of Greater Cairo, compared to the core of the city. Our study
demonstrates that nighttime showed strong positive trends over suburban areas on the order of 1.7,
1.6, 1.4, and 0.8 ◦C/decade during spring, summer, fall, and winter, respectively, compared to relatively
weaker changes of 1.1 ◦C/decade (spring and summer), 1 ◦C/decade (fall), and 0.3 ◦C/decade (winter)
for SUHI area. The positive trend of nighttime LST over these suburban areas has been confirmed in
earlier studies over Egypt. For example, ref. [44] found a statistically significant trend of nighttime LST
during winter and spring, while [74] indicated a rapid increase of LST over the most populated areas
in Egypt on the order of 1.54 ◦C/decade for the period 2003–2014. Moreover, findings concur with a
number of recent regional [75,76] and global assessments [77]. In their global assessment of changes in
LST, ref. [77] found strong positive trends of nighttime LST over the northern hemisphere between
2001 and 2012. Similarly, ref. [75] indicated a warming trend of nighttime LST over Greece between
2000 and 2007, while daytime LST exhibited a decreasing trend. In addition to the role of climate
variability, the rapid increase in both daytime and nighttime LST over the past two decades might be
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amplified by the decline in agricultural lands over these areas, which has been evident for agricultural
zones in the entire Egyptian territory [31,78,79]. Ref. [80] demonstrated that although the per capita
agricultural land area decreased from 0.48 ha to 0.14 during the 20th century, this decline has been
more pronounced in the past two decades, reaching only 0.03 ha in 2016 [79]. This decline is mostly
associated with the rapid population increase and accordingly high demand for other competitive
land uses, including housing, infrastructure, and recreation [31]. It is well-established that a lack of
natural vegetation or a decrease in cropland area can induce a decline in the albedo and accordingly a
decrease in latent heat of evapotranspiration, which enhances the growth of SUHI. This impact has
been reported as one of the key processes impacting the development of SUHI for some metropolitan
cities like Tokyo [81]. Unfortunately, urban expansion is horizontal and uncontrolled in these suburban
regions (i.e., increasing number and scattered buildings with low heights), which induces the loss of
vast areas of agricultural uses. What makes this situation more complicated is that the agricultural land
loss in suburban zones of Greater Cairo is expected to continue into the future, given the current high
population and urbanization rates in the city. Ref. [33] employed a Land Change Modeler to predict
future scenarios of urban sprawl in Greater Cairo, which indicated that almost 14% of vegetation
coverage and 4% of the desert areas are likely to be urbanized by 2025.

It was also determined that fall was the only season that exhibited an increase in the intensity and
spatial extension of SUHI over Greater Cairo. In fall, there is an increase in the pollutant concentrations
over the agricultural areas in the delta to the north and over the suburban areas of the study region:
largely driven by burning rice straw after harvesting, especially in late September and October.
According to [82], almost 3.1 million tons of rice straw are directly burned in open fields in Egypt
each year. Ref. [83] indicated that rice straw burning contributes to 35.82% of the total greenhouse gas
emissions (GHGs) in Egypt, including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O),
in addition to particulate matter (PM) [84]. It is well-established that air pollutants, especially aerosols,
contribute to absorbing and reemitting longwave radiation. This process hinders the cooling from a
radiating surface (so called “pseudo-greenhouse” effect) and accordingly induces an increase in air
temperature and growth of SUHI towards the eastern areas of Greater Cairo [62]. Another possible
explanation of the increase in the intensity and spatial extension of SUHI can be related to dust and
sandstorms. According to [85], Egypt is ranked among the top 10% of countries with populations
affected by strong sand and dust storms. These weather events frequently blow during transitional
season (i.e., spring and fall), but with a maximum frequency in April and May. In spring, hot desert
depressions (known locally as the Khamsin) prevail over northern and central Egypt. These depressions
attract strong (25–50 m/s) hot dry and dusty wind from the Sahara in the west and south, inducing an
increase in aerosols and atmospheric pollution and accordingly enhance the warming effect of these
pollutants [86]. Furthermore, these hot winds exert more heating to the air, leading to above-normal air
temperatures. In fall, dust storms are linked mainly to the Red Sea Trough, which is placed primarily
over the southeastern portions of the country. These dust storms bring easterly hot and dry dust from
the Arabian Peninsula to the Middle East, which explains the eastern extension of SUHI during this
season. According to [87], the Red Sea Trough contributed to roughly 22.1% of observed dust days
over the eastern Mediterranean between 1958 and 2006. More recently, ref. [88] indicated that the Red
Sea Trough is the most contributing weather type for dust storms over North Africa and the Arabian
Peninsula during fall. Indeed, the severity of sand and dust storms is more intensified over Greater
Cairo due to the lack of rainfall during spring and fall seasons, a consequence of its location in an
arid and natural vegetation-scarce region, surrounded by vast deserts. We certainly stress the role of
surrounding deserts in the development of SUHI in Greater Cairo. In particular, these deserts have
higher air temperature than Greater Cairo during the daytime but lower during the nighttime. As these
deserts are more extended to the west, this hinders the possibility of SUHI to extend to the west due to
its cooling effect.
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5.2. Driving Forces of SUHI

An attempt to link characteristics of SUHI over Greater Cairo with a spectrum of physical
(e.g., albedo, vegetation cover, and climate variability) and anthropogenic stressors (e.g., land use types)
was undertaken. Results reveal distinct spatial variations between the SUHI and neighboring areas.
For example, the intensity of SUHI is correlated significantly with albedo, especially during summer
and fall. However, this association shows a different sign: i.e., positive correlation with SUHI intensity
in fall and, conversely, a negative dependency during summertime. In summer, the consumption of
energy (e.g., air conditioners) is typically higher than other seasons due to heat loading, inducing
greater emissions of GHGs and accordingly lower albedo. However, it should also be stressed that the
role of emissions in defining the amount of atmospheric albedo can vary depending on the pollutant.

It seems that vegetation has a minimal impact of the severity and spatial extension of SUHI,
given the lack of dense vegetation in the city and the distribution of less dense and scattered vegetation.
The negative association between vegetation greening in SUHI and intensity of nighttime LST is slightly
stronger during the very short rainy season. Importantly, this study reveals that climate variability
exerts strong influence on the intensity of SUHI, as significant thermal differences between urban and
suburban areas were noted. Specifically, both urban and suburban areas exhibited a significant increase
in nighttime LST, albeit with stronger changes over the suburban areas. These differences contributed
to modulating the intensity of SUHI and explained the decreasing trend in this intensity over the
past two decades. Notably, areas of SUHI are characterized by lower DTR compared to surrounding
areas. This is typically the case in the most urbanized areas worldwide, due to the interaction between
several variables (e.g., cloud cover, tropospheric aerosols, joint influence of different land uses, etc.)
Herein, it should be stressed that heat-energy fluxes in urban environments can also be impacted by
other important climatic variables (e.g., wind speed, relative humidity, and cloudiness). A number of
studies have confirmed the negative association between SUHI intensity and cloudiness and wind
speed. For example, ref. [89] suggested that SUHI is approximately the fourth root of both wind
speed and cloud coverage. Unfortunately, access to detailed wind speed and cloud cover data is
limited for Greater Cairo, which hinders the ability to provide a comprehensive assessment of the
effects of these variables on SUHI characteristics. Nonetheless, the decrease in the intensity of SUHI
during summertime might be linked to cloudiness impact. According to [44], Egypt exhibited a
significant increase (0.53%/decade) in cloud coverage during summertime over the last two decades,
which could impact heat and energy transfer via insolation and thus induce a decline in air and surface
temperatures. Such responses are evident in this study, as almost 63.4% of the SUHI area presented a
decrease in daytime LST between 2003 and 2019, although this trend was not statistically significant
for the majority of these areas (Figure 10).

Among the different land use types, results demonstrate that built-up area and areas of industrial
locations were the most contributing land use types to intensification of SUHI in Greater Cairo.
While built-up areas had a warming effect during daytime, they had a cooling effect (due to reemitted
radiation) during the nighttime. As such, like agricultural lands, they contribute to diminishing the
intensity of SUHI during nighttime (Figure 11). Indeed, this effect is more pronounced during warm
seasons (i.e., spring and summer), due to higher incoming radiation during daytime. In contrast,
industrial areas, which are primarily located in the northern and southern complexes of the city,
are sources for heavy greenhouse gases and pollutants that intensify SUHI, especially in northern and
southern Greater Cairo (Figure 6).

Interestingly, this study found that water bodies showed a minimal impact on the development of
SUHI (results not shown), which can be attributed to the notion that the majority of canals and streams
are small (e.g., only a few meters in diameter), and accordingly, there is a lack of evaporation rates
necessary for cooling. However, we should stress that the current resolution of the MODIS AQUA
data is still too coarse to account for the comparatively small cooling effects from these small water
bodies. However, although a considerable part of these water channels, especially those located in
the western part of Greater Cairo, act as ultimate sinks for industrial and domestic waste in the city,
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breezes move from land to water during nighttime. This could explain the minimal influence of these
water bodies on the intensity of nighttime LST.

In most populated areas, the city has developed vertically due to the lack of empty lands and the
high competition among the different land uses (e.g., residence, commerce, industry, etc.) This explains
why SUHI area is generally characterized by lower albedo (lower heat released during nighttime),
especially in areas of street canyons (Figure 13). Moreover, these buildings absorb much of the
incoming solar radiation during the day, and conversely reduce remitted long-wave radiation during
nighttime, putting more energy into sensible heat. A reversed picture can be found in suburban areas,
where buildings are of low height. Moreover, due to the dominance of high buildings and accordingly
decreased sky view, SUHI witnesses high heat storage in their building structures. This situation
can induce more released anthropogenic heat, as a consequence of the blockage effect of these high
buildings [90]. In particular, these high buildings act as a blocker against urban ventilation because of
the wind tunnel effects in streets and the unusual wind turbulence. This shows an increase in the Bowen
ratio (i.e., the ratio of sensible to latent heat fluxes) and accordingly temperature rise. In their assessment
of the impact of urban climate on the energy consumption of buildings in Athens (Greece), ref. [91]
found that wind speed, which is a main source of urban natural ventilation, in areas of undisturbed
wind conditions is almost stronger 10 times than air flow in urban canyons. Indeed, this impact is
more pronounced during warm seasons (i.e., summer and spring), due to air stability in the boundary
layer and lack of vertical movement. In this context, it is noteworthy to stress that urban areas have a
strong thermal anisotropy, compared to other landscapes [92]. This thermal anisotropy contributes
significantly to urban climate, as it determines both surface sensible heat flux and upward longwave
flux [93]. However, it is expected that this effect is more pronounced during daytime, when solar
insolation is much stronger and there are strong contrasts between shaded and sunlit facets within
urban canopies. However, during nighttime, it is also evident that there are different cooling rates,
mainly due to the different urban surface structure and materials and accordingly different radiative
transfer processes. At nighttime, thermal anisotropy is largely controlled by thermal inertia of materials,
internal heating of buildings, and other relevant processes that impact the net loss of longwave radiation.
In this context, it is expected that nighttime thermal anisotropy will show more pronounced impacts on
SUHI during warm seasons (i.e., summer and spring), mainly due to strong solar heating. This daytime
heating is expected to delay radiative exchange from materials and buildings in the night, keeping
nighttime surface temperature relatively warm. An opposite picture is expected during cold seasons
(i.e., winter and fall), as sun heating is much weaker during these periods of the year (due to cloudiness,
shorter daytime, aerosol effects, etc.), resulting in less differences of thermal inertia of materials between
daytime and nighttime and accordingly more rapid nighttime radiative exchanges and thus cooling
of nighttime LST. However, it should be stressed that the possible effects of thermal anisotropy are
mostly linked to a wide range of factors, including surface form and properties, season, solar angle,
weather conditions dominating in the boundary layer (e.g., wind direction and speed), and it is thus
quite challenging to properly isolate the effect of each of these individual factors. As such, making a
comprehensive assessment of the effect of thermal anisotropy on nocturnal SUHI requires very detailed
spatial and temporal data either from remote sensing or observations.

In extratropical areas like Greater Cairo, the dominance of descending air motions and anticyclonic
conditions during warm seasons is responsible for low tropospheric stability [94]. This atmospheric
stability can enhance the intensity of SUHI in this highly populated metropolitan region, as it increases
pollutant concentrations [95–97]. In their assessment of the links between population size and the
intensity of SUHI for 12 megacities in Asia, [72] found a positive correlation between the magnitude
and spatial coverage of SUHI and city populations. This association can be expected given that these
populated areas are likely to include more metabolisms (higher number of buildings, vehicles, etc.)
and, accordingly, an intensification of heat content.
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Figure 13. Spatial portraits of different LCLU types in Greater Cairo, reflecting the strong heterogeneous
landscape of Greater Cairo. Each panel represents a pixel of 1 km, where (a) represents a suburban
agricultural zone located to the west of Al-Waraq island in western Cairo; (b) represents a well-planned
suburban residential zone, characterized by its low-height building, in the east of the city; (c) represents
a classic heavily urbanized and populated area in central Cairo (Al Waely district); and (d) represents
the industrial complex of Helwan in southern Cairo.

5.3. Study Limitations and Outlook

Albeit with their high accuracy, the spatial and temporal resolution of MODIS products is still
relatively coarse to monitor and diagnose all of the characteristics of SUHI with high confidence,
especially in metropolitans with heterogeneous environmental conditions. This is simply because
SUHI dynamics and impacts can vary significantly within both the time of day and over short
distances, as SUHI is a mutual phenomenon, with complex interactions between a wide variety
of physical (e.g., wind speed, relative humidity, soil properties, and pollution) and anthropogenic
processes (e.g., green areas, building material, sky view factor, streets width and direction, building
height, etc.) In big metropolitan areas like Greater Cairo, climate and the environment are obviously
highly interconnected and indeed can be in feedback with each other (either positive or negative).
These interactions require detailed data over space and time that span a wide spectrum of urban
environment components to provide a robust assessment of SUHI characteristics. Unfortunately,
the available data, whether from observations, reanalysis, or remote sensing products, remain
insufficient in both space and time, to meet many of these requirements. Other important demographic,
economic, and social indicators are also needed to provide a full accounting (e.g., flows of energy).
As such, it is desired to employ data at more enhanced spatial (e.g., meters) and temporal resolution
(e.g., hourly or sub-daily) to comprehensively account for energy exchange processes and accordingly
provide a complete and accurate picture of the urban thermal environment in Greater Cairo.
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These high-resolution spatiotemporal data could improve the calculation of heating and cooling
energy in the city and accordingly contribute to better understanding of SUHI dynamics.

6. Conclusions

A comprehensive assessment of the spatial and temporal characteristics of SUHI and their driving
forces over one of the largest metropolitan areas in the world was performed. Our assessment was
based on employing MODIS nighttime LST at 1 km spatial resolution and 8-day composites for the
17-year period encompassing January 2003 to December 2019. This study introduced a new spatial
anomaly algorithm that quantitatively defines the most anomalous hot- and cold-spot of LST over
Greater Cairo. This approach allowed to delineate SUHI and characterize its variability over time and
space. The main findings of this study are the following:

� Changes in the intensity and spatial coverage of SUHI were analyzed using the least squares
regression method and the modified Mann–Kendall statistic at the 95% significance level (p < 0.05).
Results indicate a decline in the intensity of SUHI over Greater Cairo over the past 17 years,
while an increase in the spatial extension of this island increased significantly. The decrease in the
intensity of SUHI was mainly driven by stronger changes in albedo and daytime and nighttime
LSTs over suburban areas, which modulated the intensity over central areas of the city.

� Based on the SDE algorithm, this study defined the dynamical changes of SUHI over space
through defining changes in the centroid and orientation of SUHI. The SUHI is more compacted
during summertime, while it is more extended over space in fall and spring. The development
of SUHI occurs mainly over a northern and northeastern trajectory, while its development is
constrained in the eastern and western directions.

� The spatial and temporal changes of SUHI characteristics were linked to a range of physical
(e.g., albedo, vegetation cover, climate variability) and anthropogenic (e.g., land cover/use)
determinants that control the intensity and spatial extent of SUHI. These variables explain a
considerable percentage of land–atmosphere coupling processes in urban environments.

� This study stresses the role of climate variability and land cover/use types in determining the
intensity and spatial coverage of SUHI over Greater Cairo. It is noted that the warming of SUHI
corresponded to industrial locations, while the built-up area and agricultural areas have a cooling
effect. Moreover, less evaporative shallow water bodies have a non-significant role in modulating
the intensity of SUHI.

� Results of this study could have important implications for human thermal comfort and
heat-related illnesses, providing guidance and help policy makers adopt appropriate mitigation
strategies to diminish the impacts of SUHI on natural and human environments in an important
city like Greater Cairo.

From a policy standpoint, results of this work can help local urban planners improve their
understanding of the association between thermal behavior and urban landscape at a relatively detailed
spatial scale. This is important recalling the spatial heterogeneity and non-linear interactions between
different components of the urban system. This improved understanding could help urban planners
to develop relevant plans to address the negative impacts of climate change, which are likely to
increase in the future, on urban climate in Greater Cairo. Moreover, the innovative method applied
to quantify UHI characteristics allows to provide clear, rigorous, and detailed spatial assessment
of SUHI behavior and dynamics over Greater Cairo. All this information could be integrated and
transferred into meaningful objects in the urban planning process (e.g., urban design and restructure
plans), contributing to developing of comprehensive guidelines and strategies to adapt to climate
change impacts, especially at fine spatial resolution in the city. Moreover, the applied methodology
could be extrapolated to other cities in Egypt and elsewhere, as it adopts a rigorous statistical approach
that considers both climatic and spatial parameters to determine SUHI characteristics.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/23/3889/s1,
Figure S1: Spatial distribution of the dominant LCLU types in Greater Cairo in 2018. The road network and water
channels are illustrated separately in the right panel. Figure S2: Averaged intensity of nighttime LST anomaly over
urban and suburban areas from 2003 to 2019. The vertical dotted line indicates the mean for all grids. Figure S3:
Seasonal changes (%/decade) of albedo between 2003 and 2019. Figure S4: Seasonal changes (index unit/decade)
of NDVI between 2003 and 2019. Figure S5: Seasonal changes (◦C/decade) of daytime LST between 2003 and 2019.
Figure S6: Seasonal changes (◦C/decade) of nighttime LST between 2003 and 2019. Figure S7: Seasonal changes
(◦C/decade) of DTR between 2003 and 2019.
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