
remote sensing  

Article

Diurnal Evolution of the Wintertime Boundary Layer
in Urban Beijing, China: Insights from Doppler Lidar
and a 325-m Meteorological Tower

Yuanjian Yang 1, Sihui Fan 1,2, Linlin Wang 1,2,*, Zhiqiu Gao 1,2, Yuanjie Zhang 1, Han Zou 2,
Shiguang Miao 3, Yubin Li 1 , Meng Huang 1, Steve Hung Lam Yim 4,5,6 and Simone Lolli 7,8

1 Collaborative Innovation Centre on Forecast and Evaluation of Meteorological Disasters,
School of Atmospheric Physics, Nanjing University of Information Science &Technology,
Nanjing 210044, China; yyj1985@nuist.edu.cn (Y.Y.); sihuif_1017@nuist.edu.cn (S.F.);
zgao@mail.iap.ac.cn (Z.G.); yuanjiez@nuist.edu.cn (Y.Z.); liyubin@nuist.edu.cn (Y.L.);
mhuang@nuist.edu.cn (M.H.)

2 State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC),
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
zouhan@mail.iap.ac.cn

3 Institute of Urban Meteorology, China Meteorological Administration, Beijing 100081, China; sgmiao@ium.cn
4 Department of Geography and Resource Management, The Chinese University of Hong Kong,

Hong Kong, China; steveyim@cuhk.edu.hk
5 Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong,

Hong Kong, China
6 Stanley Ho Big Data Decision Analytics Research Centre, The Chinese University of Hong Kong,

Hong Kong, China
7 National Research Council, Institute of Methodologies for Environmental Analysis, 85050 Tito (PZ), Italy;

simone.lolli@imaa.cnr.it
8 Department of Physics, Kent State University (Florence Campus), Kent, OH 44240, USA
* Correspondence: linlinwang@mail.iap.ac.cn

Received: 21 October 2020; Accepted: 27 November 2020; Published: 1 December 2020
����������
�������

Abstract: The diurnal evolution of the atmospheric boundary layer—the lowermost part of the
atmosphere where the majority of human activity and meteorological phenomena take place—is
described by its depth. Additionally, the boundary layer height (BLH) and the turbulence intensity
strongly impact the pollutant diffusion, especially during transition periods. Based on integrated
observations from a 325-m meteorological tower and a Doppler Wind lidar in the center of Beijing,
the entire diurnal cycle of urban BLH in December 2016 was characterized. Results highlight that the
Doppler lidar exhibited it is well suited for monitoring convective BLH while it trudges in monitoring
stable BLH, while a 325-m meteorological tower provided an important supplement for Doppler lidar
under nocturnal boundary layer and heavily polluted conditions. For the diurnal cycle, under light
wind condition, the pattern of urban BLH was largely modulated by thermal forcing of solar radiation
and may partly be affected by wind speed. While under strong wind condition, the pattern of
urban BLH was largely modulated both by thermal forcing and dynamical forcing. The present
work also presented evidence for several new features in the morning and afternoon transitions of
the urban boundary layer, showing the duration of the morning transition varied between 1 and
5 h, with the largest value occurring under weak wind with high PM2.5 concentration; while the
afternoon transition ranged from 3 to 6 h, which was positively (negatively) correlated to wind speed
(PM2.5 concentration). Our work highlights that weak wind speed (weak dynamic motion) and
heavy aerosol pollution (weak thermal forcing due to the effect of cooling) can dramatically affect the
evolution of the boundary layer.
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1. Introduction

The atmospheric boundary layer (ABL) height is an important factor in diluting pollutants
emitted at the surface, in which layered pollutants vertically disperse through the action of turbulence.
Accurate estimation of ABL diurnal variability is critical to predict pollutant concentrations by model
computations [1–4], especially for the ABL over urban environment, so-called the urban boundary
layer [5–7]. The most common way to determine the boundary layer height (BLH) is by using
vertical profiles of meteorological variables, such as the potential temperature, wind speed (WS),
and bulk Richardson number (Rib), which are generally obtained from radiosonde launches or aircraft
observations [8]. However, radiosonde observations are usually infrequent and rarely made in central
urban environments [9]. Mostly, radio soundings collected at rural sites nearby cities are used to assist
in the analysis of the urban boundary layer [10,11]. Particularly, spatial differences in daytime BLH have
been reported due to various surface properties with different surface heat flux characteristics [12,13].
Thus, the BLH estimated from radio soundings launched at rural sites is not representative of urban
areas. Moreover, in the frame of the World Meteorological Organization (WMO), the radio soundings
are launched only twice per day. In few other locations, i.e., during field campaigns and densified
observation, radio-sounding are launched three times a day and therefore cannot capture the diurnal
development of the urban boundary layer.

In the last decades, remote sensing techniques and network of instruments became the most
valuable and popular approach for detecting the nature of the atmosphere [14], particularly in the
urban layer, because of their higher temporal resolutions, such as ceilometers [15,16], sodars [17,18],
and lidars [1,11]. The Doppler wind lidar is an optical active remote sensing instrument that became
popular after the discovery of the CO2 laser [19,20]. Compared to other lidar types (e.g., elastic and
Raman), Doppler wind lidar is the most suited for the investigation of the vertical wind structures,
the development of the urban boundary layer [3,19–25], and for validating numerical forecast
models [26] as it has the capability to measure the 3D wind vector field with the maximum measurement
range exceeding 10 km. For instance, the vertical velocity variance (σ2

w), obtained from the 3D wind
measurements, can be used to describe the turbulence intensity by the turbulence method, and the
BLH can be defined. The urban mixing height was defined by using a threshold method (the so-called
threshold method) as the height up to which σ2

w > 0.1 m2 s−2 in London, UK [21]. A previous study
pointed out that the threshold method provides a reliable height retrieval for convective boundary
layer (CBL) with strong turbulence and unstable atmospheric stratification but is not recommended to
determine the nocturnal boundary layer (NBL) height, when usually the turbulence is weak and often
has σ2

w < 0.1 m2 s−2 [27]. For another instance, a Doppler wind lidar was set in urban Beijing during
the summer of 2015. Our previous study also evaluated a new improved version of the threshold
method [28], to determine the NBL height, which defined the NBL top as the height at which σ2

w
decreases to 10% of its near-surface maximum after subtracting a background value [27]. Based on a
case study under heavily polluted conditions (1–4 December 2016), we found that these two threshold
methods in London and Beijing were both inaccurate in determining the NBL height [29]. The former
was also proven wrong for severely polluted urban boundary layer conditions with weak turbulence
during daytime in winter in Beijing. This might have been because of the lower urban BLH dropping
below the minimum observable height (100 m) during the time of the NBL. Additionally, the winter
NBL over Beijing is mostly steady owing to surface radiative cooling [30,31], which does not satisfy the
near-neutral assumption for the method developed by [27]. As is well known, the NBL under fine
weather is the most common example of a stable boundary layer (SBL). The NBL often has a complex
structure, especially over polluted urban canopies [32], which makes it far more difficult to retrieve the
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SBL height by using a solo Doppler lidar. For severely polluted cities, it is therefore necessary to provide
measurements of the near-surface layer properties under SBL conditions additional (or auxiliary) to
those by Doppler lidar to be able to reliably estimate the diurnal cycle of the BLH.

A tall meteorological tower in Beijing, officially known as “the Beijing 325-m meteorological tower”,
is located in the city center, providing 15 levels of measurements of WS and temperature. The main
limitation of the tower platform is the observational height. The advantages and disadvantages of the
Doppler lidar and tower instruments suggest that urban BLH detection might be improved by using
the two instruments in synergy. In this work, by combining the retrievals from the co-located Doppler
wind lidar and the 325-m meteorological tower, we aim to estimate the urban BLH and investigate the
development of urban BLH in Beijing, especially during heavily polluted conditions, and characterize
its full diurnal cycle in winter conditions.

2. Materials and Methods

2.1. Experimental Sites and Instrumentation

The 325-meteorological tower and the Doppler wind lidar (Windcube200, Leosphere, Orsay,
France) are co-located at the Institute of Atmospheric Physics (IAP), Chinese Academy Sciences in
Beijing city center (39.97◦N, 116.37◦E) (See Figure 1a).
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Figure 1. The map of urban Beijing area and location of the 325-meteorological tower and the Doppler
wind lidar at the Institute of Atmospheric Physics (IAP) station (a), and the aerial photograph of the
urban Beijing area around met tower (4 km × 4 km) (b). The wind rose shows the results observed in
these 31 days.

The measurements are taken at 15 levels (i.e., 8 m, 15 m, 32 m, 47 m, 65 m, 80 m, 100 m,
120 m, 140 m, 160 m, 180 m, 200 m, 240 m, 280 m, and 320 m above ground level) by a suite of
meteorological instruments (010C cup anemometers, 020C wind vanes, Metone, Grants Pass, OR,
USA, HC2-S3, Rotronic, Switzerland) deployed on the 325-m meteorological tower, which provides
observations of the WS, wind direction, relative humidity (RH), and air temperature (T) measurements.
In addition, turbulence measurements are taken using sonic anemometers (Model Windmaster Pro, Gill,
UK) and four-component radiation using downward-pointing and upward-pointing pyrgeometers,
and pyranometers (CNR1, Kipp & Zonen, Delft, The Netherlands) are maintained at the same heights
(i.e., 47 m, 140 m, and 280 m) on this tower. The detectable range of the lidar spans from 100 m to
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several kilometers above the ground (depending on the aerosol concentration), with a vertical range
resolution of 50 m.

In addition, the PM2.5 mass concentrations measured at the Beijing Olympic Sports Center
(Aoti surface station), located approximately 2 km north of IAP station, were obtained from the China
National Environmental Monitoring Center website (http://106.37.208.233:20035/). Cloud fractions
observations were from the Nanjiao weather station, about 20 km from the IAP station.

As shown in Figure 1b, the IAP station is surrounded by a highly dense area of tall buildings.
Around this station, there are about 92.1% impervious built-up surfaces and commercial and residential
tall buildings (10–60 m), within a radius of 5 km of the tower [33,34]. By using the 47 m level wind
measurements, we can speculate that strong northerly winds prevailed in winter, while southerly
winds are lighter with a speed lower than 3 m s−1.

2.2. Data Processing

The original 3D sonic anemometer records (10 Hz) were processed prior to analysis using the
methods of double rotation (i.e., yaw and pitch rotations) and linear detrending. A density effect
correction [35], planar fit method [36], and an averaging period of one hour [37] was applied in the
analysis. A criterion of threshold carrier-to-noise ratio of −20 dB [21,27] was chosen to reduce the
effects of invalid data in this dataset of the Doppler wind lidar. Based on the edited data, the σ2

w over
30-min segments were calculated [21,27].

2.3. Methods

2.3.1. Estimation of Urban BLH

Based on radiosonde data, the Rib method is widely used, as it is a reliable method to determine
both the CBL and SBL [38]. Compared with the methodology based on detecting the altitude where
there is a sharp change in the temperature and RH profiles, the Rib method has been found to be more
effective, as shown in [39]. The WS and T at 15 levels provided by the 325-m tower make this method
available in our study under the condition of BLH < 300 m. The definition of Rib was given as [40]:

Rib(z) =
g
θvs

(θvz − θvs)(z− zs)

(uz − us)
2 + (vz − vs)

2 + bu∗2
, (1)

where z is height (m), g is the gravity acceleration constant (m s−2), θv is the virtual potential
temperature (K), u and v are the horizontal components of WS (m s−1), and u∗ is the surface friction
velocity (m s−1). In addition, zs is the height of the lower boundary (m), and b is an empirical coefficient.
According to [40], zs can be set to 20 m or 40 m, and b can be set to 100 m. The Rib method defines
the BLH as the height at which the Rib reaches the critical threshold value of 0.25 (the vertical change
of Rib is shown in Figure S1). It is noted that a strong correlation [correlation coefficient (r), r = 0.83]
between the BLH derived with zs = 20 m and zs = 40 m. In this paper, we choose zs = 20 m.

In many previous studies, b was set to 0 because of the unknown value of u∗, as in the

experiments [41–43]. In our study, u∗ can be calculated as
(
u′w′

2
+ v′w′

2
)1/4

by using the sonic

anemometer (streamwise u, cross-stream v, and vertical velocities w). As shown in Figure 2,
combining the time series of the results with b = 100 and b = 0 and their one-to-one plot, the sensitivity
of the estimation of BLH to the effect of surface friction was studied. Generally, the BLH values
computed with b = 100 are larger than those with b = 0, and the r is just 0.76, which indicates the
surface friction effect cannot be ignored. Particularly, the different values in daytime (from sunrise to
sunset), in blue, during a red-alert pollution event (17–21 December), reached to about 100 m, with the
BLH lower than 150 m for b = 0 but larger than 250 m for b = 100. This suggests that, in a steadily
polluted urban boundary layer with weak buoyancy destruction and shear production during daytime,
the surface friction effect plays an important role in the development of the urban boundary layer.

http://106.37.208.233:20035/


Remote Sens. 2020, 12, 3935 5 of 19

Zhang et al. [44] also found that the surface friction effect had a significant impact on the calculation of
BLH, especially for the height of the SBL. Therefore, b = 100 was used in our study.

Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 19 

5 

layer. Zhang et al. [44] also found that the surface friction effect had a significant impact on the 
calculation of BLH, especially for the height of the SBL. Therefore, b = 100 was used in our study.  

 
Figure 2. Relationship between the urban boundary layer height (BLH) calculated by using the 𝑅𝑖௕ 
method (𝑅𝑖௕ = 0.25) with two different parameter values, b = 0 and b = 100 for convective boundary 
layer (CBL) (blue) and nocturnal boundary layer (NBL) (black), during December 2016 (a), and the 
time series values of BLH values from 16 December to 21 December 2016 (b), b = 0 (+) and b = 100 
(dots). 

The standard deviation ( 𝜎௪ ) of the 30-min vertical velocity was calculated by using the 
measurements from Doppler wind lidar. The threshold method of 𝜎௪ଶ  > 0.1 m2 s−2 derived by [13], as 
mentioned in the Introduction, was used to calculate urban BLH based on the lidar.  

2.3.2. Calculation of Heat Flux 

From the sonic anemometer measurements, the turbulence kinetic energy (TKE) per unit mass 
of flow (TKE/m, m2 s−2) and sensible heat flux (𝐻, W m−2) were calculated as: TKE/m = ଵଶ ൫𝑢′ଶതതതത + 𝑣′ଶതതതത + 𝑤′ଶതതതതത൯, (2) 𝐻 = ρ𝐶௣𝑤′𝑇௩′തതതതതതത, (3) 

where 𝜌, 𝐶௉, and 𝑇௩ are the air density (kg m−3), the specific heat capacity at a constant pressure (J 
kg−1 K−1), and the virtual air temperature (K), respectively. 

3. Results  

3.1. Urban BLH 

The threshold method, based on the lidar data, was not able to yield the NBL height at all times 
throughout the measurement campaign, because the urban BLH (averaged in one hour) was too low 
(<100 m, not shown). This method was either available for the urban boundary layer retrievals under 
daytime heavy pollution conditions. Considering as a case study a red-alert pollution event (the air 
quality index reaches more than 300, which will last for at least three consecutive days) from 16 to 22 
December (Figure 3), rarely the threshold method worked in determining the urban BLH during 
daytime with a small 𝜎௪ଶ , especially under heavily polluted conditions (daytime mean concentrations 
of PM2.5 > 200 μg m−3 on 18–21 December). In contrast, the 𝑅𝑖௕ method successfully retrieved the NBL 
height and even the height of the polluted urban boundary layer during daytime, which shows 
reasonable results by reference to the change in 𝜎௪ଶ . Therefore, in our study, the NBL height was 
estimated by using the 𝑅𝑖௕ method. Considering that the blind overlap lidar region was 100 m, the 
results of urban BLH from threshold method, which was lower than 150 m, were not considered. 
Note that the two methods are different, while both of them are based on similar physical parameters 
related to turbulence processes.  

Figure 2. Relationship between the urban boundary layer height (BLH) calculated by using the Rib
method (Rib = 0.25) with two different parameter values, b = 0 and b = 100 for convective boundary
layer (CBL) (blue) and nocturnal boundary layer (NBL) (black), during December 2016 (a), and the time
series values of BLH values from 16 December to 21 December 2016 (b), b = 0 (+) and b = 100 (dots).

The standard deviation (σw) of the 30-min vertical velocity was calculated by using the
measurements from Doppler wind lidar. The threshold method of σ2

w > 0.1 m2 s−2 derived by [13],
as mentioned in the Introduction, was used to calculate urban BLH based on the lidar.

2.3.2. Calculation of Heat Flux

From the sonic anemometer measurements, the turbulence kinetic energy (TKE) per unit mass of
flow (TKE/m, m2 s−2) and sensible heat flux (H, W m−2) were calculated as:

TKE/m =
1
2

(
u′2 + v′2 + w′2

)
, (2)

H = ρCpw′T′v, (3)

where ρ, CP, and Tv are the air density (kg m−3), the specific heat capacity at a constant pressure
(J kg−1 K−1), and the virtual air temperature (K), respectively.

3. Results

3.1. Urban BLH

The threshold method, based on the lidar data, was not able to yield the NBL height at all times
throughout the measurement campaign, because the urban BLH (averaged in one hour) was too low
(<100 m, not shown). This method was either available for the urban boundary layer retrievals under
daytime heavy pollution conditions. Considering as a case study a red-alert pollution event (the air
quality index reaches more than 300, which will last for at least three consecutive days) from 16 to
22 December (Figure 3), rarely the threshold method worked in determining the urban BLH during
daytime with a small σ2

w, especially under heavily polluted conditions (daytime mean concentrations
of PM2.5 > 200 µg m−3 on 18–21 December). In contrast, the Rib method successfully retrieved the
NBL height and even the height of the polluted urban boundary layer during daytime, which shows
reasonable results by reference to the change in σ2

w. Therefore, in our study, the NBL height was
estimated by using the Rib method. Considering that the blind overlap lidar region was 100 m,
the results of urban BLH from threshold method, which was lower than 150 m, were not considered.
Note that the two methods are different, while both of them are based on similar physical parameters
related to turbulence processes.
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Figure 3. Velocity variance, σ2
w (m2 s−2), calculated from the Doppler wind lidar data. Derived boundary

layer depths, based on the threshold method (grey dots) and Rib method (red dots). It should be noted
that the blank part of the σ2

w can be attributed to a technical failure on 16 December, and the different
range spans on different days may mainly depending on the aerosol concentration.

In case that only one method is available to retrieve the boundary layer height, that retrieved
value is taken as reference. Instead, when the boundary layer height could be retrieved with the two
methods, the intercomparison is shown in Figure 4. Combined with Figure 3, it was found that mostly
the boundary layer height retrieved by the Rib method is higher with respect to the retrievals obtained
with the threshold method, and the urban BLHs from threshold method is rather insensitive for urban
BLH below about 200 m. The correlation is essentially nonexistent (r2 = 0.16). Considering that the
threshold method may underestimate the depth of mixing layer/the urban boundary layer under weak
turbulence context [21,23,27], we use the threshold (200 m) of the definition of the onset of CBL [45]
and the height of the meteorology tower (325 m) as the references to choose the different results as
the real values. When the height could be retrieved from both the two methods, the urban BLHs
retrieved from the Rib method was considered as reference (4% of the total values) if the urban BLHs
from threshold method were lower than 200 m, and the averaged values were chosen if the urban
BLHs from threshold method were larger than or equal to 200 m, and lower than 325 m (3% of the total
values) (see Figure 4). About 1% of the urban BLHs retrievals from threshold method were higher
than 325 m and also than the values from Rib method, which happened during the clean noon time
with relatively larger turbulence. Thus, in this condition, the values from threshold method were
considered credible and chosen as the real ones.

In addition, through comparison against simulated urban BLH derived by three different BL
parameterization schemes (Table S1 in supporting information) in Weather Research and Forecast
(WRF) model, it is shown that similar diurnal patterns of urban BLH were captured by our present
observation (See Figure S2 in supporting information), implying that the physical process of boundary
layer evolution based on our observation is reasonable. While the biases are mainly related to different
BLH definitions causing the divergence among different schemes [46]. More details of BLH simulations
are available in the study of [46].
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Figure 4. Comparison of the boundary layer depths calculated using Rib and threshold methods from 1
to 31 December 2016. Dashed lines: 200 m (definition of the onset of the convective boundary layer)
and 325 m (the height of the meteorology tower).

Figure 5 shows the hourly urban BLHs during the whole month (1–31 December), as well as the
meteorological conditions [WS, downward shortwave radiation (DSR), H, cloud fraction, and PM2.5

concentrations]. Considering that H was found to account for a much larger amount of the net
radiation (40%) than the latent heat flux (10%) during this study period over Beijing, only H was
shown to represent the heat transfer intensity in this paper. Generally, during this observational
period, the urban BLH was positively linked to the near surface WS at all the 15 levels (e.g., r = 0.3 and
r = 0.2 for 8 m and 320 m, respectively), and the largest correlation coefficient, r =0.4, was occurred at
47 m and 65 m, and then decreasing with the increasing height. The Urban BLH was also positively
linked to DSR (r = 0.6), H (r = 0.5), u∗ (r=0.5), and TKE/m (r = 0.5), but negatively linked to the PM2.5

concentrations (r = −0.4). A high urban BLH occurred on strong, windy days with a large amount of
solar radiation (e.g., 5 December and 23 December). Note that, for very clean windy days with very
low aerosols concentration and strong wind as shown in Figure 5b (e.g., 5 December, 8 December,
15 December, and 22 December), the lidar signals showed a low signal-to-noise, resulting in not
available data, because the heterodyne Doppler wind lidar technique using an infrared laser source
relies on the presence of aerosols [21,27], leading to discontinuous observations as shown in Figure 5a.
The maximum urban BLH during the whole winter month was 1000 m, accompanied by the maximum
DSR, approximately 480.7 W m−2, on 23 December, which is half that reported on clear days during
summer in Beijing by using the threshold method [27]. For a heavily polluted urban boundary layer
with weak wind, e.g., 4 December, 18–21 December and 31 December, the maximum urban BLH ranged
from 260–300 m, and that of DSR from 240–390 W m−2, during daytime. For the NBL, the heights were
mostly around or lower than 200 m, and even lower than 100 m during the heavily polluted conditions.
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Figure 5. Diurnal cycles of urban BLH derived from threshold method combined with the Richardson
number method (a), PM2.5 concentration (b), H and DSR (c), and turbulent parameters, TKE and u∗ (d).
The cloud fraction is marked as red crosses (cloudy) and black crosses (clear).

Based on the retrieved vertical distribution of the aerosol extinction coefficient from a Mie-elastic
backscatter polarization lidar (AGHJ-1-LIDAR) developed by Anhui Institute of Optics and Fine
Mechanics (AIOFM) also located at the IAP site, the maximum retrieved urban BLH during daytime
on 19 and 20 December was 350 m and 300 m in [31], respectively, which is similar to our results (300 m
and 278 m). Note, however, that the urban BLH during the early morning was 500 m for these two days
but 250 m and 300 m at night in [31], and about 200 m during the early morning on 19 December and
400 m at night on 20 December in [11] by using the same method as [31]. However, urban BLHs were
mostly lower than 100 m and exhibited little change during the whole of nighttime (i.e., stable NBL,
as shown in Figure S1) in our study. It was found that the stable NBL usually was accompanied by the
temperature inversion near the surface during heavily polluted episodes, e.g., during 2–5 December,
16–22 December in [47]. It is important to note that a stable NBL is often coupled with a residual layer
(RL) [48]. The aerosol scattering coefficient method probably defines the RL as the stable NBL [49–51].
Thus, attention should be given when comparing aerosol- and turbulence-derived urban BLHs [52],
especially when evaluating results from model computations. Nonetheless, the aerosol scattering
method provides a useful reference for the RL and NBL, which can help provide an indication of the
change of the whole ABL.

To reduce the impact of the diurnal change in meteorological parameters on the urban BLH,
the values were averaged for daytime and nighttime. The daily mean urban BLH was in the range of
130–536 m and 64–268 m during daytime and nighttime, with monthly averaged values of 278 m and
152 m, respectively. During the heavily polluted event, the daytime mean urban BLH decreased to
<200 m. The lowest BLH during daytime occurred on 18 December, with the lowest WS (0.46 m s−1) at the
8-m level and notably poor turbulent activity (H = 15.16 W m−2, u∗ = 0.12 m s–1 and TKE/m = 0.11 m2 s−2

at the 47-m level), at which the corresponding daily mean urban BLH during nighttime was only
65 m. The correlation coefficients were calculated between the urban BLH and WS, H and turbulence
parameters (u∗ and TKE/m), which were 0.6, 0.6, 0.6, and 0.5 during daytime, and 0.6, 0.2, 0.6, and 0.5
at nighttime, respectively. The correlation coefficient between BLH and DSR was 0.6 during daytime.
All these above results indicate WS greatly contributed to the change in urban BLH during both
daytime and nighttime, because of its direct positive effects on H, u∗ and TKE. For instance, on 17
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December 2016, weak high-pressure system is to the southeast of Beijing, resulting in southwesterly
prevailing weak winds over Beijing (Figure S3). This will induce a weak mixing with lower BLH
(Figure 5). In contrast, on 22 December 2016, under the confluence of the high pressure system and the
low pressure system (Figure S3), there is a northwest jet in the boundary layer over Beijing, leading to
a higher wind speed and strong mixing with higher BLH (Figure 5).

Previous studies demonstrated that pollutant aerosol concentration is directly linked to the
urban BLH in Beijing [53,54]. In our study, the correlation coefficient between urban BLH and PM2.5

concentration was −0.7 for daytime (at 0.05 significance level) but only −0.5 for nighttime (at 0.05
level significance). This relatively weak correlation for nighttime may have resulted from the small
variation range of the BLH during most nights. In addition, as shown in Figure 6, a shallow urban
BLH under polluted conditions was usually accompanied by high RH, suggesting that such a humid
and shallow BLH favored the accumulation of PM2.5. This fact agrees with previous study results in
which the generation and transformation of secondary aerosols were found to be significant during
humid conditions, leading to an increase of PM2.5 concentrations and the resultant occurrence of
severe air pollution episodes [55,56]. The daytime urban boundary layer was clean (PM2.5 < 50 µg m−3)
once the daily mean urban BLH reached 300 m or above. For nighttime, when the urban BLH
was higher than 200 m, the concentration of PM2.5 was mostly lower than 100 µg m−3. Meanwhile,
it should be noted that for some shallow nighttime urban BLHs (e.g., 9–10 December), defined as urban
BLH < 150 m, concentrations of PM2.5 were lower than for others, partly explainable by the lower
RH, which implies the level of pollution can be attributed to a humid or dry urban boundary layer.
Additionally, compared to daytime, aerosol pollutants accumulated more easily in the urban boundary
layer at nighttime in Beijing.

Figure 6. Relationships between PM2.5 concentration and urban BLH derived from threshold method
combined with the Richardson number method over Beijing during daytime (a) and nighttime (b),
with the dots indicating the accompanying RH.

3.2. Diurnal Development of the Urban Boundary Layer

The results presented in the previous section suggest that the near surface WS has a significant
effect on urban boundary layer variations in Beijing. Avoiding tall building disturbances around the
325-m tower, the daily average WS measured at the 47-m level was used to classify the different wind
conditions. Accordingly, eight, fifteen, and eight days (marked in Figure 7) were categorized as low,
medium, and high windy days based on the 25th, 50th, and 75th percentiles of the WS, corresponding
to 1.29 m s−1, 1.54 m s−1, and 2.23 m s−1. For low and moderate wind classes, the diurnal changes
of WS were not obvious, which indicates the thermal forcing dominates the evolution of the urban
boundary layer. Notably, the growth of the boundary layer also influences the wind evolution in
boundary layer. Using the measurements at 15 levels from the 325-m tower in 20 years, it was found
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that the maximum WS often appeared at daytime at lower levels, while at higher levels the maximum
WS usually occurred at nighttime [33], which was resulted from the surface stability of the urban
boundary layer. Based on the case study (1–4 December 2016), it was also found that the stagnating
urban boundary layer during heavy aerosol polluted daytime in winter seemed to act like an umbrella,
preventing the air flow entrainment from the upper level to the lower level [29]. As shown in Figure 7a,
different from the strong wind class, the WS showed a downward trend between sunrise and noon for
these two wind classes, especially for the weak wind class, which may partly result from the evolution
of urban boundary layer.

The diurnal variations of the urban BLH were consistent with those of thermal forcing factors,
e.g., solar radiation and sensible heat flux (Figure 7). Especially for weak wind class, with unapparent
diurnal change of WS and TKE, the diurnal pattern of urban BLH was mainly modulated by thermal
forcing (DSR and H). While under strong wind condition, the diurnal pattern of urban BLH was
largely modulated both by dynamical forcing (WS and TKE) and thermal forcing (DSR and H).
As shown in Figure 7b1, the DSR decreased with the decreasing wind speed level, which can be
attributed to a combination of aerosol pollutants and cloud. These low or moderate wind days were
mostly accompanied by high PM2.5 concentrations, e.g., 200 µg m−3 and 100 µg m−3 median values,
as illustrated in Figure 7b3. For the polluted days, particularly the heavily polluted low-wind days,
they were usually covered with cloud, as shown in Figure 3, according to the cloud fraction data.
However, it is hard to acquire accurate cloud information during heavily polluted periods. In addition,
the existing clouds could be the result of polluted aerosols acting as nuclei for cloud formation,
during heavy polluted days, more clouds were indeed found over Beijing in case studies [57]. Here,
we considered the effects of both aerosol pollutants and cloud on the DSR. On this basis, reduced DSR
and weak wind led to weak thermal and dynamic forcing, resulting in a smaller diurnal range of the
urban boundary layer on low-wind days than on high-wind days. In other words, compared to strong
wind classes as shown in Figure 7f1–f3, a reduction of approximately 400 m and 500 m to the maximum
(median values) of the urban BLH for low and moderate classes, respectively, resulted from the
combined changes in the wind, the aerosol pollutant concentration, and the cloud fraction. Therefore,
it was considerably challenging to quantitatively analyze the radiative feedback effects of aerosol
pollutants on the urban boundary layer in Beijing by only using the experimental measurements.
As such, model studies should be conducted in the future to help address this issue.

It can also be seen from Figure 7f that the top of the 325-m tower at most times was above the
NBL for all the observational period, and the boundary layer during daytime for some cases with low
wind in winter, suggesting that the measurements at some of the top levels may have been decoupled
from the surface. As mentioned above, the time of CBL onset is defined at the time when the BLH
reaches 200 m [39]. Based on this definition, the time of CBL onset got later with weakening wind,
and the peak times showed a similar tendency (Figure 7). The growth rate of the median value of
urban BLH also differed among the three classes; for example, from 09:00 China Standard Time (CST)
to the peak time, the rates were 105 m h−1, 48 m h−1, and 19 m h−1. Moreover, for the strong wind
class, some NBL heights were able to reach 200 m in the early morning before sunrise with larger TKE
as shown in Figure 7d3, indicating that wind shear production may contribute greatly to the larger
BLH during nighttime than for the other wind classes.
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Figure 7. Mean diurnal cycles of downward shortwave radiation (DSR), sensible heat flux, PM2.5

concentration, and urban BLH under low (a1,b1,c1,d1,e1,f1), moderate (a2,b2,c2,d2,e2,f2), and strong
(a3,b3,c3,d3,e3,f3) wind classes. The shaded areas, blue solid line, red dashed line, and pink lines
correspond to the interquartile range (25%–75%), median, 200 m (definition of onset the convective
boundary layer), and the slopes of growth rate of the median value of urban BLH from 09:00 CST to the
peak time, respectively.

3.3. Morning and Afternoon Transitions of the Urban Boundary Layer

3.3.1. Durations

The CBL starts to grow slowly after sunrise, and a transition feature of both the CBL and SBL,
named “morning transition”, is the first stage of the development of the ABL. Examination of the
transition periods (e.g., passing from night to day or day to night) has important implications for air
quality [58,59]. In previous studies, different algorithms were used to define the morning transition
(MT) from observations [57,60,61]. It was defined as the period from the time when the surface
buoyancy flux first becomes positive (crossover) to the time at which the BLH reaches about 200 m [57]
based on the observations from meteorological tower. Considering the positive heat flux also occurred
in nighttime and the urban BLH was often greater than 200 m for urban site during summertime,
the beginning of the MT was marked as the sunrise, and the end of MT was defined as the rapid onset
of the rapid-growth phase in [58] by using the measurements from a tall tower in London. Given that
the positive H occasionally occurred during nighttime in our study period, we defined the sunrise as
the starting time of MT. We chose the time when the urban BLH reaches about 200 m as the end of the
MT after the sunrise in this wintertime period. The period between the maximum H at midday and H
< 0 around sunset is usually defined as the afternoon transition (AT) [8,62].

In this paper, we adopted these two methods to estimate the durations of MT and AT during
wintertime over horizontally homogeneous Beijing urban surface. Note that the fixed height (200 m)
method for MT employed in the present study may not be robust to investigate precise absolute change
characteristics of the urban boundary layer. However, at least, it can help us to study the relative change
characteristics of the morning development of the urban boundary layer under different conditions
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(e.g., wind, solar radiation, pollutants) quantitatively. Similarly, AT is also employed to show relative
change characteristics of convective urban boundary layer at daytime.

Excluding strong-wind nights (e.g., 5, 15, and 22 December), the MT duration (DMT) ranged from
1 to 5 h, and the average value was 2.4 h. The maximum DMT occurred on the heavily polluted days,
such as 4 and 18 December, with weak morning-averaged winds of 0.6 m s−1 and 0.8 m s−1, respectively.
The variation of DMT was negatively correlated (r = −0.4 for both the 8-m level and 47-m level) with
the change in WS, which is consistent with previous studies [57,58,63], and implies that weak wind
prolongs the DMT. However, this correlation was weaker than that in [58] (r = −0.7), possibly because
of the complexity of the aerosol loading. A positive correlation (r = 0.5) was found between DMT

and PM2.5 concentration, which suggests that the significant loading of the aerosol pollutants had
large effects on DMT by reducing the net radiation reaching the surface. This can be proved by model
results from a large-eddy simulation in which aerosols delayed the CBL onset in the morning by up to
4.5 h [64]. Note that weak wind is usually associated with high concentrations of PM2.5 over Beijing;
and besides, many other contributing factors, such as stability, advection, the state of the previous
day’s RL [8], and the entrainment [65], can affect the DMT. The delay in our case was likely caused by a
combination of multiple factors.

The AT started at around 11:00–14:00 CST and mostly ended about 1 h before sunset (16:50 CST,
monthly averaged), meaning it could last 3–6 h. Interestingly, the AT duration (DAT) showed no
obvious correlation with WS (r < −0.1), while the ratio of H decay (r∆H) during DAT showed a strong
positive correlation with the WS averaged during DAT (r = 0.5 for the 8-m level and r = 0.6 for the 47-m
level). In addition, r∆H had a negative correlation (r =−0.4) with the PM2.5 concentration averaged
during DAT, due to the aerosol cooing effect. In contrast, as compared with a new stable boundary-layer
development near the ground in the morning, the boundary layer in the evening was already developed
after a growth in the afternoon [66]. This difference will also modulate the magnitude of duration,
due to different thermal-dynamical and aerosol context between morning and evening.

Notably, it has been proven that there are interactions between the urban boundary layer and
aerosol pollutants [31,67], from which it can be concluded that the long DMT and rapid r∆H both support
a suitable condition for the accumulation of aerosol pollutants, and in turn, the high concentrations of
aerosol pollutants, with their radiation effects, can prolong the DMT and accelerate the r∆H. Therefore,
the transition process is very complex [50], and aerosol pollutants add another level of complexity.

Based on the above findings, a schematic illustration of the diurnal cycle of the ABL on a polluted
weak and windy day (taking 19 December as an example) is shown in Figure 8. The RL height (250 m)
was taken from [31]. As can be seen, the CBL onset is at 11:00 CST, with a 4-h DMT, which is larger
than the mean value (2.4 h). This delayed development is caused by the weak wind (0.7 m s−1 at the
8-m level, averaged during DMT) and cooling effect of aerosols (PM2.5 concentration = 267 µg m−3,
averaged during DMT). Note that the CBL height tends to decrease obviously from about 4 h after the
peak time of H, which implies that the response of the urban BLH variations lag behind the thermal
forcing. This result is consistent with previous results derived from observational measurements [8]
and a large-eddy model [50]. Moreover, the crossover of H is at 18:00 CST, 1 h after sunset, which can
be explained by the weak wind and the high thermal conductivity of the concrete in built-up areas
(large heat storage of the urban canopy). The existence of pollutants in the RL, formed on the previous
polluted day, plays an important role in the changes of pollutants at the surface in the morning,
which can reach the ground the following morning through convection [29,68]. This mechanism of
pollutant vertical mixing is very complex, and can be further investigated via model simulations.
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Figure 8. Schematic illustration of the diurnal cycle of the atmospheric boundary layer (ABL) over
Beijing on 19 December 2016.

3.3.2. WS and Vertical Variance Profiles

Composite vertical profiles of WS and σ2
w averaged in the three wind classes during the MT and

AT periods are illustrated in Figure 9. For the median WS profiles, WS was mostly below 5 m s−1

and 7 m s−1 for weak and moderate wind classes, respectively, while it could reach 17 m s−1 at about
1400 m for the strong wind class. Obviously, during MT, low-level jet (LLJ) was detected in all three
wind classes, which was mainly attributed to large- and local-scale forcings, e.g., synoptic pattern,
local topographic flows, buoyancy, friction, and entrainment processes [69–71]. For the weak wind
class, an LLJ occurred at about 400–600 m. Previous studies have revealed that the LLJ can affect the
transition of aerosol pollutants via advection flow and vertical mixing [72,73]. A southwesterly LLJ
was found in [29], with the jet core at 300–500 m, which might have transferred polluted air from the
south via advection to Beijing on 2 December; plus, this LLJ also generated significant wind shear,
which could have mixed transported and local pollutants via vertical mixing. In our study, the vertical
changes in the wind profile were smaller for weak and moderate wind classes in both the MT and
AT periods.

For σ2
w, its value was smaller in the MT period than in the AT period (Figure 9), suggesting that

the vertical mixing intensity for MT was obviously weaker than for AT for all wind classes. Specifically,
the median values of σ2

w were < 0.1 m2 s−2 for MT, while at AT they could reach 0.35 m2 s−2. During the
AT period, there was an increasing σ2

w between 150 m and 300 m, which can be explained by the strong
wind shear as mentioned above. Combined with Figure 7e, it can be clearly seen that weak vertical
mixing accompanied high PM2.5 concentrations.
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Figure 9. Mean diurnal cycles of WS, (a1,a2,a3) and vertical variance vertical profiles (b1,b2,b3),
for weak, moderate, and strong wind classes, respectively. The shaded areas correspond to the
interquartile range (25%–75%) during morning (blue) and afternoon transitions (red).

4. Discussions

Note that the aerosol–urban boundary layer interaction is a two-way feedback process [73–75]:
(1) the shallow urban boundary layer can weaken the diffusion and dilution condition, accumulating
the pollutants, and the resultant aerosol concentration increases at the near-surface. (2) The aerosols
can reduce surface solar radiation, suppressing boundary layer development due to the weakened
surface heat flux and the weakened thermal forming of underlying surface [34,56,74–77]. In addition,
the aerosols in the atmosphere absorbing the shortwave solar radiation could change the vertical
temperature stratification (i.e., heating upper air and cooling surface) and further suppress the
development of BL [29,75,78]. Such suppressed boundary layer further enhances near-surface aerosol
pollution in megacities. In the present study, based on the observational measurements, we mainly
focused on the characteristics of the development of the urban boundary layer and concentrations of
PM2.5 for different wind classes. Some of these characteristics are resulted from the aerosol–urban
boundary layer interaction.

5. Conclusions

In the present study, based on integrated observations from a 325-m meteorological tower and
a Doppler lidar in urban Beijing, the entire diurnal cycle of the urban BLH in December 2016 was
characterized. The highest daytime urban BLH observed in the measurement campaign was as high as
1000 m; however, under heavily polluted conditions with weak wind, the maximum daytime urban
BLH reached up to 300 m only. The Doppler lidar is well suited to retrieve and monitor CBL evolution,
while it trudges in monitoring the SBL process. A 325-m meteorological tower provided an important
supplement on SBL observation from Doppler lidar, especially under NBL and heavily polluted
conditions (urban BLH around or lower than 200 m, and even lower than 100 m). The variations of
DSR, WS, H, u∗, and TKE correlated positively with the BLH, while there was a negative correlation
between BLH and PM2.5.

Based on the full image of the boundary layer diurnal cycle, we have improved the knowledge of
morning and afternoon transitions of the urban boundary layer under different weather and pollution
conditions. That is, the DMT varied between 1 and 5 h, with the largest value occurring under conditions
of weak wind and high PM2.5 concentration, while DAT ranged from 3 to 6 h. In addition, DAT and r∆H
presented positive correlations with WS but negative correlations with PM2.5 concentration. Our work
highlights that weak WS (weak dynamic motion) and high levels of aerosol pollutants (weak thermal
forcing due to the cooling effect) can dramatically affect the development of the boundary layer. For the
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diurnal cycle, under weak WS condition, the pattern of urban BLH was largely modulated by thermal
forcing of solar radiation and might partly by WS; while for the strong wind condition, the pattern of
urban BLH was largely modulated by dynamical forcing (TKE and WS), and as well by thermal forcing.

In future work, many more examples need to be collected to study the impact of thermal and
dynamic forcing on the diurnal development of the wintertime boundary layer and its association
with air pollution in urban Beijing by using joint meteorological tower and Doppler lidar observations,
especially under calm and heavily polluted conditions. The results reported also have important
implications for other urban regions that frequently experience air pollution and may aid in designing
effective regional mitigation strategies for the environment and human health at the diurnal scale.
For instance, according to the different diurnal stages of boundary layer development, we can
carry out staggered production strategy to modulate emissions under various urban boundary layer
diffusion conditions.
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Forecast (WRF) model during 16–21, December 2016, Table S1: Properties of the three different boundary layer
parameterization schemes.
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