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Abstract: Street view image retrieval aims to estimate the image locations by querying the nearest 
neighbor images with the same scene from a large-scale reference dataset. Query images usually have 
no location information and are represented by features to search for similar results. The deep local 
features (DELF) method shows great performance in the landmark retrieval task, but the method 
extracts many features so that the feature file is too large to load into memory when training the 
features index. The memory size is limited, and removing the part of features simply causes a great 
retrieval precision loss. Therefore, this paper proposes a grid feature-point selection method (GFS) to 
reduce the number of feature points in each image and minimize the precision loss. Convolutional 
Neural Networks (CNNs) are constructed to extract dense features, and an attention module is 
embedded into the network to score features. GFS divides the image into a grid and selects features 
with local region high scores. Product quantization and an inverted index are used to index the image 
features to improve retrieval efficiency. The retrieval performance of the method is tested on a large-
scale Hong Kong street view dataset, and the results show that the GFS reduces feature points by 
32.27%–77.09% compared with the raw feature. In addition, GFS has a 5.27%–23.59% higher precision 
than other methods. 
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1. Introduction 

Street view images can be used to analyze and solve many problems, such as street-level 
vegetation estimates [1] and leaf area indexes [2] or urban land use mapping [3]. The above researches 
premise is the known location street view images. However, some valuable or interesting street view 
images have no or blurry location information. Some photos are taken by devices without GPS or 
taken in urban environments with multipath error [4]. Moreover, some pictures lose the location 
information during the propagation, such as upload and download. Thus, it is necessary to find the 
street view images location, and the problem is attracting increasing attention [5–9]. 

The content of street view images provides effective clues to help locate the shooting location, 
which can provide more contextual information about the scene. The location of street view images 
can be identified and matched by retrieving a large-scale street view dataset. Street view image 
retrieval extracts visual information as image features, and then the features are encoded to improve 
retrieval efficiency and speed on the large-scale dataset. The encoding method clusters the image 
features and numbers them so that the query features are searched in the small cluster during 
retrieval. Finally, the similarity is computed between the query and dataset features. At present, the 
image features used for street view image retrieval mainly include (1) handcrafted local features 
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where the algorithm is designed manually and (2) features extracted from Convolutional Neural 
Networks (CNNs). 

Street view image retrieval methods based on handcrafted local image features such as SIFT [10], 
SURF [11], and Hesaff SIFT [12] are usually used in combination with descriptor aggregation methods 
such as bag-of-words (BoW) [13,14], Fisher vector (FV) [15] and vectors of locally aggregated descriptors 
(VLAD) [16]. However, it takes a long time to train the codebook to encode features, and it does not 
perform well on large-scale retrieval tasks. Some work [7,17] has improved the traditional handcrafted 
local feature retrieval method to adapt to street view or landmark retrieval. Ref. [18] proposed a method 
for detecting confusing features based on traditional local features such as trees and road signs in the 
street view. This method reduces redundant functions and the data quantity, but the retrieval precision 
does not improve significantly. The work in [19] improved retrieval performance by appropriately 
representing buildings with repetitive structures. However, the method has high computational 
complexity because it needs to build an undirected graph to distinguish similar features. Ref. [20] 
proposed a method for weighting SIFT features using geographic tags, and a Gaussian filter was used 
to return the best result; however, the premise is that the query image has GPS information. 

Recently, other methods based on CNN image features have been proposed [21–24], which show 
better performance than handcrafted local features [25]. CNN-based features include MaxPool [26], 
SumPool [27], CROW [28], RMAC [29], and GEM [22]. In addition, aggregation methods such as BoW 
[30], VLAD [6], and Fisher vectors [31] are applied to the output of the convolutional layer. To extract 
distinguishing features, attention mechanisms are widely used [21,32,33]. Before image matching, 
PCA or whitening [34,35] are implemented, which can help improve the retrieval precision. The 
paper [6] proposed the back-propagated VLAD layer, which is inserted into the CNN architecture to 
generate image features and performs experiments on Google Street View datasets. Ref. [8] used the 
attention model and spatial pyramid pooling to generate image features. Ref. [24] proposed a feature 
extraction method that describes first and then detects. Dense local features are selected by 
calculating the high absolute and relative saliency. The method does not require training, but it is 
computationally expensive, and stable retrieval performance cannot be maintained when the number 
of feature points is reduced. Ref. [23] combined image retrieval, feature-point detection, and feature 
extraction into one framework. The image retrieval precision was high, but it still had a large number 
of feature points. 

In addition, in large-scale street image retrieval systems, methods such as KD tree [36], hash 
function [37], or product quantization [38] are usually used to encode image features and generate 
indexes to solve the problem of low retrieval efficiency and speed. The index includes cluster center 
information, features encoding information, mapping information between images and features, etc. 
The query features search for the nearest feature through the index. However, they are often 
accompanied by a decrease in retrieval precision. Additionally, postprocessing techniques are used 
to improve retrieval performance, such as geometric verification [39], query expansion [32], and 
database-aside feature augmentation [40]. Geometry verification eliminates the images that have 
similar visual content but are different objects by random sample consensus (RANSAC) [41–43] or 
Hamming embedding [44] algorithms. Ref. [16] proposed a method based on Hamming embedding 
[17] to estimate the distinctiveness of features and remove insignificant features to improve the 
retrieval speed of the image retrieval system and reduce storage requirements, but only a small 
percentage of features can be removed. 

The above methods of street view image retrieval have certain limitations. The method based on 
handcrafted local features does not need to generate a training dataset and clean up the noise data, 
but the time to train the codebook is long, the quantity of data is large, and it does not show practical 
retrieval performance. The method based on global features extracted from CNNs shows faster 
extraction and retrieval speed, and the quantity of data is small, but it cannot represent the local area 
of street view and is susceptible to the influence of interfering objects such as vehicles and 
pedestrians. Compared with global features, local features have better precision [45]. The method 
based on local features extracted from CNNs can represent the local area and show better retrieval 
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performance. However, the quantity of local feature data is too large, and it is difficult to apply to 
large-scale street view image retrieval. 

Therefore, this paper proposes a grid feature-point selection method (GFS) based on deep local 
features. The method deletes low attention score feature points to reduce the feature file size and 
minimize the precision loss. The CNNs are constructed first to extract attentive and multiscale deep 
local features (DELF) that learn the weight of the object in the image by using the attention 
mechanisms during the training process and only require weakly-supervised classification. Then, 
distinctive features are selected by GFS to reduce memory usage so that local features can be applied 
to large-scale street view image retrieval. In this step, the image is divided into multiple grid regions, 
and features are mapped to the corresponding regions. According to the attention score, the features 
in each region are selected to remove redundant features. In addition, product quantization and the 
inverted index are used to improve retrieval efficiency. An ANN search is performed to retrieve 
query images. GFS compresses the number of feature points by selecting features with higher weights 
in the local region and shows higher accuracy compared with other methods. 

2. Methodology 

The GFS method includes the following: (1) data preprocessing, (2) street view image feature 
extraction based on DELF, (3) a grid feature-point selection method, (4) large-scale street view image 
retrieval based on product quantization, and (5) retrieval method comparison and evaluation. The 
workflow of the paper is shown in Figure 1. 

 
Figure 1. The street view image retrieval workflow. 

2.1. Data Preprocessing 

The geotagged perspective view images extracted from panoramas are used as the retrieval and 
training dataset, and images taken by a mobile phone are used as the query image. As shown in 
Figure 2, the original images of the dataset are the fragments of the equirectangular panoramic image 
collected by the camera-equipped on the vehicle. For this reason, multiple fragments are merged 
together into a complete panorama. The deformation at the center of the image is small, while the 
upper and lower sides are large. Considering that the deformation of the panoramic image is 
inconsistent with the query image and the matching results are poor [7], the panoramic images are 
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projected into the same perspective view as the query image so that the similarity between their 
features is improved. In more detail, the street view image preprocessing is as follows: 

(1) Merge image fragments into a complete street view panorama. The equirectangular panorama 
is a single image with an aspect ratio of 2:1, so crop the black part of the panorama and keep the 
proper aspect ratio of the image. 

(2) Set projection parameters. Parameters include FOV (field of view), pitch, and heading. The FOV 
determines the field of the projection, while the pitch and heading determine the location of the 
projection. The larger the FOV is, the larger the region is covered by the image. However, if the FOV 
is too large, the edges of the perspective image will be deformed. Thus, there is a trade-off between 
the image coverage area and the image distortion. The recommended FOV range is 40°–80°. 

(3) Project panorama into perspective view image. Specifically, the projection process is divided 
into two steps. First, the equirectangular panorama is mapped to a sphere. Then, according to 
the projection parameters, an image of a certain range of the sphere is mapped to a plane to 
obtain a perspective view image. 

(4) Generate training data. Every three neighboring panoramas are grouped into a class by querying 
the nearest neighbor images. The images with different orientations in the class are removed so 
that the image with the same scenes is left. Some images facing a certain scene in each class are 
retained. 

 
Figure 2. The street view panorama preprocessing flow. 

The photos taken from the mobile phone have high resolution that slows down the process of 
feature extraction. In addition, the upper part of the photo usually has not a corresponding street 
view in the dataset or has a large deformation image, and the lower part of that is roads and 
pedestrians. Therefore, the photos are center cropped and resized to 640 × 480 size, and a Gaussian 
filter is finally performed to remove the noise. 

2.2. Street View Image Feature Extraction Based on DELF 

Attention-based multiscale deep local features are used to represent street view images. The 
attentive module can learn the targets with the same semantic information in the samples of each 
class and increase their feature weights, such as buildings and signs. DELF [21] is used to extract 
attention-based features. Image pyramids are constructed by resizing images and fed into CNNs to 
generate multiscale features that have the ability to deal with scale changes. A CNN convolutional 
layer is used to extract dense local features that are sorted according to the scores provided by the 
attention layer, and the features with lower scores are removed. The street view feature extraction 
network has two modules, which are trained separately, as follows: 

(1) Dense feature extraction module. A fully convolutional neural network is used to extract the 
dense features. ResNet50 [46] is employed for training, and the output of block 4 is used for 
dense features. The module is trained in the first step. A total of 1500 classes of the Google 
Landmark dataset [21] and 500 classes of the San Francisco dataset [7] are used to train with 100 
epochs, and then the 2000 classes of the Hong Kong street view dataset are used to fine-tune 100 
epochs. The cross-entropy loss function is adopted. 

(2) Attention module. The attention score function ∝ (𝑓𝑓𝑛𝑛;𝜃𝜃)  is constructed, 𝜃𝜃  represents the 
weight of each feature vector 𝑓𝑓𝑛𝑛, and 𝑛𝑛(1, … ,𝑁𝑁) represents the 𝑛𝑛𝑡𝑡ℎ feature vector. 𝑓𝑓𝑛𝑛 ∈ 𝑅𝑅𝑑𝑑, 𝑑𝑑 
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is the size of 𝑓𝑓𝑛𝑛, which depends on the dimensionality of the outputs of the convolution layer. 
The output 𝑓𝑓𝑛𝑛′ is the weighted features, which is given by 

𝑓𝑓𝑛𝑛′ =∝ (𝑓𝑓𝑛𝑛;𝜃𝜃) ∙ 𝑓𝑓𝑛𝑛 (1) 

As shown in Figure 3, two convolution layers with the softplus function are embedded into the 
dense feature extraction network in the second step. The subsequent pooling layer and fully 
connected layer are added to predict classes. The module is trained in this step singly, which 
means that the weights of dense feature extraction modules are frozen during the training 
process. The image pyramids generated from the Hong Kong street view dataset are used as a 
training dataset with 100 epochs. The cross-entropy loss function is adopted. The output of the 
fully connected layer y is the sum of weighted features, which is given by 

𝑦𝑦 = 𝑊𝑊��𝑓𝑓𝑛𝑛′
𝑛𝑛

� (2) 

where 𝑊𝑊 ∈ 𝑅𝑅^(𝑀𝑀 × 𝑑𝑑) represents the weights of the final fully connected layer of the CNNs 
trained to predict M classes. 

(3) Feature extraction. The image pyramids are fed into the network, and the network after the 
attention layer is deleted to extract attention-weighted features. Then, the features are selected 
according to the attention score. The top N features with the highest attention score for each 
image are selected. Finally, L2-normalize, PCA, and L2-normalize again are performed on each 
feature. In addition, the results also contain the position of the feature in the image, the attention 
score, and the feature scale. 

 
(a) The street view image feature extraction architecture. 

 
(b) Attention module 

Figure 3. Convolutional Neural Networks architecture and attention module. 
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2.3. A Grid Feature-Point Selection Method 

Although the precision of local features is better than that of global features, an image requires 
a large number of local features for a description, which also leads to the need for more storage space. 
Due to a large number of images in a street view image retrieval system, the feature files take up 
considerable hard disk storage space. Table 1 shows the relationship between the number of feature 
points and the size of the feature file. It is an impossible task to load them directly into memory for 
image retrieval. Thus, product quantization is used to compress the image features for more efficient 
coding. It would be presented in Section 2.4. However, when performing product quantization, the 
original feature file also needs to be loaded into the GPU or memory for the training codebook. 
Although the CPU can be used to index features, the training speed is slow, while the execution speed 
on the GPU is dozens or even hundreds of times that of the CPU. However, graphics memory has 
limitations and hardly loads all feature files. Therefore, it is necessary to reduce the image feature file 
to an appropriate size, use as few distinctive features as possible to represent the images, and 
minimize the loss of precision. The effective feature selection method can reduce the size of the 
feature file and improve the speed of index construction. 

Table 1. The relationship between the number of feature points and the size of the feature file. 

No. of feature points 6650 12,499 34,736 
Feature file size (GB) 6.1 11 38.2 

To reduce memory consumption, the grid feature-point selection method (GFS) is proposed to 
reduce the features. As shown in Figure 4, the method is different from methods that simply select 
the first N features with high attention scores, but the image is divided into multiple regions 
uniformly by a grid and selects the first N features in each region. The method steps are as follows: 

(1) The street view image of H × W size is divided into I × J regions, and the size of each region is 
h × w. Each region contains corresponding image features. Features are located in the region of 
the image based on the receptive field of CNNs, which is calculated by the configuration of the 
convolution layer and the pooling layer. The center pixel coordinate of the receptive field is used 
for the position of the feature. In addition, the size of the receptive field is inversely proportional 
to the scale when performing multiscale feature extraction. The 𝑘𝑘𝑡𝑡ℎ feature of an image is 𝑇𝑇𝑘𝑘, 
and its position in the image is (𝑥𝑥𝑘𝑘,𝑦𝑦𝑘𝑘). The feature is located in the (𝑖𝑖, 𝑗𝑗) region, and 𝐺𝐺𝑘𝑘(𝑖𝑖𝑘𝑘, 𝑗𝑗𝑘𝑘) 
is the region number corresponding to the feature 𝑇𝑇𝑘𝑘: 

𝑖𝑖𝑘𝑘 = [𝑥𝑥𝑘𝑘/𝑤𝑤], 𝑖𝑖𝑘𝑘 ∈ (1, 𝐼𝐼)  

𝑗𝑗𝑘𝑘 = [𝑦𝑦𝑘𝑘/ℎ], 𝑗𝑗𝑘𝑘 ∈ (1, 𝐽𝐽) 
(3) 

(2) The number of feature points in each region 𝑀𝑀𝑖𝑖,𝑗𝑗 is counted according to 𝐺𝐺𝑘𝑘. 
(3) Finally, two strategies for selecting feature points are proposed. 

a． GFS-N: The first strategy is to select by number, which means select the first N features with 
a high attention score in each region and all features in the grid are selected if the number 
of features in the grid is less than N, and 𝑆𝑆𝑖𝑖,𝑗𝑗 is the feature number to be selected in each 
region (i, j): 

𝑆𝑆𝑖𝑖,𝑗𝑗 = 𝑀𝑀𝑀𝑀𝑀𝑀�𝑁𝑁,𝑀𝑀𝑖𝑖,𝑗𝑗� (4) 

b. GFS-P: The second strategy is to select by percentage, which means select the top 𝑛𝑛% features 
in each region. Actually, GFS-P equivalent to select high score feature points without a grid. 
Therefore, the method is proposed to compared with GFS-N to evaluate GFS performance. 

𝑆𝑆𝑖𝑖,𝑗𝑗 = 𝑛𝑛% × 𝑀𝑀𝑖𝑖,𝑗𝑗 (5) 
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Figure 4. The grid feature-point selection method. Since a picture has hundreds of feature points, the figure 
is simplified. The yellow points represent the location of the feature points, and the white grid divides the 
image into multiple regions. After performing grid feature-point selection method (GFS), the number of 
feature points is reduced. 

2.4. Large-Scale Street View Image Retrieval Based on Product Quantization 

The street view image retrieval method searches the feature vector closest to the query vector 
from the features dataset, but it is not an effective method that traverses all features for a large-scale 
image retrieval system because it will take considerable time to calculate the distance among millions 
of vectors. Therefore, product quantization is deployed to construct an image index that improves 
the speed of retrieval and reduces memory requirements during retrieval. 

Product quantization divides the N D-dimensional features into M parts first, and each part has 
N D/M-dimensional features. For example, N 128-dimensional features are divided into 4 parts, and 
each part has N 32-dimensional features. Next, each part is trained to a codebook separately. The size 
of the codebook is K. Then, each part of the feature generates an index value, which is the number of 
the nearest cluster center of this part. Finally, each feature is represented as an index value combined 
with the M parts index. The process is shown in Figure 5. To improve the precision of image retrieval, 
the asymmetric distance calculation is performed, where the original features of the query image do 
not undergo the product quantization process. The distance of two image features is converted into 
the Euclidean distance of the indexes. The resulting image ID can be queried according to the image 
features through the inverted index file. The task is completed using Faiss [47], which is a library for 
similarity searching and clustering of vectors. 

 
Figure 5. The process of the inverted index and product quantization. 
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An ANN (approximate nearest neighbor) search is performed for each local feature of the query 
image. As shown in Figure 6, all the retrieval results are summarized and correlated with the street 
view images in the dataset if there are k features that match the query image. The process is as follows: 

(1) A query image 𝑄𝑄 contains 𝑛𝑛 features 𝑞𝑞𝑖𝑖(𝑖𝑖 ∈ 1 …𝑛𝑛), and an ANN search is performed on each 
feature 𝑞𝑞𝑖𝑖 to obtain the most similar top 𝑚𝑚 features 𝑓𝑓𝑖𝑖(𝑖𝑖 ∈ 1 …𝑚𝑚) on the index of the feature 
database. Performing 𝑛𝑛 queries will obtain 𝑛𝑛 ∗  𝑚𝑚 features. 

(2) Since each feature 𝑓𝑓𝑖𝑖 corresponds to a street view image in the inverted index file, it is easy to 
count the number of similar features in each street view image and sort the results accordingly. 

(3) Geometric verification is performed using RANSAC on retrieval results to exclude some 
distractor images that match the query image using ANN but are different from visual 
information. The retrieval results are sorted according to the number of inliers, and output. 

 
Figure 6. The approximate nearest neighbor (ANN) search workflow. 

2.5. Retrieval Method Comparison and Evaluation 

The results of the method in this paper are compared with GEM [22], CROW [28], RMCA [29], 
and Hessian-Affine extractor + SIFT descriptor (Hesaff SIFT) [12] to evaluate the ability of street view 
image retrieval performance. The GEM, CROW, and RMCA are global features based on CNNs. 
Thus, the network of the dense feature extraction module with the same configuration in Section 2.2 
is used, and dense features are pooled to extract the global features. The Hesaff SIFT method is a 
handcrafted local feature that has better performance than SIFT on large-scale retrieval tasks. Product 
quantization is used to generate indexes for retrieval features. In addition, all methods are tested on 
the Hong Kong street view dataset. 

In this paper, the same visual information between the results and query image is considered. 
The evaluation measure 𝑃𝑃𝑣𝑣 is employed, which is given by 

𝑃𝑃𝑣𝑣 =
∑ 𝑞𝑞𝑖𝑖
𝑄𝑄
𝑖𝑖=1
𝑁𝑁

, (6) 

where 𝑄𝑄 is the number of query images, and if at least one image that has the same visual content is 
retrieved within the first N results for 𝑖𝑖𝑡𝑡ℎ query image, 𝑞𝑞𝑖𝑖 = 1; otherwise, 𝑞𝑞𝑖𝑖 = 0. 

In addition, the distance between the retrieval results and the query image is also evaluated. 
The 𝑃𝑃𝑟𝑟 in different radii of the query image is also counted, which is given by 

𝑃𝑃𝑟𝑟 =
∑ 𝑟𝑟𝑖𝑖
𝑄𝑄
𝑖𝑖=1
𝑁𝑁

, (7) 
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𝑟𝑟𝑖𝑖 = �
1 𝑖𝑖𝑖𝑖 min (𝑑𝑑𝑗𝑗) ≤ 𝐷𝐷
0 𝑖𝑖𝑖𝑖 min�𝑑𝑑𝑗𝑗� > 𝐷𝐷

 𝑗𝑗 ∈ (0,𝑁𝑁), 

where 𝑑𝑑𝑗𝑗 denotes the distance between the query image and 𝑗𝑗𝑡𝑡ℎ results; if at least one image that is 
in the range of query image radius (𝐷𝐷) is retrieved within the first N results for the 𝑖𝑖𝑡𝑡ℎ query image, 
𝑟𝑟𝑖𝑖 = 1; otherwise, 𝑟𝑟𝑖𝑖 = 0. 

3. Experiments and Results 

3.1. Study Area 

The Causeway Bay and Wan Chai areas in the northern part of Hong Kong Island are selected 
as the study area, which is famous for a large number of skyscrapers with diverse building façades. 
The area is dense with roads, population, and buildings, and has a high rate of street view image 
collection. The buildings, especially residential buildings, have similar styles. Reflection glass 
curtainwalls, numerous vehicles, and pedestrians usually represent a considerable challenge for 
street view image retrieval. 

The Hong Kong street view dataset in the study area contains 239,400 images (640 × 480) from 
6650 panoramic classes collected in 2017 and 38 query images taken by mobile phones collected in 
2019. The experimental data are within this range of (114.16267, 22.283887) to (114.18704, 22.273796), 
and the regional area is 2.81 km2. The dataset covers almost all major roads in the area. Each class is 
labeled with a GPS coordinate, and the distance between each class is approximately 10–12 m. The 
geographic distribution of these images is shown in Figure 7, and example images are presented in 
Figure 8. It is worth noting that the dataset images and the query images are not taken at the same 
time, which means that the billboards on the building facade may have been replaced or the buildings 
may have been renovated for other styles. There are obstacles in the image, such as vehicles and 
pedestrians. Both of them also create difficulties in the retrieval task. 

 

Figure 7. The distribution of street view images. 
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(a) Example query images 

 
(b) Example dataset images 

 
(c) Example panoramas 

Figure 8. Example street view images and query images. 

3.2. Experiments Design 

The experiments are completed on a computer equipped with an RTX 2080TI GPU, an INTEL 
I7-9700K CPU, and 32 GB RAM. The detailed implementation of the experiment is as follows: 

(1) Data preprocessing. Projection parameters are set to crop the panoramic image and generate 
perspective images with approximately 20% overlap between the two adjacent images. The 
parameters set and other information are shown in Table 2. Each combination of parameters 
generates an image, and a panoramic image produces a total of 36 images. 

(2) Street view image feature extraction based on DELF. As shown in Table 3, a configuration similar 
to [21] is adopted during the training process, and CNNs are built using PyTorch. The first 1000 
local features are extracted based on the attention score. 
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Table 2. The street view dataset information. 

FOV 50° 
Pitch [5°, 20°, 35°] 

Heading [0°, 30°, 60° ,…, 330°] 
Image size 640 * 480 

Image quality 80% of the original panorama 

Table 3. The network configuration for feature extraction. 

Dense module training step 
center crop (256 × 256), 

random crop (224 × 224) 

Attention module training step center crop (900 × 900), 
random crop (720 × 720) 

Image pyramid scales (0.25, 0.35, 0.5, 0.71, 1, 1.41, 2) 
Batch size 16 
Optimizer SDG 

Initial learning rate 0.008 
PCA dimension 40 

(1) Grid feature-point selection method: After experimenting with different sizes and numbers of 
grids, it was found that changes in the number and size of grids had no significant impact on 
the retrieval precision and the number of features. Therefore, as shown in Table 4, the grid is set 
to 8 × 10, and N (GFS-N) and n% (GFS-P) are set to different values to measure the impact on 
retrieval, where N = all refers to retaining all points in the grid region. 

(2) Large-scale street view image retrieval based on product quantization. The index parameters are 
set through the index factory function in Faiss, which is ‘OPQ10_40, IVF65536_HNSW32, PQ20′. 
Ten percent of features are used for training 65,536 centroids. After constructing the index, for 
each image feature of a query image, the 200 most similar feature points are retrieved, and the 
top 50 most similar street view images corresponding to these features are used for geometric 
verification. Finally, the results are output. 

(3) Method comparison and evaluation. A brute-force search is performed on global features. Faiss 
is used to create an index of Hesaff SIFT, and the ANN search mentioned in Section 2.4 is 
performed for retrieval. 

Table 4. GFS parameter settings. 

Grid 8 × 10 
N (GFS-N) 1, 2, 3, 6, 8, 10, 15, all 
n% (GFS-P) 10%, 20%, 30%, ..., 100% 

3.3. Results 

As shown in Table 5, GFS-N is evaluated on the Hong Kong street view dataset. Feature points 
refer to the average number of features per image after performing the method. The index size refers 
to the size of the image database index file generated from product quantization. The precision of the 
top1 retrieval results is presented. The precision of image retrieval increases as the value of N 
increases until it reaches the highest value when N = 8. After that, the precision of the model grows 
slowly. The size of the index file and the number of feature points are proportional to N. 

The top 1 retrieval result of GFS-P is shown in Table 6. Since the number of feature points is 
proportional to the size of the index file, only the number of feature points is counted. The retrieval 
precision gradually increases with the proportion of feature selection. When it increased to 70%, the 
growth rate decreased. Compared with 100%, the precision lost 5.27%, and the number of feature 
points decreased by 22.02%. The percentage is positively related to the number of feature points. 
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As shown in Table 7, GFS (N = 8) outperforms other methods. The top 1 results are counted. The 
𝑃𝑃𝑣𝑣 of GFS is 5.27%–23.59% higher than those of the other methods. Compared with other methods, 
the 𝑃𝑃𝑟𝑟=100, 𝑃𝑃𝑟𝑟=200, and 𝑃𝑃𝑟𝑟=500 of GPS increased by 13.16%–26.32%, 10.89%–26.32%, and 0%–21.05%, 
respectively. 

Table 5. Results of selecting features by number. 

N 1 2 4 6 8 10 12 14 16 All 
No. of feature points 61 115 187 247 340 386 421 446 464 502 

Index size (GB) 0.8 1.1 2 2.7 3.3 3.7 4.1 4.3 4.5 4.8 
𝑃𝑃𝑣𝑣 44.74 60.53 68.42 73.68 78.95 78.95 76.32 76.32 76.32 76.32 

Table 6. Results of selecting features by percentage. 

n 10 20 30 40 50 60 70 80 90 100 
No. of feature points 71 109 156 202 251 297 347 396 445 502 

𝑃𝑃𝑣𝑣 52.63 57.89 57.89 60.53 68.42 68.42 71.05 68.42 76.32 76.32 

Table 7. Results of the method comparison. 

Method GFS GEM RMAC CROW Hesaff SIFT 
𝑃𝑃𝑣𝑣 78.95% 65.79% 73.68% 55.26% 63.16% 

𝑃𝑃𝑟𝑟=100 76.32% 57.89% 63.16% 50.00% 63.16% 
𝑃𝑃𝑟𝑟=200 84.21% 68.42% 76.32% 57.89% 73.68% 
𝑃𝑃𝑟𝑟=500 86.84% 76.32% 65.79% 78.95% 86.84% 
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4. Discussion 

4.1. The Evaluation of Compression Capability and Precision of GFS 

GFS has the ability to effectively reduce feature volume and memory usage, which alleviates the 
problem that deep local features have too many feature points to load into memory in large-scale 
street view image retrieval. Figure 9 shows the precision of GFS-N and GFS-P at different feature 
points. Overall, combined with Tables 5 and 6, it is shown that GFS-N is better than GFS-P in the 
range of 115 to 464 feature points that mean the performance of GFS is better than the method that 
selects high score feature points without a grid. In addition, according to the different application 
scenarios, GFS can reduce the number of feature points in the range of 32.27%–77.09%. The feature 
points can be effectively reduced by GFS-N between 340 and 446 of the original points without loss 
precision performance. Compared to the results without any feature-point filtering (N = all), the 
number of feature points at the peak of precision (N = 8) is reduced by 32.27%, and precision increases 
by 2.63%. The number of feature points is reduced by 50.80% (N = 6), and the precision decreases by 
2.64%. Further, the number of feature points is reduced by 77.09% (N = 2), and the precision decreases 
by 15.79%. GFS filters out the features with the smallest attention scores. Most of these features 
express interfering objects, which reduces the precision of the ANN search. The grid can select the 
high attention score feature points of the local region and keep richer feature points in the image for 
retrieval. In GFS-N, since N limits the upper limit of the number of feature points in each grid area, 
if the number of feature points in a grid area is less than N, the area will not be affected by N. 

 
Figure 9. The precision of the two methods at different feature points. 

4.2. Comparision with Other Methods 

Compared with the GEM, RMAC, CROW, and Hesaff SIFT methods, GFS shows better 
precision. 𝑃𝑃𝑣𝑣 of GFS (N = 8) increased by 13.16%, 5.27%, 23.69%, and 15.79%, respectively. Figure 10 
shows a comparison of the results with other methods. In most cases, the retrieval system correctly 
retrieves the same scene as the query image. However, due to the shooting location, urban 
environment, and weather, the query image will have different content from the dataset, so it is 
necessary to extract the image features with the invariant angle or scale from the image. GFS has the 
ability to retrieve images with different angles but with the same semantic content, while other 
methods may retrieve results that are similar in content but are actually incorrect such as the sixth 
query image. There may be many reasons for GFS retrieval failure. The selected feature samples are 
not representative during the index training process, which causes the query features to search in the 
wrong cluster, such as the fourth and the fifth query images. As shown in Figure 11, although the 
recall of most methods in large-scale datasets is not good, GFS still has a high recall of correctly 
retrieved images. In addition to retrieving street scenes similar to the query image overall, the method 
can also extract features of a small area of the image, such as signs, billboards, and the building 
textures. The correct extraction of deep local features has a decisive influence on the retrieval results. 
This indicates that GFS has the ability to select representative features. 
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Figure 10. Comparison of the results with other methods. The green boxes are the correct result, while 
the red boxes are the incorrect result. 

 
Figure 11. Comparison of the results with other methods. The green boxes are the correct result, while the 
red boxes are the incorrect result. Top1 refers to the image most similar to the query image, and so on. 
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4.3. Limitations and Future Enhancements 

GFS is proposed to reduce the storage requirements and shows excellent performance. However, 
there are still some limitations. Although GFS can reduce the number of feature points and index file 
size, a regular rectangular grid cannot filter features of irregular objects. Furthermore, since there are a 
large number of uncertain interference factors such as vehicles and pedestrians in the street view image, 
it is difficult for the regular grid to effectively filter the features expressing the interferences. Therefore, 
the interference information in the image can be purposefully filtered through other methods, such as 
semantic segmentation [48,49] or object detection [50,51], to reduce their contribution in similarity 
calculation. Moreover, because of the lack of research on feature compression currently, GFS will be 
compared with other future research methods. 

In addition, experiments are only performed on a partial area of the city, and the query data 
coverage is relatively small. Consideration should be given to different urban environments, such as 
snow or night. Further experiments will also be conducted in a more varied environment. 

Finally, because the shooting location of the street view image is usually different from the query 
image, there are usually some errors using only the visual information of the image to retrieve the 
location. It is possible to combine with 3D reconstruction [52] to improve the precision of street view 
localization. 

5. Conclusions 

This paper proposes a grid feature-point selection method (GFS) suitable for large-scale street 
view image retrieval based on deep local features. Attention-based multiscale features are extracted 
to represent street view images. The grid is used to divide the image into several rectangular regions 
and selects a certain number of features in each region to reduce the number of feature points. Product 
quantization is performed to construct an index of features and speed up image retrieval. The Hong 
Kong street view dataset and mobile phone photos are used in experiments. The results show that 
the GFS can select representative local features and reduce the number of feature points by 32.27%–
77.09% compared with raw feature points. In addition, GFS outperforms other methods in retrieval 
precision. Future exploration will also focus on selecting more representative features and improving 
the robustness of retrieval in a variety of urban environments. 
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