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Abstract: The Advanced Hyperspectral Imager (AHSI), carried by the Gaofen-5 (GF-5) satellite,
is the first hyperspectral sensor that simultaneously offers broad coverage and a broad spectrum.
Meanwhile, deep-learning-based approaches are emerging to manage the growing volume of data
produced by satellites. However, the application potential of GF-5 AHSI imagery in lithological
mapping using deep-learning-based methods is currently unknown. This paper assessed GF-5 AHSI
imagery for lithological mapping in comparison with Shortwave Infrared Airborne Spectrographic
Imager (SASI) data. A multi-scale 3D deep convolutional neural network (M3D-DCNN), a hybrid
spectral CNN (HybridSN), and a spectral–spatial unified network (SSUN) were selected to verify the
applicability and stability of deep-learning-based methods through comparison with support vector
machine (SVM) based on six datasets constructed by GF-5 AHSI, Sentinel-2A, and SASI imagery.
The results show that all methods produce classification results with accuracy greater than 90%
on all datasets, and M3D-DCNN is both more accurate and more stable. It can produce especially
encouraging results by just using the short-wave infrared wavelength subset (SWIR bands) of GF-5
AHSI data. Accordingly, GF-5 AHSI imagery could provide impressive results and its SWIR bands
have a high signal-to-noise ratio (SNR), which meets the requirements of large-scale and large-area
lithological mapping. And M3D-DCNN method is recommended for use in lithological mapping
based on GF-5 AHSI hyperspectral data.
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1. Introduction

Lithological mapping using remote sensing data is one of the most challenging tasks in geological
remote sensing given complexities involving sub-pixel-level microscopic-scale non-linear mixing
of minerals and the presence of surface soil, regolith, and vegetation [1]. Hyperspectral technology
combines two-dimensional imaging and spectroscopy technologies to obtain both the physiographic
and spectral information of the constituent features [2]. Compared with multispectral imagery, more
diagnostic absorption features of ground objects are recorded in hyperspectral imagery (HSI), so specific
minerals and litho-units could be identified and classified more accurately, which happens to be a main
force driving the application and development of hyperspectral technology in the geological field.

The advent of Hyperion onboard the Earth Observing-1 (EO-1) spacecraft marked the beginning of
the application of spaceborne hyperspectral data in geology [3]. Since its launch in 2000, the Hyperion
sensor was in service for more than a decade, but it provided bad data lines and vertical stripes,
low signal-to-noise ratio (SNR; especially the short-wave infrared bands), and poor data quality [4].
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As EO-1 was a tasking satellite, it collected data only when requested, which means it did not
provide continuous coverage of the Earth. Moreover, the EO-1 satellite was decommissioned on
22 February 2017 [5]. The imagery of some other airborne hyperspectral sensors are also fully
applied in geological fields, such as Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) [6,7],
HyMap [8,9], Compact Airborne Spectrographic Imager/Shortwave infrared Airborne Spectrographic
Imager (CASI/SASI) [10], Multispectral Infrared Visible Imaging Spectrometer (MIVIS) [11,12], etc.
However, the acquisition of airborne high-resolution hyperspectral imagery is expensive, and the
coverage of the data is limited. Fortunately, Advanced Hyperspectral Imager (AHSI), carried by the
Gaofen-5 (GF-5) satellite launched on 9 May 2018, is the first hyperspectral sensor that simultaneously
provides broad coverage and a broad spectrum [13,14], providing a new data source for surface
research. Currently, no relevant research has been conducted on GF-5 AHSI hyperspectral imagery in
lithological mapping.

In terms of lithological and mineral mapping, a large number of methods based on
hyperspectral imagery have been proposed, which can be mainly divided into three categories:
whole-pixel classification approaches, subpixel classification approaches, and machine-learning and
deep-learning-based techniques [1,15]. Whole-pixel classification approaches assign an entire pixel to
a single class based on features such as spectral similarity measures and derivative absorption
band parameters. Spectral Angle Mapper (SAM) [16,17], cross-correlogram spectral matching
technique (CCSM) [18], spectral information divergence (SID) [19], and spectral feature fitting (SFF)
approach [20] are the most commonly used techniques. Alternatively to these methods relying on
spectral reference libraries, the relative intensity and wavelength position of diagnostic absorption
features can be extracted from the hyperspectral reflectance spectra to discriminate mineral species and
lithologies [21,22]. Subpixel classification approaches comprise some techniques to unmix hyperspectral
imagery to quantify the relative abundance of various materials within a pixel and assign a label
to the pixel into a single or multiple classes depending on the purity of the pixel [15]. For instance,
a typical mineral mapping process based on hyperspectral imagery has been formed by Minimum
Noise Fraction (MNF), Pixel Purity Index (PPI), N-dimensional visualization, endmember selection,
and mineral mapping techniques (such as SAM and SFF) [3,23].

Machine-learning-based approaches for unmixing mineral groups and lithologies from
hyperspectral imagery have been thoroughly developed in the literature. For instance, support
vector machine (SVM) [24,25] and random forest (RF) [26,27] are among the most widely used
classifiers for classification based on HSI, which categorize pixels according to spectral similarity
between the test and training samples [28]. Deep learning structures have attained success due to
their outstanding generalization capacity. Various atmospheric scattering conditions, complicated
light-scattering mechanisms, interclass similarity, and intraclass variability result in the hyperspectral
imaging procedure being inherently nonlinear [29]. Compared to the previously mentioned shallow
models, deep learning architectures are able to extract high-level, hierarchical, and abstract features,
which are generally more robust to nonlinear processing. Many studies have proved that compared
with traditional machine learning classification algorithms, these deep learning classification models,
such as stacked autoencoder (SAE) [30], deep belief network (DBN) [31], and convolutional neural
network (CNN) [32,33], can achieve more accurate classification results, but they have shortcomings.
With the SAE and DBN algorithms, the original image patches must be flattened into the form of
column vectors to meet the needs of their specific networks [34], which would destroy the original data
structure, causing the critical information between spatial categories to be severely damaged, affecting
the final classification results. Thankfully, the CNN input is the original image patches, without any
deformation of the image data, so CNN can learn more complete feature information. In recent years,
CNN has gradually shown its significant advantages of lithological recognition and mapping on
diverse data sources [35–37]. However, the convolution kernel commonly used in CNN is usually
two-dimensional. Although most spatial information is extracted, the spectral information is not
fully used.
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Extracting and integrating the spatial distribution features and spectral information in a deep
learning framework has been attempted in a number of new studies. 3D-CNN was proposed to extract
effective spectral–spatial features of hyperspectral imagery, but it has problems with over-fitting
and increased computational complexity [32]. A multi-scale 3D deep convolutional neural network
(M3D-DCNN) was proposed for HSI classification, which could jointly learn both 2D multi-scale
spatial feature and 1D spectral feature from HSI data in an end-to-end approach [38]. Zhao and Du
proposed a spectral–spatial feature-based classification (SSFC) framework that jointly uses dimension
reduction and deep learning techniques to extract spectral and spatial features, respectively, which are
then combined and fed into the SVM or logistic regression classifier [39]. Based on the above network
structure, to overcome the limitation of feature extraction and classifier training not using a unified
objective function, the spectral–spatial unified network (SSUN) was proposed, combining the long
short-term memory (LSTM) model and a multiscale CNN (MSCNN) model for spectral feature and
spatial information extraction, respectively [34]. A hybrid spectral CNN (HybridSN) was proposed
with a spectral–spatial 3D-CNN followed by spatial 2D-CNN [40]. The above methods produced
satisfactory results on the public benchmark datasets, such as Indian Pines, Pavia Centre and University,
Salinas, etc., which mainly include land cover and land use types with uniform scale, regular shape,
and clear texture feature. However, due to the complexity and multistage nature of geological processes,
whether these methods are suitable for lithological mapping based on GF-5 AHSI imagery remains to
be further studied.

Therefore, we used deep-learning-based techniques to perform lithological mapping based on six
diverse datasets constructed by GF-5 AHSI, Sentinel-2A, and SASI imagery, mainly for two purposes:
(1) to assess the suitability of GF-5 AHSI imagery for lithological mapping and (2) to verify the
applicability and stability of the above deep-learning-based techniques in lithological mapping.

The rest of this paper is organized as follows: Section 2 introduces the location and geological
background of the study area. Section 3 describes datasets and methods. Section 4 presents the
experimental results. Discussion is provided in Section 5 and our conclusions are summarized in
Section 6.

2. Study Area

To verify the developed deep-learning-based methods and GF-5 AHSI imagery in lithological
mapping, part of the area near Liuyuan town in northwest Gansu province, China, was selected as a
geological test site, which covered an area of about 40 km2 (Figure 1). It is a shallow-cut mountainous
area with an average altitude of about 1800 m and a typical continental-semi-desert climate. Except for
sudden floods in the rainy season, there is no regular surface runoff. It is windy all year round,
and wind erosion and transport are strong. Most of the bedrock is fully exposed [10].

Geologically, the study area is mostly covered with litho-units from Quaternary strata,
Ordovician Huaniushan strata, and Sinian Xichangjing strata, and is heavily invaded by
intermediate-acid magmatic rocks. Quaternary strata are concentrated in the northern part of the
study area, and the main litho-unit is diluvial gravel and sand. Ordovician Huaniushan strata [41] are
distributed in the south of the study area and spread in an east-west direction. It can be divided into
lower, middle, and upper rock groups. The lower rock group is characterized by hornstone and slate;
the middle rock group is dominated by basalt with slate; and the main litho-units of the upper group
are hornstone and sandstone. Sinian Xichangjing strata [42] are divided into six groups from old to
young, and the main litho-units are slate and phyllite, marble with phyllite, limestone, hornstone, slate,
and biotite felsic slate, respectively. Besides, the majorly representative intrusive rocks are variscan
diorite, variscan granodiorite, indosinian granite, and indosinian biotite granite, which account for
about 40% of the whole study area and are produced in the form of batholith, stock, and dykes.

There are few faults in the study area, but from the perspective of the large-scale area, faults
are developed with the largest scale in the near EW direction, followed by NE and NW directions.
Liuyuan town is rich in economic minerals such as gold, silver, lead, zinc, tungsten, etc. [41].
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Figure 1. Simplified provincial boundary map of China and the location of the study area. A geological
map of the study area is shown on the left, which was derived from an initial geological map at 1:50,000.
The geological map is not shown strictly in accordance with the criteria, but in other bright and easily
distinguishable colors to more clearly show the spatial distribution and boundaries of litho-units.

3. Materials and Methods

3.1. Data Sources

Gaofen-5 (GF-5) Advanced Hyperspectral Imager (AHSI) imagery, Shortwave Infrared Airborne
Spectrographic Imager (SASI) imagery, and Sentinel-2A imagery were used in this study. In addition,
regional geological map and related explanatory materials were also obtained.

3.1.1. GF-5 AHSI Imagery

GF-5 is the fifth satellite of a series of the China High-Resolution Earth Observation System
(CHEOS) satellites of the China National Space Administration (CNSA). The satellite carries 6 payloads:
2 hyperspectral/multispectral payloads for terrestrial Earth observation and 4 atmospheric observation
payloads [14]. The specifications and major orbit parameters of the GF-5 satellite are shown in Table 1.

AHSI imagery (GF5_AHSI_E95.58_N41.19_20191010_007564_L10000062261) was adopted in this
study, which was obtained from Land Satellite Remote Sensing Application Center of Ministry of
Natural Resources, China. And High-resolution Earth observation system grid platform is available for
ordering GF-5 AHSI data (https://www.cheosgrid.org.cn/index.htm). AHSI is a 330-channel imaging
spectrometer with an approximately 30 m spatial resolution covering the 0.4–2.5 µm spectral range [43].
The AHSI data was acquired at 06:32:21 on 10 October 2019, and the central location has a longitude
of 95.58◦ E and a latitude of 41.19◦ N. The quality of digital remote sensing data is directly related
to the level of system noise relative to signal strength, which is usually expressed as signal-to-noise
ratio (SNR), a dimensionless number that describes the overall system radiometric performance [44].
The visible and near-infrared (VNIR) SNR of AHSI data is nearly 700, whereas the shortwave infrared
(SWIR) SNR can be close to 500 (Figure 2) [45], which is significantly higher than Hyperion imagery.

https://www.cheosgrid.org.cn/index.htm
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The parameters of GF-5 AHSI and Hyperion are compared in Table 2. However, the Hyperion imagery
does not cover the study area.

Table 1. Gaofen-5 (GF-5) satellite specification and major orbit parameters.

Orbit Parameters Parameter Settings

Orbital type Sun synchronous orbit
Nominal orbital altitude 708.45 km

Dip angle 98.218
Orbital flat period 98.805 min
Eccentricity ratio <0.0001

Flight cylinder number every day 14.57
Orbital intercept 24.731

Local time of descending node 13:30

Sensors

Advanced Hyperspectral Imager (AHSI)
Visual and Infrared Multispectral Sensor (VIMS)
Greenhouse Gases Monitoring Instrument (GMI)

Atmospheric Infrared Ultraspectral (AIUS)
Environment Monitoring Instrument (EMI)

Directional Polarization Camera (DPC)Remote Sens. 2020, 12, x  6 of 20 
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Figure 2. Signal-to-noise ratio (SNR) measurement results of GF-5 AHSI imagery (a) in VNIR bands
and (b) in SWIR bands (modified after Liu et al. [45]). The gray spectral range indicates the bands to be
removed during pre-processing, and the blue line refers to the position with a SNR of 200.

Table 2. Comparison of Gaofen-5 (GF-5) Advanced Hyperspectral Imager (AHSI) and Hyperion data.

Parameters Advanced Hyperspectral Imager (AHSI) Hyperion Sensor

Wavelength Range 0.4–2.5 µm 0.4–2.5 µm
Spatial Resolution 30 m 30 m

Swath Width 60 km 7.5 km
Spectral Resolution VNIR: 5 nm; SWIR: 10 nm 10 nm
Number of Bands VNIR: 150; SWIR: 180 VNIR: 70; SWIR: 172

SWIR Signal-to-Noise Ratio (SNR) ~500 ~50

3.1.2. SASI Imagery

To verify the applicability of the short-wave infrared wavelength subset (SWIR bands) of GF-5
AHSI imagery in lithological mapping, Shortwave Infrared Airborne Spectrographic Imager (SASI)
hyperspectral imagery was used for comparative analysis, which was provided by Beijing Research
Institute of Uranium Geology (Beijing, China). SASI is the advanced hyperspectral imaging spectrometer
in the world, known as the SASI-600 sensor, which is produced by the Canadian company ITRES; it is
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characterized by high spatial resolution and high spectral resolution. The spectral range of SASI is
950–2450 nm, and the specific technical indexes of SASI are shown in Table 3 [42]. The scanner flew
over the study area at a relative height of about 2000 m on 7 September 2010, between 14:00 and 16:30,
and five lines of data were acquired during the overpasses. The SASI data is not publicly available,
and readers can contact authors for some sample data.

Table 3. Technical indexes of the Shortwave Infrared Airborne Spectrographic Imager (SASI).

Parameter SASI-600 Parameter SASI-600

Spectral Range (nm) 950–2450 SNR (Peak Value) >1100
Number of Continuous Spectral Channels 100 Absolute Radiometric Accuracy (%) <2

Total Field of View (degrees) 40 Spectral Resolution (nm) 15
Instantaneous Field of View (degrees) 0.070 Spatial Resolution (m) 2.25

3.1.3. Sentinel-2A Imagery

Sentinel-2 is a multi-spectral mission consisting of a pair of optical Earth observation
satellites: Sentinel-2A (S2A) and Sentinel-2B (S2B), operated by the European Space Agency
(ESA) within the framework of the Copernicus program [46]. Each Sentinel-2 satellite carries a
single multi-spectral instrument (MSI) that uses a push-broom concept and provides 13 spectral
channels ranging from the visible (VIS) to the short-wavelength infrared (SWIR) at different
spatial resolutions (10, 20, and 60 m) [47,48]. In this study, we downloaded the S2A level-1C
product (S2A_MSIL1C_20191019T042801_N0208_R133_T46TGL_20191019T071843.SAFE) from the
ESA Copernicus Open Access Hub (https://scihub.copernicus.eu/) [49], which provides unlimited
open access to the Sentinel-2 Level-1C (L1C) user products. The S2A imagery was acquired at 04:28:01
on 19 October 2019, and the longitude and latitude of the central location are 96.03◦ E and 41.02◦

N respectively.

3.1.4. Geological Map

Regional geological map and related explanatory materials were provided by China Aero
Geophysical Survey and Remote Sensing Center (AGRS). And GeoCloud of China Geological Survey
is available for ordering geological data (http://geocloud.cgs.gov.cn/#/portal/home). The geological
map at a scale of 1:50,000 was created in 2016. In this paper, a local-scale geological map of the study
area (Figure 1), based on the initial geological map, updated with GF-5 AHSI, S2A, and SASI data by
visual interpretation. And this map would serve as an important reference for further research.

3.2. Data Pre-Processing

3.2.1. Pre-Processing of GF-5 AHSI Imagery

The GF-5 AHSI imagery used in this study are laboratory level-1 data, which means that
it had already undergone systematic radiometric calibration and geometric correction with the
GCS_WGS_1984 coordinate system. The pre-processing of GF-5 AHSI imagery mainly included
six steps: (1) band removal, (2) radiometric calibration, (3) bad lines repair and stripe removal,
(4) atmospheric correction, (5) reduce noise by minimum noise fraction (MNF) rotation, and (6) subset
data from study area. The pre-processing of GF-5 AHSI imagery was completed on ENVI5.3 + IDL8.5
software (Harris Geospatial Solutions, Inc., Broomfield, CO, USA).

(1) Band Removal. The spectral resolution of GF-5 AHSI’s VNIR bands and SWIR bands are
approximately 5 and 10 nm, respectively. It contains a total of 330 bands with level-1 data, among which
only 305 bands are calibrated (1–150 for VNIR, and 151–192, 201–245, and 263–330 for SWIR), and the
other 25 bands (193–200 and 246–262 from the SWIR) have poor signal due to their detector’s low
responsivity. VNIR and SWIR bands overlap between bands 144–150 and 151–153. Due to a higher
SNR (Figure 2) and more direct comparative analysis with SASI data, bands 151–153 were retained.

https://scihub.copernicus.eu/
http://geocloud.cgs.gov.cn/#/portal/home
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Noisy bands due to atmospheric water absorption (bands 1–2 and 327–330) were removed, so only the
remaining 292 bands were used for further study (Figure 2).

(2) Radiometric Calibration. Radiometric calibration was applied to GF-5 AHSI imagery to
calibrate image data to radiance and selected band interleaved by line (BIL) as the output interleave.
Scale factor was set to 0.10, which was required for input into the fast line-of-sight atmospheric
analysis of spectral hypercubes (FLAASH) module. And the gain and offset values for every band
were automatically obtained from the header.

(3) Bad Lines Repair and Stripe Removal. There are some anomalous columns in some bands of
the imagery, whose digital number (DN) values are 0 or far less than adjacent pixel values. These pixels
are called bad pixels, and the anomalous columns arranged by bad pixels are called bad lines. The pixel
gray-scale slope threshold method (PGST) was used to repair the bad lines, that is, the bad lines were
corrected by replacing their DN values with the average DN values of their immediate left and right
neighboring pixels [50]. In this experiment, Grayscale Slope Threshold (GST) was set to 2.1 and Badline
Flag Number Percentage (BFNP) was set to 0.4. The vertical stripe is another kind of abnormality of
the pixel value different from the bad lines. Compared with bad lines, which are only a single column
of data anomalies, it is a vertical strip anomaly with a small DN value that is significantly different
from its surroundings. Vertical stripes were corrected using the local destriping method [4].

(4) Atmospheric Correction. The fast line-of-sight atmospheric analysis of spectral hypercubes
(FLAASH) module was adopted since it is valid for both hyperspectral and multispectral imagery
and provides good utility and practicability [51]. The FLAASH module parameter settings are shown
in Table 4. Some other parameters not mentioned in Table 4 were kept by default. As such, surface
reflectance data was obtained.

Table 4. Main parameters of fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH)
atmospheric correction.

Parameter Value Parameter Value

Scene Center Location Lat: 41.19; Lon: 95.58 Water Retrieval Yes
Sensor Altitude (km) 705 Water Absorption (nm) 1135

Ground Elevation (km) 1.821 Aerosol Model Rural
Pixel Size (m) 30 Aerosol Retrieval 2-Band (K-T)

Flight Date 2019/10/10 Initial Visibility (km) 40.00
Flight Time GMT 06:32:21 Spectral Polishing Yes

Atmospheric Model Sub-Arctic Summer Width (Number of Bands) 9

(5) Reduce Noise Using Minimum Noise Fraction (MNF) Rotation. MNF rotation can be used to
judge the intrinsic dimension of imagery data, separate noise, and reduce the demand for processing
and calculation [52]. GF-5 AHSI imagery was divided into VNIR and SWIR bands, and then MNF
rotation was applied to these two parts. After MNF rotation, the first 15 bands of VNIR region and the
first 20 bands of the SWIR region were retained for the inverse MNF rotation. Finally, the bands of
VNIR and SWIR were stacked to obtain hyperspectral imagery with 292 bands.

(6) Subset Data from Study Area. After the above pre-processing, the GF-5 AHSI imagery was
clipped according to the study area to obtain the imagery used in our subsequent research.

3.2.2. Pre-Processing of SASI Imagery

Radiation and geometric corrections of SASI imageries were processed with the system software
provided by Canada ITRES (Calgary, Alberta, Canada) operated by Beijing Research Institute of Uranium
Geology (Beijing, China). Geometric corrections were performed combined with data recorded by
the on-board GPS/IMU sensors and the digital elevation model (DEM) [53]. Then, SASI imageries
were processed using FLAASH module to produce the reflectance data. Finally, five lines of SASI
imageries containing 88 bands (950–1820 nm and 1940–2420 nm) with a spatial resolution of 2.25 m
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were seamlessly mosaiced. Furthermore, SASI data with the spatial resolution of 2.25 m was bilinearly
resampled to 10 m to construct diverse datasets.

3.2.3. Pre-Processing of Sentinel-2A Imagery

Sentinel-2A L1C data are a top-of-the-atmosphere (TOA) product. The Sen2Cor toolbox was
implemented to create bottom-of-atmosphere and optionally terrain- and cirrus-corrected reflectance
imagery [54]. To verify the influence of spatial resolution on deep-learning-based classification results,
Band 3 (Green) was selected for the Gram–Schmidt pan sharpening with GF-5 AHSI imagery by bilinear
resampling. Finally, fused hyperspectral imagery with a spatial resolution of 10 m was obtained.

After the above pre-processing, GF-5 AHSI imagery, the resulting fused hyperspectral imagery
and SASI imagery are shown in Figure 3. In addition, the time gap between AHSI and S2A data is very
small, but there is a nine-year difference between SASI imagery and these, but the acquisition seasons
were similar. Since the geological process is long and the litho-units change little within 10 years, the
difference in image acquisition time would have had little effect on the results.   
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Figure 3. Preprocessed images. (a) GF-5 AHSI imagery (R: Band 62; G: Band 36; B: Band 20); (b) the
fused hyperspectral imagery (R: Band 62; G: Band 36; B: Band 20); (c) SASI imagery (R: Band 75;
G: Band 30; B: Band 5).

3.3. Methods and Experimental Design

3.3.1. Methods

From the perspective of deep learning, the components of HSI imagery are hierarchical. Specifically,
pixels are first assembled to form edges, edges are then assembled to form parts, then parts are finally
assembled to form different objects [55]. Therefore, the deep-learning-based methods show promise
for hierarchically learning the deep features contained in HSI imagery. To verify the applicability
and stability of deep learning-based methods in lithological mapping based on GF-5 AHSI imagery,
a multi-scale 3D deep convolutional neural network (M3D-DCNN) [38], a hybrid spectral CNN
(HybridSN) [40], a spectral–spatial unified network (SSUN) [34], and Support Vector Machine (SVM) [25]
were adopted in this study. A brief overview of the above methods is provided below.

(1) A multi-scale 3D deep convolutional neural network (M3D-DCNN) [38] was proposed for HSI
classification, which could jointly learn both 2D multi-scale spatial features [56] and 1D spectral
features from HSI data in an end-to-end approach. A five-layer M3D-DCNN was finally applied
for HSI classification. The smaller kernel size, deeper layers, and fewer parameters enable
M3D-DCNN to mitigate the over-fitting problem in small HSI datasets. The source code can be
found at https://github.com/eecn/Hyperspectral-Classification.

(2) The hybrid spectral CNN (HybridSN) [40] is a spectral–spatial 3D-CNN followed by spatial
2D-CNN. The 3D-CNN [57] facilitates the joint spectral–spatial feature representation from a
stack of spectral bands, and the 2D-CNN on top of the 3D-CNN further learns more abstract-level
spatial representation. The 3D- and 2D-CNN layers are assembled so that they can use both the

https://github.com/eecn/Hyperspectral-Classification
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spectral and spatial feature maps to their full extent to achieve the maximum possible accuracy.
HybridSN is more computationally efficient than the 3D-CNN model [58]. The source code can
be found at https://github.com/gokriznastic/HybridSN.

(3) The spectral–spatial unified network (SSUN) [34] combines spectral and spatial feature extraction
as well as classifier training in a unified network, which means both feature extraction and
classifier training share a uniform objective function and all the parameters in the network can
be optimized simultaneously. In other words, the learned features become more discriminative
since the loss function of the network considers both spectral and spatial information. In the
implementation of the SSUN, spatial information is learned by a multiscale convolutional neural
network (MSCNN), and the extraction of spectral feature is by means of a band grouping-based
long short-term memory (LSTM) algorithm [59]. In this experiment, the grouping strategy 2 was
adopted, which focuses on the global features on the spectral dimension [60]. The source code
can be found at https://github.com/YonghaoXu/SSUN.

(4) As a typical representative of machine-learning-based methods, the SVM algorithm was selected
for comparative analysis with deep-learning-based techniques to verify the advantages of
deep-learning-based methods. SVM [25,61] has often been found to provide higher classification
accuracy than other widely used machine-learning-based techniques, such as the maximum
likelihood and neural net classifiers. SVM does not require an estimation of the statistical
distributions of classes but defines the classification model by exploiting the concept of margin
maximization with an optimal separation hyperplane. SVM has excellent performance in
hyperspectral remote sensing classification due to the description of the complexity, which can be
characterized by the number of support vectors rather than the dimensions of the transformation
space [62]. In this study, lithological mapping by SVM was implemented in ENVI5.3 software
(Harris Geospatial Solutions, Inc., Broomfield, CO, USA), and radial basis function (RBF) was
chosen as the kernel function [63].

3.3.2. Experimental Design

In our experiments, six hyperspectral datasets constructed from GF-5 AHSI imagery, the fused
hyperspectral imagery, and SASI imagery were used. Diverse datasets were used to comprehensively
test the applicability of GF-5 AHSI data, and various methods were used to find a more suitable deep
learning framework for lithological mapping. The details of the six datasets are provided in Table 5.
Before the samples procedure, the normalized difference vegetation index (NDVI) was calculated based
on S2A imagery. And the mean of NDVI was about 0.11, which indicated that the vegetation coverage
in the area was low and the bedrock was well exposed. Therefore, vegetation interference would not
be considered in the follow-up study. Since the datasets have three different spatial resolutions (10, 30,
and 2.25 m, respectively), when selecting samples, the area covered by the samples of all datasets must
be equal, which means that the samples occupy the same proportion in the whole image. The labels
of the samples are determined by the geological map (Figure 1) and are numbered from young to
old by age. The samples should be distributed evenly throughout the whole study area and avoid
the boundaries of different litho-units. The sample size of each category is shown in Table 6, and the
sample distribution is shown in Figure 4.

After repeated attempts, the model settings were determined as shown in Table 7. Since the
framework of each model is different, it was difficult to keep all the parameters consistent. To facilitate
comparison of the results produced by the above methods, the same parameter settings were adopted
as much as possible under the premise of adhering to the structure of the model and following the
original authors’ parameter setting recommendations. In all the experiments, 30% of all samples were
selected as training samples and the rest as test samples. And Principal Component Analysis (PCA)
was used for dimension reduction of HybridSN and SSUN. For some other parameters not mentioned
in Table 7, such as the number of convolutional layers, kernel number, kernel size, kernel stride,
batch size, number of epochs, etc., the defaults were used (Supplementary Table S1–S8). In addition,

https://github.com/gokriznastic/HybridSN
https://github.com/YonghaoXu/SSUN
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classification maps classified by SVM would be post-classification processed using majority analysis,
and its kernel size is shown in Table 7.

Table 5. Detailed introduction of six datasets.

Dataset Name Source of the Dataset

AHSI_10 m Gram–Schmidt Pan Sharpening of pre-processed S2A Band3 and GF-5 AHSI
imagery, with a spatial resolution of 10 m

AHSI_30 m Pre-processed GF-5 AHSI imagery, with a spatial resolution of 30 m
AHSI_SW_10 m SWIR data of the AHSI_10 m dataset
AHSI_SW_30 m SWIR data of AHSI_30 m dataset

SASI_2.25 m Pre-processed SASI imagery, with a spatial resolution of 2.25 m

SASI_10 m Obtained by bilinear resampling of pre-processed SASI imagery, with a spatial
resolution of 10 m

Table 6. Sample size statistics.

Class Label Class Name Sample Area
(km2)

Map Area
(km2) Percent

1 Diluvial gravel and sand 0.147 1.391 10.57%
2 Hornstone and sandstone 0.152 2.203 6.90%
3 Basalt with slate 0.535 4.406 12.14%
4 Hornstone and slate 0.097 1.447 6.70%
5 Biotite felsic slate 0.209 2.275 9.19%
6 Slate 0.439 3.106 14.13%
7 Hornstone 0.415 4.553 9.11%
8 Limestone 0.129 0.941 13.71%
9 Marble with phyllite 0.305 2.194 13.90%
10 Slate and phyllite 0.349 4.070 8.57%
11 Indosinian granite 0.450 4.815 9.35%
12 Indosinian biotite granite 0.570 5.192 10.98%
13 Variscan diorite 0.120 0.715 16.78%
14 Variscan granodiorite 0.202 1.768 11.43%

Sum 4.119 39.076 10.54%
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Table 7. Parameter settings of different models.

Method Parameter AHSI_
10 m

AHSI_
30 m

AHSI_SW_
10 m

AHSI_SW_
30 m

SASI_
10 m

SASI_
2.25 m

M3D-DCNN Window Size 7 7 7 7 7 7
Hybrid

SN
PCA 30 30 30 30 15 15

Window Size 19 15 19 15 19 25

SSUN
PCA 4 4 4 4 4 4

Window Size 19 15 19 15 19 25

SVM-RBF Kernel size of
post-classification 7 5 7 5 7 7

As shown in Table 7, since the HybridSN model needs to use 3D-CNN to complete spectral–spatial
feature learning, more principal component bands need to be retained. Compared with HybridSN, the
spatial information of SSUN is extracted by MSCNN, while the spectral feature is learned by a band
grouping-based LSTM algorithm, so it is sufficient to keep the first four principal component bands for
learning spatial features. In addition, M3D-DCNN does not require any pre-processing. The window
sizes of HybridSN and SSUN are consistent, whereas M3D-DCNN is relatively small due to the design
of the smaller kernel size.

Finally, we used the overall accuracy (OA), user’s accuracy (UA), producer’s accuracy (PA), and
kappa coefficient (Kappa) evaluation measures to judge the lithological mapping performance.

4. Results

The results are shown in Figure 5, which contains the lithological classification maps of SVM,
M3D-DCNN, HybridSN, and SSUN methods, but does not include the intermediate results of SSUN
(LSTM and MSCNN).

The Kappa and OA of the classification results, including those of LSTM and MSCNN, are shown
in Table 8. The UA and PA for each dataset are represented as boxplots in Figure 6.

Table 8. Classification accuracy values for all experiments.

Methods Evaluation
Measures

AHSI
_10 m

AHSI
_30 m

AHSI_SW
_10 m

AHSI_SW
_30 m

SASI
_2.25 m

SASI
_10 m

SVM
Kappa 0.962 0.927 0.925 0.897 0.980 0.954

OA 96.48% 93.28% 93.13% 90.55% 98.19% 95.81%

M3D-DCNN
Kappa 0.970 0.947 0.960 0.974 0.977 0.960

OA 97.25% 95.19% 96.39% 97.62% 97.85% 96.33%

HybridSN Kappa 0.956 0.947 0.963 0.948 0.972 0.923
OA 95.96% 95.15% 96.63% 95.27% 97.48% 93.00%

LSTM
Kappa 0.967 0.947 0.966 0.936 0.996 0.959

OA 96.96% 95.15% 96.91% 94.14% 99.60% 96.78%

MSCNN
Kappa 0.939 0.932 0.939 0.947 0.985 0.996

OA 94.42% 93.78% 94.44% 95.15% 98.78% 99.69%

SSUN
Kappa 0.955 0.973 0.956 0.966 0.997 0.999

OA 95.92% 97.52% 95.96% 96.91% 99.78% 99.90%
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Figure 5. Lithological classification maps. From left to right are the results of SVM, M3D-DCNN,
HybridSN, and SSUN. Each row of results was produced from the same dataset, and different rows
represent different datasets. From top to bottom are the results of AHSI_10 m (a–d), AHSI_30 m (e–h),
AHSI_SW_10 m (i–l), AHSI_SW_30 m (m–p), SASI_2.25 m (q–t), and SASI_10 m (u–x) datasets.
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5. Discussion

In terms of the overall accuracy, all methods produced encouraging lithological mapping results
on all datasets (OA > 90%). However, according to the lithological classification maps (Figure 5) and
the boxplots (Figure 6), the classification results of Class 4 and 12 are relatively unstable and low
accuracy. Class 4 is hornstone and slate, which are confused with Class 6 (slate) and Class 10 (slate and
phyllite) due to their similarity in material composition. The area covered by Class 4 is low-lying,
which easily accumulates other materials transported from the mountainous or surrounding areas.
Class 12 (indosinian biotite granite) is confused with class 11 (indosinian granite), and the misclassified
areas are mainly affected by mining activities.

From the perspective of datasets (Figure 7a), the classification accuracies of SASI_2.25 m and
AHSI_10 m datasets were the highest and most stable, whereas the accuracy of AHSI_30 m was
relatively low, but the stability was good. The classification results based on the short-wave infrared
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(SWIR) wavelength subset of GF-5 AHSI data differed little from SASI data in accuracy and were
basically equal to those based on the full AHSI wavelength, indicating that AHSI’s SW bands have
high SNR, which can basically meet the needs of geological mapping.
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Due to the complex nature of geological processes resulting in the diversity of surface lithologies,
classification accuracy could only explain a part of the results, the actual classification maps are also
very important. It can be seen from Figure 5 that in the southeast corner of the study area, some
classification maps have Class 3 (basalt with slate) divided into Class 2 (hornstone and sandstone) by
mistake. The misclassified areas mainly correspond to the shadow of the mountain, and the datasets
generated by AHSI imagery are more sensitive to it. Besides, the results of the eastern area (Figure 5)
differ somewhat from the geological map (Figure 8a). There are two points to note here. First, due to the
geological map itself is the product of artificial processing and synthesis of the real earth surface, there
are different degrees of processing under different scales. In the process of geological map making,
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many lithological contact boundaries are obtained by reasoning, while remote sensing images are the
real reflection of the surface, so the geological map lacks the verifiability of surface pixel by pixel [64].
Furthermore, because of the excessively trivial and complex surface conditions (Figure 8b), simplified
processing was carried out in the 1:50,000 original geological map and the lithologies of this part
are uncertain. We did not modify our geological map of this part according to the imagery, nor did
we select samples in this area. Second, the lack of samples in this area leads to the fact that these
differences are not included in the accuracy calculation. To a certain extent, these differences reflect the
real condition of the surface, which is more consistent with the remote sensing imagery.
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G: Band 3; B: Band 2) and the samples are shown. The area circled in yellow is where the classification
results are partially different from the geological map. Refer to Figures 1 and 4 for legend.

As for the methods (Figure 7b), SVM performed well in each dataset, and the deep-learning-based
methods were slightly better than SVM. Because of the smaller kernel, M3D-DCNN is relatively
stable and showed more accurate classification results on various datasets, demonstrating its higher
robustness. In litho-units with small distribution area, over-smoothing always occurs during the
execution of HybridSN, especially in datasets with low spatial resolution. In paper [40], HybridSN
showed advantages over M3D-DCNN in Indian Pines, University of Pavia, and Salinas Scene datasets,
containing classes with consistent scales and regular texture features, which are essentially different
from the litho-units. LSTM produced a good classification effect and takes full advantage of the
rich spectral information of HSI. However, the feature extraction of MSCNN is relatively unstable,
which is related to the texture similarity of adjacent lithological units caused by surface weathering
and transportation. Therefore, although the average accuracy of SSUN was the highest, we observed
some differences in the classification effects on different datasets. The SSUN method is more effective
on datasets with high spatial resolution.

6. Conclusions

We increased the spatial resolution of the fused AHSI imagery from 30 to 10 m, with high
classification accuracy and stable application in various methods. The original AHSI imagery also
produced encouraging classification results. And it also can produce comparable results by just only
using the short-wave infrared wavelength subset (SWIR bands) of GF-5 AHSI data, which means
AHSI SWIR bands contain most of the surface lithological information and could meet the needs of
geological mapping. By comparison with the SASI data, we found that the classification accuracies
obtained by AHSI SWIR bands are lower than that of SASI data, but the difference is not significant,
which verifies the AHSI SWIR bands have a high SNR. Therefore, GF-5 AHSI data shows promise to
provide more suitable data for lithological mapping.
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Generally, the classification effect of deep-learning-based methods is better than machine-learning-
based methods. M3D-DCNN has high classification accuracy and a stable classification effect, whereas
HybridSN is prone to over-smoothing. Although the SSUN method has higher average accuracy,
the classification effect is relatively unstable when dealing with lithological mapping with irregular
boundaries, inconsistent scales, and similar textures in adjacent units, so it is more suitable for datasets
with higher spatial resolution.

To sum up, GF-5 AHSI data can meet the needs of large-area and large-scale lithological
mapping. Especially, it can produce comparable results by just only using the short-wave infrared
wavelength subset (SWIR bands) of GF-5 AHSI data. Therefore, GF-5 AHSI imagery is recommended
when performing large-area and large-scale lithological mapping. and M3D-DCNN method is also
recommended for use in lithological mapping based on hyperspectral data. The extraction of irregular
surface texture information and the determination of convolution kernel size will be the focus of
subsequent research.
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