

Supplementary materials

Application of Lithological Mapping Based on Advanced Hyperspectral Imager (AHSI) Imagery Onboard Gaofen-5 (GF-5) Satellite

Bei Ye¹, Shufang Tian^{1,*}, Qiuming Cheng^{1,2} and Yunzhao Ge¹

- ¹ School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China; yebei_1123@cugb.edu.cn (B.Y.); qiuming.cheng@iugs.org (Q.C.); 2001190182@cugb.edu.cn (Y.G.)
- ² State Key Lab of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
- * Correspondence: sftian@cugb.edu.cn; Tel.: +86-1366-109-1988

Received: 24 October 2020; Accepted: 3 December 2020; Published:

Some parameters of M3D-DCNN, HybridSN, SSUN, and SVM-RBF methods are shown in Table S1-S8. Table S1 and Table S2 are about M3D-DCNN method; Table S3 and Table S4 are about HybridSN method; Table S5-S7 are about SSUN method; and Table S8 is for SVM-RBF model.

Kernel Name	Kernel Number	Kernel Size (H, W, B) ¹	Kernel Stride Δ (H, W, B)
conv1	16	3, 3, 11	1, 1, 3
conv2_1		1, 1, 1	
conv2_2	16	1, 1, 3	1 1 1
conv2_3	10	1, 1, 5	1, 1, 1
conv2_4		1, 1, 11	
conv3_1		1, 1, 1	
conv3_2	16	1, 1, 3	1 1 1
conv3_3	10	1, 1, 5	1, 1, 1
conv3_4		1, 1, 11	
conv4	16	2, 2, 3	1, 1, 1
pooling	-	2, 2, 3	2, 2, 3

Table S1. Parameters of convolutional layers in M3D-DCNN method [1].

¹ H, W, B represent the size of kernel along spatial and spectral dimensions respectively.

Table S2. Other parameters of M3D-DCNN method [1].

Name	Value	Name	Value
Training algorithm	AdaGrad algorithm [2]	Dropout	0.6
Base learning rate	0.01	Weight Decay	0.01
Batch size	40	Input Size	7 × 7 × Band

Convolutional Layers				
Kernel Name	Kernel Number	Kernel Size (H, W, B)	Activation	
Conv3d_1	8	3, 3, 7		
Conv3d_2	16	3, 3, 5	Rectified linear unit (ReLU)	
Conv3d_3	32	3, 3, 3		

Remote Sens. 2020, 12, 3990; doi:10.3390/rs12233990

www.mdpi.com/journal/remotesensing

Conv2d_1	64	3, 3		
Fully Connected Layers				
Name	Units	Activation	Dropout	
Dense_layer1	256	ReLU	0.4	
Dense_layer2	128	ReLU	0.4	
Output_layer	14	softmax	-	

Table S4. Other parameters of HybridSN method [3].

Name	Value	Name	Value
Optimizer	Adam	Batch size	256
Learning Rate	0.001	Epochs	100
Decay	1e-06	-	-

Table S5. Parameters of LSTM layers in SSUN method [4].

Name	Units	L2 Regularization	Activation
LSTMSpectral	128	0.0001	-
LSTMDense	128	-	ReLU
LSTMSOFTMAX	14	-	softmax

Table S6. Parameters of MSCNN layers in SSUN method [4].

Kernel Name	Function	Kernel Number	Kernel Size (H, W)	Activation	Padding
CONV1	Conv2D	32	3, 3	ReLU	same
POOL1	MaxPooling2D	-	2, 2	-	-
CONV2	Conv2D	32	3, 3	ReLU	same
POOL2	MaxPooling2D	-	2, 2	-	-
CONV3	Conv2D	32	3, 3	ReLU	same
POOL3	MaxPooling2D	-	2, 2	-	-
DENSE1	DENSE	128	-	ReLU	-
DENSE2	DENSE	128	-	ReLU	-
DENSE3	DENSE	128	-	ReLU	-
CNNSOFTMAX	DENSE	14	-	softmax	-

Name	Value	Name	Value
Optimizer	Adam	Batch size	64
Learning rate	1e-4	Epochs	500
Beta_1	0.9	Time steps in LSTM	3
Beta_2	0.999	Amsgrad	False

Table S8	Parameters	of SVM-RBF	method.
----------	------------	------------	---------

Name	Value
Camma in the kernel function	inverse of the number of bands
Gamma in the kerner function	(1/number of bands)
Penalty parameter	100.00

References

- 1. He, M.Y.; Li, B.; Chen, H.H. MULTI-SCALE 3D DEEP CONVOLUTIONAL NEURAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION. In 2017 24th leee International Conference on Image *Processing*, Ieee: New York, 2017; 10.1109/ICIP.2017.8297014pp. 3904-3908.
- 2. Duchi, J.; Hazan, E.; Singer, Y. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. *J. Mach. Learn. Res.* **2011**, *12*, 2121-2159.
- 3. Roy, S.K.; Krishna, G.; Dubey, S.R.; Chaudhuri, B.B. HybridSN: Exploring 3-D-2-D CNN Feature Hierarchy for Hyperspectral Image Classification. *Ieee Geoscience and Remote Sensing Letters* **2020**, *17*, 277-281, doi:10.1109/lgrs.2019.2918719.
- 4. Xu, Y.H.; Zhang, L.P.; Du, B.; Zhang, F. Spectral-Spatial Unified Networks for Hyperspectral Image Classification. *leee Transactions on Geoscience and Remote Sensing* **2018**, *56*, 5893-5909, doi:10.1109/tgrs.2018.2827407.

 \odot 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).