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Abstract: With new Ice, Cloud, and land Elevation Satellite (ICESat)-2 lidar (Light detection and
ranging) datasets and classical Landsat imagery, a method was proposed to monitor annual changes
of lake water levels and volumes for 35 years dated back to 1980s. Based on the proposed method, the
annual water levels and volumes of Lake Mead in the USA over 1984–2018 were obtained using only
two-year measurements of the ICESat-2 altimetry datasets and all available Landsat observations
from 1984 to 2018. During the study period, the estimated annual water levels of Lake Mead agreed
well with the in situ measurements, i.e., the R2 and RMSE (Root-mean-square error) were 1.00 and
1.06 m, respectively, and the change rates of lake water levels calculated by our method and the in
situ data were −1.36 km3/year and −1.29 km3/year, respectively. The annual water volumes of Lake
Mead also agreed well with in situ measurements, i.e., the R2 and RMSE were 1.00 and 0.36 km3,
respectively, and the change rates of lake water volumes calculated by our method and in situ data
were −0.57 km3/year and −0.58 km3/year, respectively. We found that the ICESat-2 exhibits a great
potential to accurately characterize the Earth’s surface topography and can capture signal photons
reflected from underwater bottoms up to approximately 10 m in Lake Mead. Using the ICESat-2
datasets with a global coverage and our method, accurately monitoring changes of annual water
levels/volumes of lakes—which have good water qualities and experienced significant water level
changes—is no longer limited by the time span of the available satellite altimetry datasets, and is
potentially achievable over a long-term period.
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1. Introduction

Although lakes and reservoirs only cover a small portion of the Earth’s surface, they are
of great importance for human well-being, biodiversity, and ecosystem from local to global
scales [1]. Fresh water stored in lakes and reservoirs is essential for human life, agricultural
irrigation, and economic development, particularly in populous areas and arid/semi-arid areas [2].
Lakes/reservoirs’ water levels and volumes are fundamental information for earth system modelling,
especially for hydrological modelling (e.g., atmospheric, cryospheric, and biospheric components) [3].
Additionally, the change of lake water volumes can act as sentinels of climate changes (e.g., global
warming, glacier melting, and drought) and anthropogenic activities (e.g., reservoir regulation,
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agricultural irrigation, and damming) [4]. Hence, it is necessary to better monitor and understand water
level/volume changes in lakes/reservoirs for water resource development, utilization, management,
and protection under future global warming and intensive human induced disturbance [5].

Traditionally, in situ measurements were used to obtain water levels/volumes of some specific
lakes [6]. Unfortunately, in situ data of water levels/volumes of lakes across the globe are very
limited, especially for developing countries and some remote areas. Previous studies also reported
that the lake water level and volume can be obtained by the bathymetric data derived from various
sensors [6], e.g., ship-borne singlebeam or multibeam echo sounders, and airborne bathymetric lidars
(Light detection and ranging) [7–9]. However, the high cost of those accurate bathymetric data limits
the use of this approach at a global scale [10]. Currently, multiple satellite sensors have a potential
for monitoring lake water levels and volumes at a global scale owing to their global spatial coverage.
Using multiple satellite data, many methods were proposed and exhibited a good performance for
monitoring lake water levels and volumes [6,11–16]. These previous methods have the potential
to conduct a long-term monitoring of lake water levels using the linear or non-linear relationship
between water level and surface area. For example, Zhang et al. obtained Tibetan Plateau’s lake level
and volume changes by using Ice, Cloud, and land Elevation Satellite (ICESat)/ICESat-2 and Landsat
data. Specifically, the relationship between lake level and area was constructed over 2003–2009 and
2018, and then the corresponding lake levels over 2010–2017, were derived using the lake level/area
relationship and the Landsat-derived areas over 2010–2017 [16]. A precise lake level/area relationship
needs an amount of water level observations over multiple years. For some remote lakes without in
situ measurements, spaceborne altimeters can provide water level observations. However, for some
small lakes, water level observations from ICESat and radar altimeters may be very limited due to
their large footprints (i.e., 70 m and hundreds of meters in diameter) and their limited time coverages
of satellite altimetry data [2,17].

The new generation of the ICESat-2 (Ice, Cloud, and land Elevation Satellite-2) photon-counting
lidar provides an alternative way to monitor the lake water levels/volumes. The ICESat-2 lidar has
much denser footprints in its along-track and cross-track directions [18]. The ICESat-2 has six beams
(from one laser source) in the cross-track direction. The laser footprint is less than 17 m in diameter, and
the footprint interval in the along-track direction is only 0.7 m [19], i.e., the ICESat-2 photon-counting
lidar can provide several accurate surface profiles where it flew over. In addition, equipped with a
laser source at 532 nm, the bathymetric information can also be captured by the ICESat-2 in shallow
waters. Given that the Landsat data are available from 1984, the lake boundary of each year can be
precisely obtained. The lake water level of each year is very promising to be obtained by matching
Landsat-derived lake boundaries with the ICESat-2 derived surface profiles.

In this study, all available Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper Plus
(ETM+) data covering the study area over 1984–2018 were used. The Landsat pixel_qa band was
utilized to generate the yearly MNDWI (modification of the normalized difference water index)
composites without clouds and shadows. The yearly cloud-free MNDWI time-series during 1984–2018
were used to further obtain the annual lake boundaries. Then, after noise filtering and error correction,
the ICESat-2 data were used to generate along-track surface profiles (i.e., the ground and underwater
bottom) around the lake shore. The NLCD (National Land Cover Database) product was used to filter
out the interference of shrubs/scrubs on available surface profiles. The lake water levels were obtained
by matching Landsat-derived lake boundaries and ICESat-2-derived surface profiles. The relationship
between lake areas and water levels was established to calculate water levels during 1984–2018.
Afterwards, lake areas and water levels were integrated to estimate temporal changes of water volumes
of Lake Mead in the USA from 1984 to 2018. Finally, the estimated annual water levels and volumes
were compared with yearly-averaged in situ observations from Lake Mead Water Database website
(https://lakemead.water-data.com) and the yearly-averaged water level/volume results derived from
multiple altimeters in Hydroweb (http://hydroweb.theia-land.fr/).

https://lakemead.water-data.com
http://hydroweb.theia-land.fr/
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2. Study Area and Data

2.1. Study Area and In Situ Measurements

Lake Mead [35◦56′50′′N~36◦28′33′′N, 114◦03′23′′W~114◦50′59′′W] (as illustrated in Figure 1)
is the largest reservoir in the USA, which was formed by the impoundment of Hoover Dam [20].
It is located southeast of the city of Las Vegas and serves as the main water supply for surrounding
residents [21]. Driven by climate changes under global warming [22], dramatic decline in Lake Mead’s
water levels and volumes has been observed in recent years, according to in situ measurements (https:
//lakemead.water-data.com). Rocks and bare lands dominate Lake Mead’s shore based on Google Earth
images. Moreover, based on the land-cover map from NLCD 2016 product (https://www.mrlc.gov/viewer/),
shrubs/scrubs can be clearly observed around the Lake Mead’s shore. Additionally, no significant
land-cover changes can be found around Lake Mead, according to NLCD 2001 and 2016 products.
Lake Mead Water Database website provides in situ measurements of yearly water levels and volumes,
which are used to validate water levels and volumes between 1984 and 2018 obtained by our method.
The in situ water levels and volumes are in units of feet and acre feet, respectively. Here, the in situ data
are converted to water levels in units of meter and water volumes in units of km3.
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one flight route corresponds to three laser ground tracks. These data photons were captured at night 

when less noise photons were included. The inset shows the location of the study area in the USA. 

Figure 1. Ice, Cloud, and land Elevation Satellite (ICESat)-2 laser ground tracks (i.e., twelve green
lines) in Lake Mead in 2018 and 2019 used in this study. Note that the Sentinel-2 images with a
10 m resolution were collected from the earthexplorer website (https://earthexplorer.usgs.gov/) as the
basemap, and Lake Mead’s boundary in 2016 (using blue curves) was obtained by the modification of
the normalized difference water index (MNDWI) method. ICESat-2 flew over Lake Mead four times
in 2018 and 2019 and twelve laser ground tracks of raw data points were recorded. The ICESat-2
photon-counting lidar (Light detection and ranging) has three strong laser beams; therefore, one flight
route corresponds to three laser ground tracks. These data photons were captured at night when less
noise photons were included. The inset shows the location of the study area in the USA. The brown box
is the case area to show the ICESat-2 data photons, and to illustrate the matching procedure in detail.

https://lakemead.water-data.com
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2.2. Landsat Imagery

In this study, 1855 scenes of Landsat Collection 1 Tier 1 surface reflectance data, including
1013 Landsat 5 Thematic Mapper (TM) images and 842 Landsat 7 Enhanced Thematic Mapper Plus
(ETM+) images, were used to monitor long-term changes of Lake Mead’s water levels and volumes
at an annual scale from 1984 to 2018. The number of used Landsat images for each year is listed in
Table 1 in detail. All these Landsat data are available on the Google Earth Engine (GEE) platform
(https://earthengine.google.org/). The Landsat imagery is the atmospherically and geometrically
corrected surface reflectance from Landsat TM/ETM sensors. The Landsat data can provide 30-m and
16-day observations for Lake Mead (path = 39, row = 35; path = 39, row = 34). To avoid the impact on
the extraction of lake boundaries from Landsat imagery, pixels covered by clouds and shadows were
removed using pixel_qa band, which was derived from the quality assessment algorithm and available
in GEE [23].

Table 1. Detailed information on Landsat imagery used in this study. TM: Thematic Mapper and
ETM+: Enhanced Thematic Mapper Plus.

Year TM Number ETM+ Number Year TM Number ETM+ Number

1984 12 0 2002 39 44
1985 25 0 2003 40 41
1986 41 0 2004 44 39
1987 32 0 2005 38 43
1988 28 0 2006 40 45
1989 26 0 2007 32 43
1990 26 0 2008 39 45
1991 35 0 2009 40 45
1992 38 0 2010 41 41
1993 35 0 2011 38 45
1994 39 0 2012 2 40
1995 43 0 2013 0 43
1996 39 0 2014 0 44
1997 40 0 2015 0 43
1998 41 0 2016 0 44
1999 41 22 2017 0 42
2000 35 45 2018 0 44

2001 44 44 In
total 1013 842

2.3. ICESat-2 Data Photons

ICESat-2 carries the first satellite photon-counting lidar, i.e., the ATLAS (Advanced Topographic
Laser Altimeter System) [19]. ATLAS has six laser beams (including three strong beams and three
weak beams) at the wavelength of 532 nm, which can penetrate water column. The transmitted energy
of the laser pulse of weak beams is approximately 1/4 compared to the strong laser beams. The strong
beams correspond to higher bathymetric capacity; therefore, in this study, only the strong beams
were involved. The cross-track distance between adjacent strong beams is approximately 3.3 km and
the interval between along-track adjacent footprints on Earth’s surface is approximately 0.7 m [24].
Four flight routes (including twelve strong beam tracks illustrated in Figure 1 using green lines) that
flew across Lake Mead were found from ICESat-2 available datasets. These data were captured on
10/15/2018, 12/12/2018, 02/12/2019, and 04/15/2019 (Month/Day/Year) at night, when noise photons are
much less than those in the daytime. The brown box in Figure 1 is the case area to demonstrate the
details of ICESat-2 data photons in Figure 4.

The ICESat-2 ATL03 datasets were used in this study, which contain the raw data points recorded
with unique time tag, latitude, longitude, and WGS84 ellipsoid elevation [25]. The horizontal and
vertical errors of captured photons have been corrected, and the vertical and horizontal accuracy for

https://earthengine.google.org/
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land areas is better than 0.85 m and approximately 5 m, respectively [26]. However, the signal photons
on underwater bottoms and grounds should be extracted from the noisy raw data points, and the
bathymetric error should be further corrected. In ATL03 datasets, the confidence parameter (from 0 to
4) is provided to distinguish signal photons (corresponding to higher confidence values) from noise
ones [25], but it does not always perform well. Hence, a DBSCAN (density-based spatial clustering
of applications with noise) method was used to detect signal photons in this study. The DBSCAN
algorithm was first proposed to detect clusters in large noisy spatial databases [27], and was modified to
detect signal photons from the noisy data photons captured by photon-counting lidars [28]. The basic
criteria of the DBSCAN algorithm are as follows. For each point in a cluster, if the point density in
its neighborhood is larger than a given threshold, this point will be identified as a “signal point”.
The neighborhood is normally defined as the Euclidean distance. For example, the neighborhood
can be set as a circle with a radius of Ra. The threshold (called MinPts) normally corresponds to the
minimum number of points within the neighborhood range.

2.4. NLCD Land-Cover Data

The National Land Cover Database (NLCD) is supported by the Multi Resolution Land
Characteristics (MRLC) Consortium (http://www.mrlc.gov), which has been widely used [29].
A classification system modified from the Anderson Land Cover Classification System was used for
generating the NLCD 2016 product, which provides eight land-cover types (i.e., barren, developed,
forest, herbaceous, planted/cultivated, shrubland, wetlands, and water) with a 30 m spatial resolution
at a national scale. For each land-cover type, the NLCD 2016 product also provides several sub-types.
For example, shrubland contains two sub-types: dwarf scrub and shrub/scrub. Dwarf scrub is mainly
composed of shrubs that are less than 0.2 m tall and it is found primarily in Alaska, USA, whereas
shrub/scrub is dominated by shrubs that are lower than 5 m. The type of shrub/scrub includes true
shrubs, young trees in an early stage or lower trees subjected to environmental conditions. In this
study, shrub/scrub areas around the shore of Lake Mead were extracted to remove their influence on
the estimation of water levels/volumes.

3. Methods

3.1. Extraction of Lake Boundaries from Landsat Data

This study focused on a method to calculate annual water levels and volumes over 1984–2018.
Hence, for each year, only one lake boundary was required. Before extracting annual lake boundaries
from Landsat imagery, land-water classification was needed. Here, the MNDWI was utilized to enhance
the water information using Landsat 5 TM and Landsat 7 ETM+ reflectance data [30]. The MNDWI
can be calculated as follows.

MNDWI = (Green−MIR)/(Green + MIR) (1)

where Green is the band 2 for the Landsat TM/ETM+ data, and MIR (middle infrared) is the band 5 for
the Landsat TM/ETM+ data.

Based on Equation (1), the MNDWI can be obtained for each Landsat image. Next, the Landsat
pixel_qa band (i.e., the band for quality assessment) available on the GEE was utilized to generate the
yearly clear MNDWI composites without clouds and shadows. According to the pixel_qa band derived
from the quality assessment algorithm, pixels labeled with different values represent different classes,
i.e., cloud, cloud shadow, snow/ice, water, and clear observations. Hence, the pixel_qa band can be
used to identify and remove bad observations (e.g., pixels with clouds and shadows). Then, for each
pixel, all available MNDWI values (without clouds and shadows) were used to determine the median
as the composite value within this year, which can well eliminate the noise [31]. The yearly MNDWI
composites can also effectively reduce the positional variability of lake boundaries (i.e., the land-water

http://www.mrlc.gov
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boundary) arising from seasonal water level fluctuations within a year [32]. Then, the yearly cloud-free
MNDWI time series during 1984–2018 can be generated on the GEE platform.

Then, based on the yearly MNDWI images, a dynamic thresholding method was applied to extract
yearly lake extent from other land-covers. In Figure 2, an example was used to demonstrate land-water
classification and to clarify the method of generating land-water map from the MNDWI composite
image in 2018. For each year, a threshold was determined based on the yearly MNDWI histogram.
Specifically, the valley between two peaks of the histogram (i.e., corresponding to the water surface on
lakes and the surrounding lands) was identified and the corresponding MNDWI value was defined
as the threshold for land-water classification [33]. Based on the land-water binary maps, noises and
other small water bodies were eliminated via the MATLAB function “bwareaopen” to produce the
lake maps. Finally, we achieved yearly Lake Mead maps during 1984–2018 with a spatial resolution
of 30-m. Areas of Lake Mead were estimated by Landsat-derived lake maps with a binary raster
format (1 represents the lake and 0 represents surrounding lands). Those binary lake maps were then
converted to lake boundary with shapefile format (i.e., polyline: a series points with longitude and
latitude information) via ArcGIS 10.2, for further matching with the ICESat-2 along-track profiles.
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Figure 2. (a) Example of generating land-water map using the thresholding method based on the
MNDWI composite image in 2018. The color bar shows the composite value in each pixel. (b) Land-water
map in 2018 derived from (a). In sub-figure (b), the land and water areas were labeled by blue and
yellow, respectively. (c) Histogram of the MNDWI composite image in 2018. The threshold that was
used to classify the land and water was determined at the valley between two peaks (i.e., corresponding
to the land and water). (d) Enlarged result of the MNDWI composite image in 2018. The range of the
number of pixels (Y-axis) was set from 0 to 1500 to clearly show the valley in (c).
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3.2. Detection of Surface Profiles from ICESat-2 Data

For different land-covers, many methods were proposed to detect signal photons from raw
noisy points [34–37]. The previous study proposed a DBSCAN method and performed well in the
airborne MABEL (Multiple Altimeter Beam Experimental Lidar) raw data points in coastal areas [38].
The MABEL is a technique indicator of ICESat-2 sensor [18], and its sensors and corresponding data
exhibit some differences. For example, the vertical window of the MABEL datasets is normally
1500 m, whereas the ICESat-2’s vertical window is from several tens to many hundreds of meters [19].
This method was adjusted to detect the signal photons from ICESat-2 raw data points. From the
ICESat-2 ATL03 datasets, every continuous 10,000 raw data points in the along-track direction were
used to calculate their corresponding adaptive threshold MinPts (which was used to identify signal or
noise) using Equation (2). This equation of MinPts was based on the classical study by Degnan [39],
which was derived from equations of the probability of detecting signals and the probability of
false alarm.

MinPts =
2SN1 − SN2

ln
( 2SN1

SN2

) (2)

SN1 represents the estimated total number of photons (including noise photons and signal photons)
within the given circular neighborhood. Within a given radius Ra of 2.5 m for ICESat-2 datasets,
SN1 was calculated in Equation (3), where N1 is the total number of the noise and signal photons in
current 10,000-point segment, i.e., N1 = 10,000 in this study. h is the vertical range in current segment,
and l is the along-track range in current segment.

SN1 =
πRa

2N1

hl
(3)

SN2 represents the estimated number of noise photons within the given neighborhood. The size of the
ICESat-2’s vertical window varies from several tens to many hundreds of meters in different areas,
terrain types, and elevation variations [19]. Normally, the signal photons from the Earth’s surface
concentrate in the middle of the vertical window while the noise photons distribute in the whole
vertical window, i.e., in the top and bottom of the vertical window, nearly all photons are noise ones.
The solar-induced background noise photons scattered by particles in atmosphere and water column
were the dominant noise source [40], and the density of noise photons would be larger in water column.
Since the underwater bottom corresponds to lower elevation values compared to the ground surface,
the density of noise photons that locate in the lowest elevations should be larger. Near coastal areas,
the size of the ICESat-2’s vertical window is usually only several tens of meters. To make this method
satisfy different areas and surface types, we used the photons that locate in the lowest 5 m elevations
within the ICESat-2’s vertical window (because most photons in this layer are noise ones) to estimate
noise photons SN2 within the given neighborhood as shown in Equation (4).

SN2 =
πRa

2N2

h2l
(4)

N2 is the number of photons that correspond to the lowest 5-m elevations in current segment and h2

is the height of the 5-m lowest layer, i.e., h2 = 5 m. With the given radius Ra and adaptive threshold
MinPts, for every along-track 10,000 raw data points, the signal photons were distinguished from noise
ones by the DBSCAN calculator [27] and its basic criteria are as follows. For each point p in a cluster,
the point density in its neighborhood within a circle is calculated, and if the point density exceeds
the threshold parameter Minpts, the point p would be identified as a “signal point”. The circular
neighborhood is defined as the Euclidean distance for given points p and q, i.e., dist(p, q). Then, a few
remaining noise photons were discarded manually.

Next, the elevation of detected signal photons that are below the local water level was corrected.
The elevation of signal photon returned by lake bottom (underwater surface) is influenced by three
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factors, including the incident angle of laser beam, the retraction of water column, and the wave effect
of water surface. The incident angle for the central beam of ICESat-2 is nearly 0◦, whereas the outer
beams of the ICESat-2 are only 0.38◦. Based on Parrish’s method, when the water depth is 15 m,
the difference of bathymetric errors with 0◦ and 0.38◦ incident angles is approximately 1 mm [24].
As a result, the bathymetric error arising from the incidence angle is negligible, but the refraction
effect in water column should be carefully corrected (because light travels slower in water than in
air). Parrish et al. well investigated satellite-derived bathymetry using a photon-counting lidar and
proposed an effective method to correct the refraction effect (that may introduce bathymetric error
up to of meters) [24]. However, in Parrish’s study, the water surface was assumed as a flat surface.
In real situation, the surface undulation caused by waves could be up to tens of centimeters or even
meters when the surface water is driven by strong winds. In this case, the effects of waves cannot be
neglected. As shown in the schematic diagram in Figure 3, the blue horizontal dashed line represents
the flat-water surface, while the blue solid curve represents the water surface with waves. If the wave
effect on the water surface was not corrected, some errors would be introduced to bathymetric results.
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Figure 3. Schematic diagram of the bathymetric error correction for the wave effect on the water surface.

Based on Parrish’s approach, the wave effect on the water surface was further considered and
corrected as follows. For each laser shot (with a unique time tag), the bathymetric error was corrected
by the ray tracing method. The preliminary laser range Rp in water column for all underwater bottom
photons can be calculated by subtracting the current water level Lc from the elevation of bottom
photons, where the current water level Lc is equal to the mean value of the signal photons on the water
surface at the current laser shot. The corrected laser range Rc can be expressed as Rc = Rp·N1/n2 ≈ 0.75
Rp [24], where N1 is the refractive index in atmosphere (nearly equal to 1) and n2 is the refractive index
in water (nearly equal to 1.334 at 532 nm). Finally, the corrected elevation of detected signal photons Hc

that are below the local water level can be expressed as Hc = Huc + Rp − Rc or Equation (5), where Huc
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is the original elevation. After detecting along-track signal photons and calibrating the bathymetric
errors, the surface profiles that are composed of lidar points were obtained.

Hc = Huc +
n2 − n1

n2
Rp (5)

3.3. Estimation of Lake Water Levels

During the past 30 years, the surrounding topography near the shore of Lake Mead has been
proved to be slightly changed or nearly unchanged [14]. From 1984 to 2018, the lake water level in
each year was estimated by matching the twelve along-track profiles from the ICESat-2 data in 2018
and 2019 with the lake boundary from Landsat datasets in that year, i.e., if a lidar point was within the
10 m radius of any lake boundaries in horizontal (under the identical coordinate system), this lidar
point was identified near the water surface in that year and was selected. Then, the median elevation
value of those identified lidar points can represent the water level in that year.

However, from satellite images and detected surface profiles from ICESat-2 data, some shrub/scrub
areas can be clearly observed around the shore of Lake Mead. Those shrubs/scrubs on lidar profiles
can inevitably influence the estimation of lake water levels. Hence, the land-cover map around Lake
Mead from the NLCD 2016 product was used to identify the extent of shrubs/scrubs and to filter
out the Landsat-derived lake boundaries covered by shrubs/scrubs. In each year between 1984 and
2018, the percentage of lake boundary covered by shrubs/scrubs (from the NLCD 2016 product) was
calculated as the result of the number of pixels covered by shrubs/scrubs divided by the number of all
pixels not covered by water along the lake boundary of this year. The estimated water levels during the
years with a lower percentage of lake boundary covered by shrubs/scrubs (i.e., <10%) were considered
as reliable. Then, the relationship between Landsat-derived lake areas and estimated water levels
during those reliable years was established using a linear regression model [41], which is normally
called a lake area-water level model. Finally, the lake water levels during 1984–2018 were estimated
via the fitted lake area-water level model and the Landsat-derived lake area of each year.

3.4. Estimation of Lake Water Volumes

According to Duan’s study, the total water volume of a lake depends on a specific fixed minimum
water volume and a variable component that varies with the water levels [6]. The main objective of this
study is to estimate the relative water volume changes, rather than absolute values. The relative water
volume changes can be used for further investigating the drivers. Hence, the mentioned water volume
refers to the relative water volume of lakes, which has been widely used in previous studies [16,42,43].
By integrating ICESat-2 points and Landsat imagery, the water level and lake area were computed for
each year and were integrated to estimate the lake water volume. First, yearly water levels were sorted
in ascending order and yearly lake areas were sorted by the order of yearly water levels. Then, the
total lake can be divided into a series of frustums with different volumes along the vertical direction
(from the lower water levels to the higher water levels). The volume of each frustum can be calculated
using following equation [44].

∆vi =
h
3
(si + si+1 +

√
sisi+1) (6)

where h represents the water level difference between upper base (i.e., corresponds to the higher water
level) and lower base (i.e., corresponds to the lower water level). si and si+1 correspond to lake areas of
the upper base and lower base, respectively. The water volume ∆Vyear1−year2 between two adjacent
years (Hyear1 and Hyear2) can be estimated as follows.

∆Vyear1−year2 =
n∑

i=1

∆vi (7)



Remote Sens. 2020, 12, 4004 10 of 22

∆vi are the frustums whose water levels of the upper and lower bases are both within the range of
[Hyear2, Hyear1] (if Hyear1 > Hyear2) or [Hyear1, Hyear2] (if Hyear2 > Hyear1).

Then, lake water volumes during the study period were computed by accumulating all water
volumes of the adjacent years from 1984 (i.e., the starting year of the Landsat TM/ETM+ data) to each
year. It is noted that the water volume in 1984 can be considered as a constant or reference value.
For instance, the lake water volume in 1987 can be obtained by accumulating ∆V1984–1985, ∆V1985–1986,
∆V1986–1987, and the water volume reference value in 1984. Finally, we can obtain Lake Mead’s water
volumes for all years between 1984 and 2018.

4. Results

4.1. Lake Water Level Estimation and Validation

First, applying the MNDWI method, yearly Lake Mead boundaries between 1984 and 2018 with
the polyline format were extracted from all available Landsat TM/ETM+ images, and, for example,
in Figure 1, blue curves illustrate the Lake Mead boundary in 2016. Second, the signal photons were
detected by the DBSCAN method. Figure 4a,b illustrate the lidar photons and the corresponding
satellite image in the case area (i.e., the brown box in Figure 1). In Figure 4a, the green line corresponds
to one of the ICESat-2 lidar ground tracks on 12/02/2019, the blue curve corresponds to Landsat derived
annual lake boundary in 2016, and the basemap (i.e., Sentinel-2 imagery) was captured on 11/22/2016.
In Figure 4b, red points represent raw data points, blue circles represent the ICESat-2 results with
the highest confidence value (most likely signal photons with the confidence value of 4), and green
points represent the signal photons from our results. The photons in Figure 4b are illustrated in
along-track distance, which correspond to the green line in Figure 4a. We can find that our results
obtained a better performance than the ATL03 results (i.e., the confidence parameter from ATL03
datasets), where more noise photons remained. It should be noted that when the Sentinel-2 imagery
was captured on 11/22/2016, the water level (1077.8 feet from the in situ data) was approximately
2.4 m lower, compared to the water level (1085.8 feet from the in situ data) on 12/02/2019, when the
ICESat-2 passed over Lake Mead. Consequently, some lidar points on underwater bottom (in Figure 4b)
correspond to land surfaces (in Figure 4a). Then, the elevation of lidar points that were below the
water surface was corrected using Equation (5). After the bathymetric correction, the ICESat-2 sensor
can capture signal photons reflected from underwater bottoms up to 10 m in Lake Mead in Figure 4b.

Third, the Landsat-derived lake boundaries were matched with ICESat-2 profiles for estimating
lake water levels. Specifically, Figure 4c illustrates how to match the lake boundary in 2016 (the blue
points), with one of the surface profiles from the detected ICESat-2 lidar photons (the green points)
from Figure 4b. In Figure 4a–c, the red circle corresponds to the location where Landsat-derived lake
boundary in 2016 was matched with the ICESat-2-derived along-track surface profile. The selected lidar
photons near the red circle (within a radius of 10 m in horizontal) in Figure 4b were used for further
estimating lake water levels. Although the radius of 10 m is not a short distance, the lake boundary
generated from the Landsat images has a lower spatial resolution (with a 30 m pixel). As illustrated
using green lines in Figure 4c, 153,292 ICESat-2 topographic points were extracted and used near
the shore of Lake Mead. These lidar points were captured on four different dates and generated
11 along-track topography profiles (one profile did not have valid data near the shore). For each flight
over the study area, three strong laser beams were used.
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12/02/2019) and the detected along-track surface profile in the case area. (c) Landsat-derived annual
lake boundary in 2016 matched with the ICESat-2-derived along-track surface profiles. The inset of (c)
also corresponds to the case area. In (a), the green line represents one of the ICESat-2 lidar ground
tracks on 12/02/2019, the blue curve represents the annual lake boundary in 2016, and the basemap
(i.e., Sentinel-2 imagery) was captured on 11/22/2016. Note that, when the Sentinel-2 imagery was
captured on 11/22/2016, the water level (1077.8 feet from the in situ data) was approximately 2.4 m
lower than the water level (1085.8 feet from the in situ data) on 12/02/2019, when ICESat-2 flew over the
Lake Mead. In (b), the raw data points, signal photons from ATL03 standard results, and our detected
signal photons are demonstrated in along-track distance, and the detected signal photons correspond
to the green line in (a), and the green line in the inset of (c). Some lidar points obtained on 12/02/2019 on
the underwater bottom in (b) correspond to land surfaces in (a), because these locations were above the
water surface on 11/22/2016, when the basemap image was captured. In (a–c), the red circle corresponds
to the location where Landsat-derived lake boundary in 2016 was matched with the ICESat-2-derived
along-track surface profile. The red dashed line across (a) and (b) indicates the matching principle,
i.e., the water/land boundary pixel (a) on the ICESat-2’s laser ground track corresponds to the ICESat-2’s
points (b) on the underwater bottom; therefore, the corresponding ICESat-2’s points at this water/land
boundary pixel will be selected to calculate the water level in 2016. In (c), blue points and green points
represent the lake boundaries and the detected surface profiles from lidar signal photons, respectively.

Fourth, the lake water levels in early years were determined with the lake bottom profile derived
from ICESat-2 data collected in 2018 and 2019. Since the water level of Lake Mead dropped dramatically
from 1984 to 2018, the lake surface retreated significantly. During the process, the area once under
water gradually exposed to air and occupied by shrubs/scrubs. Therefore, the location of lake boundary
in early years, e.g., 1984, is now covered by shrubs/scrubs. These shrubs/scrubs were also captured by
the ICESat-2 sensor in 2018 and 2019 and were on the ICESat-2 lake bottom profile. In other words,
the water levels in early years determined from the ICESat-2 bottom profile do not represent the real
water levels at that time, but the canopy of the shrubs/scrubs in 2018 or 2019. These water levels are
erroneous and should be excluded from the linear regression model between lake water level and
lake water surface. In this study, the NLCD 2016 product was used to represent the shrub/scrub cover
surrounding Lake Meade in 2018 and 2019, and to further exclude the erroneous lake levels. For the
locations of lake boundary during the whole study period, percentages of shrub/scrub cover were
calculated and illustrated in Figure 5a. According to the shrub/scrub percentage curve in Figure 5a,
estimated water levels (by the matching process) during the period of 2007–2018 (i.e., percentages of
lake boundaries covered by shrubs/scrubs from NLCD 2016 product are less than 10%) were selected
and combined with the Landsat-derived lake areas over 2007–2018 to construct the linear regression
model (i.e., lake area-water level model). To make a comparison, all estimated water levels during
the whole period of 1984–2018 were used to fit the other linear regression model. Figure 5c,d show
the scatter plots and the regression results with and without water levels in early years (from 1984 to
2006), respectively. After discarding the data in early years that may be contaminated by shrubs/scrubs,
Figure 5d shows a better regression result with an R2 of 0.96 and RMSE (Root-mean-square error) of
0.79 m.
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Figure 5. (a) Percentages of lake boundaries covered by shrubs/scrubs (from the National Land Cover
Database (NLCD) 2016 product) between 1984 and 2018. (b) Spatial distribution of shrubs/scrubs
around Lake Mead in 1998 with the maximum shrubs/scrubs percentage between 1984 and 2018.
Relationships and regression results between lake areas extracted from Landsat data and water levels
extracted from ICESat-2 data during 1984–2018 (c) and 2007–2018 (d). In sub-figure (a), percentages of
shrubs/scrubs along the shoreline of Lake Mead during 2007–2018 are less than 10% (i.e., gray dotted
line), and the data of this period were selected to fit the level/area relationship in (d). In sub-figure (b),
green areas correspond to shrubs/scrubs, blue areas correspond to the water surface, and gray areas
correspond to the background.

Next, the fitted lake area-water level model was used to estimate yearly water levels during
1984–2018 by inputting the yearly Landsat-derived water areas. Figure 6a,b indicate a good consistency
between our estimated water levels and in situ measurements with R2 = 1.00, p = 0.00, and RMSE =

1.06 m, which proves the reliability and accuracy of the derived model in Figure 5d. It is notable that
the systematic offset between water levels from our estimations and in situ data was removed to make
them comparable (the in situ water levels are based on the benchmark above sea level and in units
of feet, whereas the estimated water levels from ICESat-2 data are based on the WGS84 ellipsoidal
height and in units of meters). According to our calculations, during the study period, the change
rates of the lake water levels calculated by our results and the in situ measurements are −1.36 m/year
and −1.29 m/year, respectively. Lake Mead’s water level decreased from 1984 to 1991 (change rate =

−1.85 m/year); increased from 1992 to 1998 (change rate = 1.83 m/year); and decreased from 1999 to
2018 (change rate = −1.93 m/year). We can observe similar results from the in situ measurements with
water level change rates of −1.49 m/year, 1.64 m/year and −1.91 m/year during 1984–1991, 1992–1998,
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and 1999–2018. Our results indicate the decrease–increase–decrease temporal characteristics of Lake
Mead’s water levels during 1984−2018.Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 22 
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Figure 6. Estimations and validations of yearly Lake Mead’s water levels from ICESat-2 data and in situ
data from 1984 to 2018. (a) Yearly water levels derived from our results and in situ data. (b) Relationship
between the yearly water levels derived from our results and in situ data. In sub-figure (b), the correlation
between results from our method and the in situ measurements is 1.00 with an RMSE (Root-mean-square
error) of 1.06 m, and the blue dotted line is the 1:1 line.

4.2. Lake Water Volume Estimation and Validation

Based on the Landsat imagery, yearly areas of Lake Mead were calculated. Between 1984 and
2018, the maximum lake area is 541.27 km2 in 1998; the median lake area is 468.90 km2 in 1991;
and the minimum lake area is 309.84 km2 in 2016 (illustrated in Figure 7). Then, water volumes
were calculated via the method by combining water areas and water levels of Lake Mead using
Equation (7). To make our estimated lake water volumes and in situ data comparable, their systematic
offset was removed. As shown in Figure 8, the estimated yearly lake water volumes show a
good agreement with the in situ data (R2 = 1.00, p = 0.00, and RMSE = 0.36 km3). During the
study period, change rates of the lake water volumes calculated by our results and the in situ
measurements are −0.57 km3/year and −0.58 km3/year, respectively. The Lake Mead’s water volume
decreased from 1984 to 1991 (change rate = −0.94 km3/year); increased from 1992 to 1998 (change rate
= 0.92 km3/year); and decreased from 1999 to 2018 (change rate = −0.79 km3/year). We can observe
similar results from the in situ measurements with lake water volume change rates of −0.85 km3/year,
0.94 km3/year, and −0.81 km3/year during 1984–1991, 1992–1998, and 1999–2018. Our results suggest
decrease–increase–decrease temporal characteristics of Lake Mead’s water volumes during 1984–2018,
which is in accordance with the temporal changes of lake water levels.

To further characterize Lake Mead’s water volume changes year by year, the first-order difference
of yearly water volumes was calculated as the interannual variation of Lake Mead’s water volumes
during 1984–2018 and illustrated in Figure 9. We can observe that the interannual variation in Lake
Mead’s water volumes from our results is well in accordance with that from in situ measurements
(R2 = 0.94, p = 0.00, and RMSE = 0.37 km3). This good agreement indicates that our method by
integrating Landsat imagery between 1984 and 2018 and recent ICESat-2 data (in 2018 and 2019)
achieved a good performance of annual scale and long-term monitoring of changes of lake water levels
and volumes for over 30 years, even though the yearly lake water volumes highly fluctuated.
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Figure 7. Yearly lake boundaries with the maximum, minimum, and median areas between 1984 and
2018. According to our calculations, the maximum lake area, median lake area, and minimum lake area
are 541.27 km2 in 1998; 468.90 km2 in 1991; and 309.84 km2 in 2016, respectively.
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Figure 8. Comparison between the yearly Lake Mead’s water volumes from our results and the in situ
measurements. (a) Yearly water volumes derived from our results and in situ data. (b) Comparison
between the yearly water volumes derived from our results and in situ data. The correlation coefficient
between our results and the in situ data is 1.00 with an RMSE of 0.36 km3. In sub-figure (b), the blue
dotted line is the 1:1 line. Note that the unit of water volumes from the in situ measurements were
converted from acre feet to cubic kilometers.
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Figure 9. Comparison between the interannual variations in Lake Mead’s water volumes obtained
from our results and the in situ measurements. (a) Interannual variations in water volumes derived
from our results and in situ data. (b) Comparison between the interannual variations in water volumes
derived from our results and in situ data. The correlation coefficient between two results is 0.94 with
an RMSE of 0.37 km3. In sub-figure (b), the blue dotted line is the 1:1 line.

5. Discussions

5.1. Performance Analysis of ICESat-2 Data

For the detected surface profiles on ground or vegetation covered surface from the ICESat-2
datasets, the accuracy of these lidar points (even covered with forest) has been verified to satisfy 0.85 m
in vertical and 5 m in horizontal, because most errors have been corrected (i.e., the atmospheric delay,
solid tide, and systematic pointing bias, etc.) [26]. For detected points on the underwater bottom,
the bathymetric errors have not been corrected in the ATL03 product. Parrish et al. [24] developed a
significant approach to correct the bathymetric error arising from the refraction effect in water column,
and, in this paper, the bathymetric error arising from the wave effect was further corrected. The RMS
(root mean square) wave height of the water surface is 0.12 m in Figure 4b. A 0.12 m RMS wave height
corresponds to 1 sigma, i.e., the significant wave height (SWH) in local areas can be over 0.36 m. If the
wave effect on the water surface is not considered, some errors will be introduced to the bathymetric
results. As illustrated in Figure 6a, the water levels in 2015 and 2016 were lower than those in 2018
and 2019 when ICESat-2 flew over Lake Mead. The water levels in 2015 and 2016 were computed by
matching the lidar points on the underwater bottom with lake boundaries. These water levels are well
in accordance with the in situ water levels, which can prove that the bathymetry results from ICESat-2
are reliable.

5.2. Importance of Water Level/Volume at Annual Scale

The water level and volume of lakes can change by different drivers at different temporal scales.
In many applications, scholars focused on the contribution of various drivers (i.e., natural forces
and human activities) on water level/volume changes of lakes over a long-term. For these drivers,
such as the precipitation, temperature, vegetation, GDP, and population, some of them were not
organized at a diurnal scale, but at other temporal scales, such as monthly, seasonal, and annual
scales. The quantitative attribution analysis should be conducted at the same time scale. The annual
scale is sufficient to investigate drivers that control the water level/volume changes over a long-term
(e.g., over 30 years in this study). Moreover, annual water level/volume changes may omit some
intra-annual changes, such as seasonal fluctuations and abrupt changes induced by extreme rainfalls.
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5.3. Difference from Classical Studies Using Satellite Lidars

There is a significant difference between classical ICESat/ICESat-2-based studies and this study.
In these previous studies on ICESat/ICESat-2-based water level estimations, water levels of lakes and
reservoirs across different areas were directly extracted from ICESat or/and ICESat-2 product (after data
filtering) and achieved very high accuracies [15,45–50]. Unlike the above studies, the water level was
estimated in an indirect way in this study. Specifically, ICESat-2 data were first used to extract accurate
along-track topography profiles around the shore of lake, and then the annual lake boundary derived
from Landsat data was matched with the ICESat-2-derived topography profiles, to obtain the annual
water level in that year.

Compared to ICESat lidar with a larger footprint, ICESat-2 lidar has a very small footprint and a
green laser source, and thus exhibits a high potential to accurately characterize the ground/underwater
topography. Additionally, ICESat-2 can provide six along-track topography profiles from three strong
and three weak beams, which can cover many small lakes where only a few laser footprints were
available for ICESat. In this study, after data processing and error correction, only three strong laser
beams with higher signal-to-noise ratios were used. The results indicate that four days’ ICESat-2
observations were sufficient to obtain an acceptable water level/volume result over a long-term.
Therefore, for other lakes, the temporal resolution of ICESat-2 is not the key point, but whether the laser
ground tracks pass over is. Fortunately, the spatial coverage of ICESat-2 is several times larger than
that of ICESat benefitting from the multiple laser beams. This study provides a new way to conduct
the long-term water level/volume observations (over 30 years), especially for small lakes, while direct
ICESat/ICESat-2 water level observations can only cover a very limited period.

In addition, benefitting from the bathymetric capacity and much denser ground/bottom points,
the simulated ICESat-2 data (based on the airborne MABEL data) [51,52] or measured ICESat-2
data [40,53–55] were used to obtain the along-track underwater bottom points and further generate the
bathymetric maps with satellite images, e.g., the Landsat, Sentinel-2, and GSWD (Global Surface Water
Dataset) products [4]. Although these used datasets and some steps of the method (e.g., detecting the
signal photons) are similar to this study, the specific applications and other steps (e.g., the data fusion)
are quite different.

5.4. Comparison with the Hydroweb Database

To further perform a comparison between annual water levels/volumes derived from our method
and the previous method via direct satellite altimeter observations, water level and volume results
of Lake Mead derived from multiple satellite altimeters were downloaded from the Hydroweb
(http://hydroweb.theia-land.fr/). Then, the water level and volume results from the Hydroweb were
processed into annual water levels and volumes for comparing with our results. Figure 10a illustrates
the annual water levels from in situ data, our results, and the Hydroweb database over 2000–2014
(i.e., the available period of water levels from the Hydroweb database). For the annual water levels,
our results (R2 = 0.99, p = 0.00, RMSE = 0.92 m) exhibit a better consistency with in situ data compared
to the results from the Hydroweb database (R2 = 0.99, p = 0.00, RMSE = 1.05 m). Figure 10b illustrates
the annual water volumes from in situ data, our results, and the Hydroweb database over 2003–2014
(i.e., the available period of water volumes from the Hydroweb database). For the annual water
volumes, our results (R2 = 0.99, p = 0.00, RMSE = 0.26 km3) also exhibit a better consistency with in situ
data compared to that from the Hydroweb database (R2 = 0.99, p = 0.00, RMSE = 0.30 km3). Note that
the estimated annual water levels and volumes of lakes can be used to quantify the contribution of
natural forces and human activities (e.g., precipitation, temperature, vegetation, GDP, and population)
to long-term temporal changes of water levels and volumes. Moreover, the main objective of this study
is to monitor the water level/volume changes over a long-term (i.e., dated back to the 1980s in the
Landsat imagery), which is no longer limited by the time span of satellite altimeters (i.e., such as the
Hydroweb database, which was only available after 2000).

http://hydroweb.theia-land.fr/
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5.5. Further Considerations

Compared to the previous study using the airborne MABEL photon-counting lidars and Landsat
imagery [14], benefiting from the longer time span, global spatial coverage, and good bathymetric
capacity of ICESat-2 datasets, we have conducted a monitoring of lake water levels and volumes
with a similar accuracy and a longer time span. In addition, the spaceborne ICESat-2 lidar captured
signal photons reflected from underwater bottoms up to approximately 10 m in Lake Mead, and this
depth is dependent on the water clarity [24,56]. It means that the ICESat-2 lidar (at 532 nm) is able to
detect signal photons of underwater bottoms and obtain bathymetric information in shallow waters,
which cannot be achievable by the classical satellite laser (at 1064 nm) and radar altimeters. Specifically,
these bathymetric data can be used to predict that if the water level further decreases within 10 m in
Lake Mead, how much water volume will be lost. Using the ICESat-2 datasets with a global coverage
and our method, to accurately monitor changes of annual water levels and volumes of lakes and
reservoirs is potentially achievable over a long-term period. It should be noted that there are two
limitations of this method. First, ICESat-2 bathymetric photons are not available when the water clarity
is low. Second, if lakes did not experience significant water level changes over a long-term period
(e.g., less than 1 m), the precise linear regression between lake water levels and water surfaces cannot
be established.

6. Conclusions

In this study, a method was used to accurately monitor the annual scale and long-term changes of
lake water levels and volumes, with only satellite remotely sensed data (i.e., Landsat imagery and
ICESat-2 data), and Lake Mead in the USA was selected to conduct a case study to demonstrate the
performance of this method. The yearly lake boundaries during 1984–2018 were first extracted with a
dynamic thresholding method derived from the yearly Landsat-based median MNDWI composites.
Then, ground/underwater bottom surface profiles were detected from the ICESat-2 data using a
surface detecting algorithm. Next, the NLCD 2016 land-cover map was used to select available
ICESat-2 derived surface profiles without shrubs/scrubs. Yearly water levels during 2007–2018 with
lower percentages of shrubs/scrubs were generated for matching the detected surface profiles with
corresponding lake boundaries in each year. A linear relationship between water levels and lake
areas was established to estimate yearly water levels between 1984 and 2018. Finally, yearly water
volumes were calculated using the lake areas and water levels during different years. With ICESat-2
data during 2018–2019 and Landsat TM/ETM+ images during 1984–2018, yearly water levels and
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volumes of Lake Mead can be estimated. During the study period from 1984 to 2018, the lake water
volume results agree well with the in situ data, i.e., the R2 and RMSE of the water volumes were 1.00
and 0.36 km3, respectively, and the change rates of the water volumes calculated by our results and the
in situ measurements are −0.57 km3/year and −0.58 km3/year, respectively.

With new ICESat-2 photon-counting lidar/altimetry datasets and classical Landsat imagery, lake
water levels and volumes can be derived from only several measurements of the satellite altimetry data.
Before this study, with only satellite remotely sensed data, it is difficult to accurately monitor annual
scale and long-term changes of lake water levels/volumes for over 35 years and dated back to 1980s,
mainly limited by the time span of available satellite altimetry data. For the ICESat-2 photon-counting
lidar, we found that it exhibits a great potential to accurately characterize the Earth’s surface topography
and has captured signal photons reflected from underwater bottoms up to approximately 10 m in
Lake Mead. The depth would be larger if the water clarity is better. In the future, using our method,
the ICESat-2 datasets, and other historical satellite data (e.g., Landsat imagery and Sentinel-2 imagery)
with a global spatial coverage, it can monitor long-term changes of lake water levels and volumes
for many lakes and reservoirs with good water qualities. Moreover, based on satellite derived water
level/volume results over a long period, further works can be performed to elevate the scientific
investigation, such as modelling spatial-temporal characteristics of water level changes, investigating
reasons of water fluctuations, and analyzing regional water table changes.
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