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Abstract: Accurate spatial information about irrigation is crucial to a variety of applications,
such as water resources management, water exchange between the land surface and atmosphere,
climate change, hydrological cycle, food security, and agricultural planning. Our study proposes
a new method for extracting cropland irrigation information using statistical data, mean annual
precipitation and Moderate Resolution Imaging Spectroradiometer (MODIS) land cover type data and
surface reflectance data. The approach is based on comparing the land surface water index (LSWI) of
cropland pixels to that of adjacent forest pixels with similar normalized difference vegetation index
(NDVI). In our study, we validated the approach over mainland China with 612 reference samples
(231 irrigated and 381 non-irrigated) and found the accuracy of 62.09%. Validation with statistical
data also showed that our method explained 86.67 and 58.87% of the spatial variation in irrigated area
at the provincial and prefecture levels, respectively. We further compared our new map to existing
datasets of FAO/UF, IWMI, Zhu and statistical data, and found a good agreement with the irrigated
area distribution from Zhu’s dataset. Results show that our method is an effective method apply
to mapping irrigated regions and monitoring their yearly changes. Because the method does not
depend on training samples, it can be easily repeated to other regions.
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1. Introduction

Irrigation plays a vital role in increasing global grain output [1], especially in regions lacking
fresh water. In the past 40 years, global crop production has doubled, cropland has increased by
12%, and irrigation has expanded [2]. Although only 18% of the world’s arable land is irrigated [3],
40% of the global grain output comes from irrigated agriculture [4]. Irrigated agriculture accounts for
the primary consumption in fresh water resources, using more than 70% of groundwater, rivers and
lakes [5]. Irrigation information is very important for a wide range of studies, including water
exchange between the atmosphere and the land surface [6,7], agriculture water requirements and
supply [8], allocation of water resources between agriculture and ecosystems [9–11], hydrological
processes [12], environmenta concerns such as soil quality depletion [13,14], agriculture-climate
interactions and feedback [15,16]. Therefore, accurate information on irrigation distribution is
an important step in monitoring cropland yields and water resources [17]. Accurate mapping of
China’s irrigated areas will not only help the Chinese government better assess future food and water
security issues, but also help guide future policies aimed at mitigation or adaptation to climate change.
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Therefore, we need a deep understanding of agricultural policies and land management practices
to identify irrigation information [18]. Although irrigation is important for energy, water cycles and
food security [19,20], the precise distribution and location of irrigated croplands in the world remains
uncertain [21]. Therefore, more objective and convenient methods are needed to be developed on
irrigation information extraction [18,22–25].

Remote sensing is a widely used tool for monitoring irrigated croplands [7,17,26–28].
Satellite sensors have been used for monitoring irrigation at local, regional, continental, and global
scales [22–24,26–36]. Monitoring irrigation through satellite remote sensing data has become common,
but mapping irrigation at large scales remains relatively rare. So far, there are only four products
providing information about the distribution of irrigated areas at the global scale. The Global Map of
Irrigation Areas version 5.0 (GMIA 5.0), produced by the Food and Agriculture Organization and the
University of Frankfurt (FAO/UF), has a spatial resolution of 5′ and reflects the irrigation percentage
from 2000 to 2008 [25,37–40]. The MIRCA2000 product is based on the GMIA products, with the
objective to cover all major food crops irrigated areas [18], but does not represent the actual irrigation
area. The Global Irrigated Area Map (GIAM) accounts for sub-pixel irrigation intensity at 1 km spatial
resolution [40], which is produced by the International Water Management Institute (IWMI) [24,40–42],
but it may provide less reliable due to limited ground-truth data in the training samples. The Global
Rain-fed, Irrigated, and Paddy Croplands (GRIPC) map (500 m), was the highest spatial resolution
among the other three maps [35]. All these four products are more suitable to be applied at the
global rather than the local scale [43–47], because of the limited ground data available to verify them,
and temporal changes in irrigated areas change [34]. Census data on irrigation may also be uncertain
because of political reasons, particularly in developing countries [48].

There are two common approaches for identifying irrigation with remote sensing data:
digital image classification and visual interpretation. Early work focused on temporal spectral
signature trends differences between irrigated farmland and other land use or land cover [49,50].
A strong spectral separation of the electromagnetic spectrum has been found from irrigated and
harvested fields and fallow land in the near-infrared and visible portions, which makes the automatic
method widely used in the visual interpretation of satellite data [51,52]. Compared with visual
interpretation, the digital image classification relies on spectral conversion [53,54]. Due to faster
analysis and lower costs associated with mapping, digital image classification is usually applied in
numerous irrigation mapping studies. Common classification methods include density slicing with
thresholds [54], decision tree classifications [55,56], multi-stage classification [57–59], and unsupervised
classification clustering [30].

Currently, remote sensing is the most effective method for identifying irrigation information,
saving time and money, with high accuracy compared to traditional statistical methods [17]. It provides
temporal frequencies and spectral data to monitor vegetation growth, maturity, and yield [60–62].
Compared with traditional statistical surveys method, remote sensing data are more convenient
due to their digital nature, lower cost, and faster processing. Remote sensing monitoring of
irrigation is particularly valuable in developing countries with limited funds and relatively little
objective information. In addition, compared with statistical data provided for administrative units,
remote sensing data provides more accurate information on the location and extend of irrigated
cropland. This is of great importance for prioritizing water supplies, assessing the environmental
impacts of irrigation, and providing information on irrigation intensity and location change.

A new method was developed for identifying irrigated areas using 500-m MODIS data in our
study. The goal of our study were: (1) to develop a new method to identify irrigated areas; (2) to verify
the performance of our new method using observation sites and statistical data at the provincial
and prefecture levels; (3) to calculate the area and map the spatial distribution of irrigated areas
in China. Our new method can provide accurate irrigation location and contribute to improved
agricultural research.
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2. Materials and Methods

2.1. Study Area

Our study area is mainland China, with a land area of about 9.6 million square kilometers (Figure 1).
Mountains, hills, and plateaus account for about 70% of China. In addition, only 15% of the land area
can be cultivated by humans. Most arable land is concentrated in the east of China, especially the
North China Plain, the Northeast China, the Guanzhong Plain, the middle and lower reaches of
Yangtze River, the Pearl River Delta, and big basins. Nearly 45% of China’s cropland is irrigated [63].
Available water resources and arable land are distributed unevenly in China. Agricultural irrigation
consumes the greatest amount of the fresh water resources every year. The planting methods vary from
south to north, including single cropping, double cropping, three crops in two years, and three crops
a year. China is divided into wet regions, semi-humid regions, semi-arid regions and arid regions.
Mean annual precipitation increases from the northwest to the southeast coast, which varies from 531.3
to 2939.7 mm [64].
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Difference Vegetation Index (NDVI) (bands 1 and 2) were calculated using MODIS eight-day surface 
reflectance products (MOD09A1). The Savitzky–Golay filter was used to smooth the noise in the 
vegetation index time series, especially the noise related to atmospheric variability and cloud 
contamination [65]. Land cover types were determined based on the Global vegetation classification 
system of the International Geosphere-Biosphere Programme included in the MCD12Q1 products. 
The gridded daily precipitation dataset was from Yuan et al. (2015) [66]. This dataset was on the 
basis of the meteorological observations data of 735 meteorological stations in the National Climate 
Center of the China Meteorological Administration (CMA), and the gridded climate dataset (10 × 10 
km) is interpolated by using the method of thin plate smoothing splines [66]. We resampled the 
precipitation dataset to match with the MODIS data.  

2.3. Site-Based Irrigation Data 

Figure 1. Study area and validation sites. The blue and red dots stand for the irrigated and non-irrigated
sites, respectively.

2.2. Preprocessing of the MODIS Data and Precipitation Data

The MODIS images were downloaded from website of the Land Processes Distributed Active
Archive Center (LPDAAC). Land surface water index (LSWI) (bands 2 and 6) and Normalized Difference
Vegetation Index (NDVI) (bands 1 and 2) were calculated using MODIS eight-day surface reflectance
products (MOD09A1). The Savitzky–Golay filter was used to smooth the noise in the vegetation
index time series, especially the noise related to atmospheric variability and cloud contamination [65].
Land cover types were determined based on the Global vegetation classification system of the
International Geosphere-Biosphere Programme included in the MCD12Q1 products. The gridded
daily precipitation dataset was from Yuan et al. (2015) [66]. This dataset was on the basis of the
meteorological observations data of 735 meteorological stations in the National Climate Center of
the China Meteorological Administration (CMA), and the gridded climate dataset (10 × 10 km) is
interpolated by using the method of thin plate smoothing splines [66]. We resampled the precipitation
dataset to match with the MODIS data.
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2.3. Site-Based Irrigation Data

Figure 1 shows the spatial distribution of the validation samples in mainland China. For our
study we collected 612 validation samples that were from three sources. First, the soil moisture
and crop growth dataset was provided by the China Meteorological Data Sharing Service System
(CMDSSS). Sites were used from this source, were a total of 214 non-irrigated and 158 irrigated samples.
Second, they were field surveys, which were carried out from July to August of 2016 in mainland
China—76 non-irrigated samples and 46 irrigated samples. Third, it was collected by Google Earth,
with the irrigation information on large, irrigated regions. We collected 612 evaluation samples
(231 irrigated samples and 381 non-irrigated samples). At all sampling sites, we carried out a survey
and recorded on cropland irrigation times, fertilizer use and pesticide, well depth, and crop yield.

2.4. Validation and Comparison

In our study, regression analysis is done using computer software (SPSS Statistics 17.0.1). A central
part of the regression output of such packages is a summary of the foregoing information in an Analysis
of Variance, or ANOVA table. We matched the ground records listed in Section 2.3 with remote sensing
data and analyze them. In addition, we contrasted the estimated irrigation areas from our method with
statistical data at prefecture and province scales. The data were collected from the National Bureau
of Statistics of China [64]. We contrasted our new irrigation map with three widely used irrigation
datasets: Zhu datasets, FAO/UF, and IWMI. We resampled our new irrigation map and IWMI datasets
to the same spatial resolution with FAO/UF datasets.

2.5. Methodology

The principle of our method was to determine irrigated areas by comparing the canopy vegetation
moisture index of a cropland site with the nearby natural vegetation (i.e., forests). Our method
was based upon two fundamental assumptions: (1) temporal soil moisture of irrigated croplands is
higher than in non-irrigated croplands or natural vegetation (i.e., forests) [23,67]. In general, at the
non-irrigated croplands sites or natural vegetation, precipitation is the only soil moisture source,
and soil moisture will keep decreasing between precipitation events, which may lead to relatively low
levels of soil moisture. (2) Differences in moisture between croplands and adjacent forests decrease
as the precipitation increases. The less precipitation a site receives, the larger the difference between
cropland and adjacent forests in moisture, which is caused by increased artificial irrigation for the need
of higher yield.

To validate the first assumption, LSWI was used as an indicator of soil moisture conditions in our
study, and we calculated the mean value of LSWI (LSWIC) during the growing season at each cropland
pixel to show the condition of land surface moisture. The calculation formula of LSWI is:

LSWI =
ρnir − ρswir

ρnir + ρswir
(1)

where ρswir and ρnir represent short wave infrared and red reflectances, respectively [68]. We calculated
LSWIC from the 201st to the 241st day at all 612 investigated cropland samples, including 231 irrigated
and 381 non-irrigated samples, and contrasted LSWIC with those of nearby forests (LSWIF).
Moreover, because there is a significant positive correlation relationship between LSWI and NDVI [22,69],
we compared the LSWI of cropland and forest with the same NDVI values to rule out the influence of
NDVI [68]. The land cover type data was from MCD12Q1. At a given cropland pixel, we selected the
nearest 30 forest pixels to contrast, which the mean NDVI (NDVIF) value is equal to NDVI of croplands
(NDVIC) (i.e., |NDVIC-NDVIF|< 0.05 ×NDVIC). Then, we computed the mean LSWI value (201st to
241st day) of nearby forests (LSWIF), and contrasted LSWIC with all investigated cropland sites to test
the first assumption.
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To test our second assumption, in every province, we selected and ranked all pixels by descending
the LSWI differences between LSWIF and LSWIC (LSWIDiff =LSWIC − LSWIF). The pixels near the front
in the sort had bigger LSWIDiff values, and hence a larger probability of being recognized as irrigated
cropland pixel. We used statistical data at province-level to determine the LSWIDiff thresholds through
calculate the number (N) of pixels with the biggest LSWIDiff as irrigated pixels. The LSWIDiff value
of the Nth is called the threshold (LSWIDiff0) for distinguishing the irrigated pixels and non-irrigated
pixels. We used 16 provinces (half the number of Chinese provinces) to test the relationship between
mean annual precipitation and LSWIDiff0 raised by our second assumption. In addition, we used the
remaining 15 provinces (other half the number of Chinese provinces) to validate this relationship.
The results for testing our two assumptions were showed in Figures 2 and 3. If our assumptions were
verified that there is a significant correlation relationship between mean annual precipitation and
LSWIDiff0, we can deduce LSWIDiff0 for every province based on this correlation equation. After the
LSWIDiff0 was calculated, we can judge the cropland pixels which LSWIDiff value is bigger than
LSWIDiff0 as irrigated pixels.

 

 

Figure 2. The LSWI difference (LSWIDiff) between non-irrigated (left) cropland pixels or irrigated 
(right) cropland pixels and their nearby forest pixels. (a) LSWIDiff of non-irrigated and irrigated 
cropland pixels at the investigated sites. (b) Histogram of LSWI values of non-irrigated cropland 
pixels, irrigated croplands pixels and nearby forests pixels in China; μ is the mean value of LSWI; the 
asterisk indicates a significant difference at the p < 0.01. 
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in dry regions, which confirmed our second assumption. Hence, we used the regression to calculate 
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Figure 3. The linear regression relationship between the (a) half of the Chinese provinces, (b) other half
of the Chinese provinces LSWIDiff0 thresholds and the mean annual precipitation at the province level
in mainland China.

Based on our two assumption, we established the following six steps to select irrigated
cropland pixels:

Step (1) We calculated the mean LSWI (LSWIC) and NDVI (NDVIC) values of each cropland pixel
from day 201 to day 241 of the year, which correspond to the peak of growing season of the year.



Remote Sens. 2020, 12, 4181 6 of 15

Step (2) Using the land cover product (MCD12Q1), we identified cropland (class 12) and forest
pixels (classes 1, 2, 3, 4, 5); based on nearby forest pixels with average NDVI value (NDVIF) close to
NDVIC (i.e., |NDVIF − NDVIC| < 0.05 × NDVIC) during the same investigated periods, we calculated
the LSWI difference (LSWIDiff = LSWIC − LSWIF) for every cropland pixel.

Step (3) Within a given province, we sorted all pixels with LSWIDiff by descending order. The pixels
with larger LSWIDiff values were more likely to be irrigated. Statistical data of irrigation areas at
province-level from the National Bureau of Statistics were used to calculate the LSWIDiff thresholds.
The N pixels with the largest LSWIDiff were selected as irrigated; we determined whether the total area
of the N pixels equated to the recorded statistical area of irrigation for a given city.

Step (4) We selected half of the provinces identified in Step 3 to determine the LSWI
thresholds. We investigated the correlations between the LSWIDiff thresholds and mean annual
precipitation, and found a significant negative linear relationship between LSWIDiff thresholds and
mean annual precipitation.

Step (5) Using the appropriate LSWIDiff0 thresholds in other half provinces to verify our regression
equation. Then, we used mean annual precipitation as input parameter for the regression equation
to deduce the threshold value (LSWIDiff0) for every pixel. If LSWIDiff is greater than the deduced
threshold (LSWIDiff0), then the pixel is considered to be irrigated.

Step (6) These five steps were repeated until the total pixels of mainland China were compared
and identified. The pixels of all irrigated areas were combined to obtain the irrigated map of the
study area.

We checked the first assumption that LSWI values of the irrigated cropland pixels were bigger
than those of the nearby natural forest vegetation pixels. Therefore, we compared LSWI values of the
investigated sampling sites with the nearby forests pixels that have the equivalent NDVI values with
the cropland pixels. There was an obvious LSWI difference between the irrigated and non-irrigated
cropland pixels compared to the nearby natural forest vegetation pixels (ANOVA test, p < 0.01)
(Figure 2a).

We examined the second assumption proposed in the methodology section based on statistics
data of irrigation and the mean annual precipitation. A significant negative linear relationship was
found between the mean annual precipitation and LSWIDiff0 thresholds (the LSWI difference between
the nearby forest and irrigated cropland) (p < 0.01) (Figure 3). The LSWIDiff0 thresholds decreased
with the increasing mean annual precipitation, indicating that the larger LSWI differences occurred in
dry regions, which confirmed our second assumption. Hence, we used the regression to calculate the
thresholds (LSWIDiff0) for all provinces using mean annual precipitation.

3. Results

We used the statistical data to validate our method at the prefecture and the province levels.
The results show that our new method can accurately identify irrigated areas compared to the statistical
data at the two spatial scales (i.e., the prefecture and the provincial levels) (Figure 4). The coefficients
of determination (R2) between the estimated irrigated areas in our method and the statistical data
areas were 0.59 (Figure 4b) and 0.87 (Figure 4a) at the prefecture and province levels, respectively.
Estimated irrigated areas were highly consistent with the statistical data over the 16 provinces used
to build the regression relation between LSWIDiff0 and the mean annual precipitation, as shown in
Figure 3a. Furthermore, the agreement between estimated areas and statistical data was also found
over the remaining 16 provinces (Figure 4a), indicating a good relationship between irrigated areas
estimated by our method and the statistical data.
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Figure 4. Comparison of irrigated areas in China as estimated by the proposed method and statistical
data at the province (a) and prefecture (b) levels. The dotted line is the 1:1 line. The black dots in
Figure 4a represent the 16 provinces used for building the relationship between LSWIDiff0 and mean
annual precipitation, and the red dots correspond to the remaining 15 provinces used for verification.
Statistical area refers to the irrigated area in a given administrative unit (province or prefecture) that
were obtained from the statistical yearbooks.

Based on the remote sensing canopy moisture index, we produced a map of spatial distribution
of irrigated regions in mainland China (Figure 5). Irrigated regions are distributed mainly in three
alluvial plains (the middle and lower reaches of the Yangtze River Plain, the North China Plain, and the
Northeast Plain) and valleys along five rivers (Yangtze River Basin, Liaohe River Basin, Yellow River
Basin, Haihe River Basin, Huaihe River Basin, Songhua River Basin). The irrigated area of these three
alluvial plains accounts for most of the irrigated area of China. The National Bureau of Statistics of
China [64] reported 654,387 km2 of irrigated area in China 2016, while we estimated 604,344 km2

(Table 1) [64]. The overall irrigated area in China was underestimated by 7.64%.
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Table 1. Province-level comparison of irrigated areas estimates from our method and statistical data
for 2016.

Province Statistical Area (Km2) Estimated Area (Km2) RPE

Anhui 44,003 35,556 −19.20%
Beijing 1374 1736 26.37%

Chongqing 6872 7557 9.97%
Fujian 10,617 3517 −66.87%
Gansu 13,067 6209 −52.49%

Guangdong 17,713 13,102 −26.03%
Guangxi 16,188 11,877 −26.63%
Guizhou 10,654 9462 −11.19%
Hainan 2640 2557 −3.16%
Hebei 44,480 40,881 −8.09%

Heilongjiang 53,052 69,983 31.91%
Henan 52,106 65,324 25.37%
Hubei 28,991 29,256 0.91%
Hunan 31,133 18,907 −39.27%
Jiangsu 39,525 27,253 −31.05%
Jiangxi 20,277 18,150 −10.49%

Jilin 16,288 20,765 27.48%
Liaoning 14,740 26,173 77.57%

Nei Mongol 30,869 33,462 8.40%
Ningxia Hui 5065 1684 −66.75%

Qinghai 1970 1636 −16.96%
Shaanxi 12,368 10,794 −12.73%

Shandong 49,644 49,018 −1.26%
Shanghai 1882 1477 −21.55%

Shanxi 14,603 15,341 5.05%
Sichuan 27,351 22,291 −18.50%
Tianjin 3089 1219 −60.52%

Xinjiang 49,449 36,549 −26.09%
Xizang 2478 5545 123.76%
Yunnan 17,577 9218 −47.56%
Zhejiang 14,322 7847 −45.21%

Total 654,387 604,344 −7.65%

Note: RPE (Relative predictive error): (Area estimated—Area statistics) / Area statistics × 100%.

To evaluate the accuracy of our method, we made comparisons with three other irrigation datasets:
the irrigation map derived by Zhu et al. (2015) [70] (see method) and two global irrigation datasets
(IWMI and FAO/UF). In total, the overall accuracies are 41.18, 58.98, 61.76, and 62.09% in FAO/UF,
IWMI, Zhu’s dataset and our map (Table 2).

Table 2. Overall accuracy of FAO/UF, IWMI, Zhu’s dataset, and our map of China.

FAO/UF IWMI Zhu’s Dataset Our Map

Correctly classified pixels 252 361 378 380
Validation samples 612 612 612 612
Overall accuracy 41.18% 58.98% 61.76% 62.09%

To compare the datasets, we calculated the irrigated areas at the provincial level from four
irrigation maps. Figure 6 indicates the scatter plots for inter-comparison of four maps and statistical
data. The two scatter plots show that the map obtained from our study is more similar to Zhu’s map
than FAO/UF map and IWMI map and is more consistent with the statistical data of irrigated area at
provincial level.
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discrepancy between irrigation distribution derived by our map and the FAO/UF map is in Heilongjiang,
Xinjiang, Jiangsu, Henan, and Liaoning Province.
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4. Discussion

Mapping irrigation distribution is challenging because the water source for croplands may be
represented by precipitation, irrigation, or both. Based on phenological characteristics, this research
developed a new method to identify irrigation by analyzing MODIS, precipitation and statistical
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data. In our study, natural vegetation forest was used as a reference to compare the LSWI of cropland
and the nearby forests with equal NDVI. Our method is especially suitable for China, where nearly
70% of the land area are mountains, plateaus, and hills. We discovered the regression coefficient
relationship between the LSWIDiff0 thresholds (the difference in LSWI between nearby forests and
irrigated cropland) and mean annual precipitation. Our method is based on this relationship to identify
irrigated regions and the regression coefficients we used in mainland China are shown in Figure 3.
These regression coefficients may change with different climatic backgrounds. Therefore, if the method
is extended to other regions, the relationship between LSWIDiff0 and mean annual precipitation needs
to be redefined.

However, there are also two weaknesses in our method. First, the method does not take into
account the differences in water storage between forests and croplands. In general, the nearby forests
turn green earlier than the fields [71,72]. Thus, there may be differences in soil moisture between
cropland and forest, since forests that were reforested earlier can store more precipitation in the
soil [73,74]. In addition, previous studies have shown that plants in different ecosystems have different
transpiration capacities and water retention capacities under the same leaf area index (LAI) [75,76].
The differences of transpiration between croplands and forest plants may lead to the differences in
soil moisture.

Second, it is clear that our approach is most likely to perform better in arid regions than in
humid regions, where rainfall is plentiful and the supplemental irrigation may be the main form
of irrigation [70]. Supplemental irrigation usually takes place in a short period of crop growth and
development, and temporal spectral differences of the additional soil moisture brought by irrigation
are not obvious. However, as irrigation contributes to higher crop yields, irrigation requirements are
closely related to climatic conditions. Our method used precipitation data and time series of NDVI
and LSWI to estimate the presence of irrigation in each cropland pixel. We emphasized the level of
mean annual precipitation, which aims at reflecting irrigation needs, and average LSWI conditions,
to reflect the moisture index differences between irrigated cropland and nearby non-irrigated forests.
In humid regions, our method may perform worse than the traditional classification methods, but it
still provides an alternative irrigation assessment method.

Our method presents some advantages. Our method does not rely on field investigation and
is easily scaled and applied to a larger region. In our method, irrigated pixels can be automatically
identified just through the MODIS land-cover product, avoiding visual interpretation [70,77,78] of
high-resolution images [79] and much field work [80,81]. This advantage may substantially improve
the repeatability and applicability of our method. Standardization of the procedure allows it to be
easily repeated in other similar areas all over the world and used to map real-time irrigation areas as
long as the latest remote sensing data can be obtained.

5. Conclusions

In our study, we developed a new method for identifying irrigated areas in mainland China,
based on the regression between the mean annual precipitation and the LSWI difference between
cropland and the adjacent forest pixels, which were identified from the MODIS land cover datasets.
We calculated the regression relation between the threshold of irrigation and mean annual precipitation
at provincial levels. Validation of the irrigation map derived by our method and statistical data
at provincial and prefecture levels indicated that the approach was reliable. We further collected
612 reference samples (231 irrigated and 381 non-irrigated samples) to validate our new irrigation
map for mainland China at the pixel level. The overall accuracy of our new map is 62.09%. Based on
statistical data, validation indicated that our method explained 86.67 and 58.87% of the spatial variation
in irrigated areas at the provincial and prefecture levels, respectively. Results suggest that our method
is an effective and promising tool for mapping irrigated regions. Moreover, the accurate mapping of
irrigated regions, especially in arid and semi-arid regions, will be beneficial for studying the effects of
human activities on agroecosystems and their relationships with global changes.
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23. Özdoğan, M.; Gutman, G. A new methodology to map irrigated areas using multi-temporal MODIS and
ancillary data: An application example in the continental US. Remote Sens. Environ. 2008, 112, 3520–3537.
[CrossRef]

24. Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Dheeravath, V.; Li, Y.J.; Velpuri, M.; Gumma, M.;
Gangalakunta, O.R.P.; Turral, H.; Cai, X.; et al. Global irrigated area map (GIAM), derived from remote
sensing, for the end of the last millennium. Int. J. Remote Sens. 2009, 30, 3679–3733. [CrossRef]

25. Siebert, S.; Kummu, M.; Porkka, M. A global dataset of the extent of irrigated land from 1900 to 2005.
Hydrol. Earth Syst. Sci. 2015, 19, 1521–1545. [CrossRef]

26. Thenkabail, P.S.; Dheeravath, V.; Biradar, C.M.; Reddy, G.O.; Noojipady, P.; Gurappa, C.; Velpuri, N.M.;
Gumma, M.K.; Li, Y. Irrigated Area Maps and Statistics of India Using Remote Sensing and National Statistics.
Remote Sens. 2009, 1, 50–67. [CrossRef]

27. McAllister, A.; Whitfield, D.; Abuzar, M. Mapping Irrigated Farmlands Using Vegetation and Thermal
Thresholds Derived from Landsat and ASTER Data in an Irrigation District of Australia. Photogramm. Eng.
Remote Sens. 2015, 81, 229–238. [CrossRef]

28. Chen, Y.; Lu, D.; Luo, L.; Pokhrel, Y.; Deb, K.; Huang, J.; Ran, Y. Detecting irrigation extent, frequency,
and timing in a heterogeneous arid agricultural region using MODIS time series, Landsat imagery,
and ancillary data. Remote Sens. Environ. 2018, 204, 197–211. [CrossRef]
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