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Abstract: The detailed structure information under the forest canopy is important for forestry
surveying. As a high-precision environmental sensing and measurement method, terrestrial laser
scanning (TLS) is widely used in high-precision forestry surveying. In TLS-based forestry surveys,
stem-mapping, which is focused on detecting and extracting trunks, is one of the core data processing
tasks and the basis for the subsequent calculation of tree attributes; one of the most basic attributes is
the diameter at breast height (DBH). This article explores and improves the methods for stem mapping
and DBH estimation from TLS data. Firstly, an improved 3D stem mapping algorithm considering
the growth direction in random sample consistency (RANSAC) cylinder fitting is proposed to extract
and fit the individual tree point cloud section. It constructs the hierarchical optimum cylinder of
the trunk and introduces the growth direction into the establishment of the backbone buffer in the
next layer. Experimental results show that it can effectively remove most of the branches and reduce
the interference of the branches to the discrimination of trunks and improve the integrity of stem
extraction by about 36%. Secondly, a robust least squares ellipse fitting method based on the elliptic
hypothesis is proposed for DBH estimation. Experimental results show that the DBH estimation
accuracy of the proposed estimation method is improved compared with other methods. The mean
root mean squared error (RMSE) of the proposed estimation method is 1.14 cm, compared with other
methods with a mean RMSE of 1.70, 2.03, and 2.14 cm. The mean relative accuracy of the proposed
estimation method is 95.2%, compared with other methods with a mean relative accuracy of 92.9%,
91.9%, and 90.9%.

Keywords: terrestrial laser scanning (TLS); 3D stem-mapping; diameter at breast height (DBH);
robust least square elliptic fitting

1. Introduction

Assessing the spatial organization of trees within the forest is a key objective for both forest
managers and researchers [1]. Forest inventory measures the structural parameters on a sample plot,
which provides an important basis for obtaining the quantity, quality, stand structure, and growth
pattern of the wood, and determines the biomass, stem volume, forest carbon cycle, biodiversity,
and changes in these attributes [2,3]. The individual tree is the basic measurement unit for forest
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inventory, and the stem is an important component of it. Stem volume is the most targeted variable
in commercial forest management [4]. In addition, stems are closely related to the extraction of
forest attributes, including tree locations [5,6], heights [7,8], diameters at breast height (DBH) [9–11],
stem curves [12], crown widths [13,14], wood volumes [15,16], biomass [17–19], and so on. In the
conventional forest resources surveys, the detailed stem attributes are measured by investigators by
using caliper and altimeter in the field [2,7]. This survey method, which relies on manual measurement,
is time-consuming and can only obtain limited data.

With the development of remote sensing, light detection and ranging (LiDAR) becomes one
of the most promising remote sensing technologies for estimating various biophysical properties
and structure parameters of forests [20,21]. Terrestrial laser scanning (TLS) is an effective tool for
obtaining detailed structural information under the tree crown at the regional and forest holding level,
because it can obtain high accuracy and high-density point clouds under the forest canopy [2]. Based
on TLS, the geometry attributes can be measured efficiently, which are based on stem mapping that
detects and extracts the stem from the point cloud. Many researches have studied and proposed
some solutions and algorithms for stem detection and extraction from the TLS data in forest areas.
These methods can be divided into three main categories: (1) Image-based methods; (2) 2D-based
methods; and (3) 3D-point-based methods.

The first method groups the pixels in the range image based on local properties, such as the
distance or surface curvature, and then uses the image process approaches to extract laser points
belonging to the tree stems [22–24].

The second method divides the point cloud into slices in the vertical direction, and then conducts
shape detection on the slices in order to detect the stem laser points. Tree stems are identified by
point clustering and the detecting shape algorithm, e.g., circle fitting [10], cylinder fitting [25], and the
Hough-transform-based circle fitting method [26]. This method mainly considers the two-dimensional
geometric characteristic, which is simple and of lower computational cost. However, stem point
detection becomes a problem when there are branches overlapping in the layer. In addition, a digital
terrain model (DTM) needs to be produced before constructing the slice at a certain height, because the
knowledge of the terrain is necessary.

The last method extracts and classifies 3D point clouds directly based on geometric, physical,
and other features, which can be further divided into point-based methods and segment-based methods.
Point-based stem extraction methods, which detect the stem points based on the points’ features,
have been studied by many researchers. Liang et al. [27] proposed a method to identify stem points
based on flatness and normal direction. Lalonde et al. [28] introduced a method that classifies the
points according to three geometric features, including scatter, linear, and surface with the Bayesian
classification method. The linear points are treated as the stem points to be extracted. However,
the geometric features that vary with the radius of the neighborhood need to be calculated at each point
by its surrounding points [29], which will result in a heavy computational burden. In addition to the
points’ geometric features, some scholars have also proposed the point-based stem extraction method
based on other point characteristics, such as the intensity and radiometric [30], to extract the stem
points in point clouds. However, the intensity of laser reflection is affected by many factors, and the
calibration of intensity is complicated [31]. Segment-based methods perform a classification based on
point clouds’ segments. They consider the geometric features of the 3D point clouds’ segments instead
of the point, which can reduce the calculation and improve the calculation speed [32]. These methods
divide point clouds into fragments by segmentation algorithms, such as shape detection [33] and
region growing [34], and then classify them according to the characteristics and shapes of fragments.
Burt et al. [35] proposed a cylindrical fitting method based on random sample consistency (RANSAC)
to extract the stem up to the position of first branching. Liang et al. [36] proposed a method that
constructed a series of overlapping cylinders along the stem to compose a full trunk model. Based on
the concepts of tree topology and cover sets, Raumonen et al. [37] proposed a method to divide point
clouds into stems and branches by using surface patches and checking the local connectivity of a
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moving surface region. Most of these methods assume the tree stem as segmented cylindrical models
and extract the stem points by the fitting method, such as direct cylinder fitting and random sample
consistency (RANSAC). However, in the process of cylindrical fitting, the points of branches will
affect the fitting result and even result in the failure of fitting, which will lead to some parts of the
stem not being able to be detected. Especially in the upper half of the tree stem, where the stem is
thinner, the number of stem points is fewer. The points of the branches will seriously affect the results
of cylindrical fitting. Therefore, the existing methods can extract the lower part of the stem, but it is
difficult to extract the stem near the top of the tree, which affects the integrity of the trunk extraction.

After the tree stem is extracted, the attribute parameters of the tree need to be further estimated.
DBH is one of the most important factors in forest surveying that provides a basis for calculating the
stem volume and constructing a growth model. Thus, the accurate estimation of DBH is important for
high precision forest surveying. The main task is to estimate the optimal DBH parameters from the point
cloud of the trunk at the corresponding height. Many articles have proposed many DBH estimation
methods, such as linearized or nonlinear least square circle fitting [3,7,24], Hough-transform [26],
cylinder fitting [15,38], random sample consensus (RANSAC) algorithm [8,39], and random Hough
transform [31,40]. Most of these methods model the stem profiles as a circle and fit the diameter
parameter from the stem points at the breast height. Although, the shape of the stem profiles is very
similar to a circle, it is not standard, which introduces errors into the fitting process. Moreover, although
DBH is called a diameter parameter, it is determined by the perimeter of the tree stem at the breast
height, which is measured in the forest survey (the DBH is estimated by dividing the perimeter by pi).
Therefore, we do not have to use a circular model to get the DBH parameter and are able to choose a
more accurate model to fit and get a more accurate perimeter, which can estimate a more accurate
DBH parameter. The extracted stem points may include a few outliers and noise points, which will
also degrade the fitting accuracy. Hence, we should reduce the effect of these branch points in fitting.

To summarize, to improve the integrity of individual stem extractions for stem mapping and the
accuracy of DBH estimation, we improved an RANSAC-based stem extraction method and proposed
an improved DBH estimation method. The main contribution included the following: (1) The sectional
RANSAC cylindrical fitting method is improved by considering the growth direction. The growth
direction of the stem is calculated and utilized to exclude the branches points in the establishment
of the stem buff, which improves the integrity of stem extraction. (2) A robust least squares ellipse
algorithm is proposed to fit the stem section and reduce the influence of branches’ points in fitting,
which can improve the accuracy of the DBH estimation.

The rest of this paper is organized as follows. The automatic extraction process of tree parameters,
including the trunk extraction method and robust least squares ellipse algorithm, is introduced in
Section 2. Field experiment and experimental results are presented in Section 3. The discussion and
conclusions are drawn in Section 4.

2. Materials and Methods

2.1. Research Plot and Data Description

Three research plots’ data were studied, two of which were measured in the Hubei Province,
China, and the other one was from the open data in the TLS benchmarking project.

Wuhan is located in the east of the Hubei Province, China (30.54◦N, 114.31◦E). Gongan is located
in the south-central part of the Hubei Province, China (30.07◦N, 112.32◦E), which is a typical plain lake
area with a 32% forest coverage. The TLS datasets used in this study were obtained from a Populus
euramerican forest plot in Yangjiachang Town, Gongan, 40 by 100 m, and a metasequoia forest plot
in Ziyang Park, Wuhan city, 30 by 50 m. Two study areas located in Hubei Province are shown in
Figure 1. The open data in the TLS benchmarking project are distributed in a southern boreal forest in
Evo, Finland (61.19◦N, 25.11◦E). Each plot has a fixed size, 32 by 32 m. The main tree species are Scots
pine (Pinus sylvestris L.), Norway spruce (Picea abies L. Karst.), and silver (Betula pendula Roth) and



Remote Sens. 2020, 12, 352 4 of 19

downy (Betula pubescens Ehrh.) birches. In order to distinguish, the three data are named plot Gongan,
plot Wuhan, and plot Finland.Remote Sens. 2020, 12, 352 5 of 22 
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Figure 1. Forest sample plots in Gongan County and Wuhan City, Hubei, China.

In order to obtain the best visibility for all the trees, multi-scan mode was used to collect forest
point cloud data. In the multi-scan mode, several scans are performed within the forest plots to collect
more detailed point clouds to represent the sample plot. Two scans were performed in the Wuhan plot
and three scans in the Gongan plot. These scans were co-registered by using spherical targets that
were manually placed throughout the plot.

The point cloud data were obtained by the laser scanner FARO Focus3D X 130 (FARO Technologies,
Inc., USA) in 2019. The instrument specifications of the scanner are shown in Table 1. In Table 2,
the detailed data descriptions of 3 plots are listed, which includes the mean DBH, sum of trees,
stand conditions, density, and main species. All the trees in three plots were used for a stem point
extraction experiment. Parts of trees with a measured DBH in plots Wuhan and Gongan and all trees
in plot Finland were used for the DBH extraction experiment. The trees involved in DBH extraction
experiments were measured by caliper in the field and marked sequentially in Figure 2. In the DBH
extraction experiment, the experimental samples in Gongan were 46 trees planted along the trails in
the woodland, and the experimental samples in Wuhan were 23 randomly selected trees.
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Table 1. Technical specifications of the Focus3D X130.

Parameter Value

Data acquisition speed 976,000 points/s

Maximum range 153 m

Maximum resolution
Vertical Horizontal

0.009◦ 0.009◦

Field of view angle 300 × 360◦

Scanner line speed 97 Hz

Measurement accuracy ± 2 mm

Wavelength 1550 nm

Table 2. Plot descriptions of the 3 sample plots.

Plot Mean DBH (cm) Sum of Trees Stand Conditions Density (stems/ha) Main Species

Gongan 26.91 160 leaf-off 400 Poplar
Wuhan 33.49 122 leaf-on 813 Metasequoia
Finland 16.66 84 leaf-on 820 Scots pine
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Figure 2. Schematic map of tree points in the forest sample. (a) Plot Gongan; (b) plot Wuhan;
(c) plot Finland.

2.2. TLS Data Preprocessing

2.2.1. Co-Registration, Ground Filtering, and TLS Data Thinning

Point cloud data preprocessing includes co-registration, ground filtering, and TLS data thinning.
Co-registration is used to convert the different scans into the same coordinate system by using the
common points. In multi-station scanning, there are five visible spherical targets between each
station and the coordinates of the reference targets are used as the common points in the point cloud
co-registration of different scans. Then, we completed the point cloud co-registration with SCENE,
which is a software packaged with the laser scanner FARO. According to the processing report of
SCENE, the co-registration error was less than 6 mm.

Ground filtering is a necessary preprocessing process for isolating the individual trees. The scanned
forest point clouds not only include trees but also a large number of ground points, which will hinder
the detection and extraction of tree point clouds. In addition, ground filtering is a prerequisite
for disconnecting the stem from the ground, and non-ground point clouds are easier to achieve in
individual tree segmentation. The cloth simulation filter method is a ground filtering method based on
a physical process. It utilizes the nature of cloth and modifies the physical process of cloth simulation
to adapt to point cloud filtering [41]. Zhang et al. [31] used the cloth simulation filter method to filter
the ground. The ground points and non-ground points were also segmented by the cloth simulation
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filter method in our study. This function is integrated into the open source software Cloud Compare,
which can complete the ground filtering operation with the software.

Finally, the non-ground point cloud was sampled in the pre-processing. Due to data redundancy,
the processing takes a long time and data thinning is a necessary process to improve processing
efficiency. We streamlined the data by the voxel grid filter, which down-sampled the original point
cloud data and each voxel was 1 cm3 in size, which could sample the point cloud without losing
accuracy in tree detection [42].

2.2.2. Individual Tree Extraction

The individual tree is the basic measurement unit. Individual tree clouds are the basis of automatic
extraction of tree attributes. The next step is the segmentation of the non-ground cloud into individual
tree points. Many individual tree segmentation algorithms have been proposed, such as connected
component labeling [40], mean shift method [43], point cloud directly segmentation [44], and Euclidean
distance clustering [45]. Euclidean distance clustering and connected component labeling were used
for individual tree extraction in this research. Euclidean distance clustering in a Euclidean sense can be
implemented by making use of a 3D grid subdivision of the space by a k-dimensional tree (kd-tree)
structure in order to find the nearest neighbors. It is suitable for the segmentation of the sample plot
with low tree density. The label connected components algorithm can be used to find the connected
components within organized point cloud data. The input point cloud is divided into small parts
by a 3D gird, which is deduced from the octree structure. Based on the point cloud part, connected
component labeling can be used to connect point cloud parts and complete the segmentation of the
tree stem from stratified point clouds [40]. The detailed procedures can be found in [40,45]. Finally,
the isolated points and point clusters were then detected and deleted in the segmentation process.

2.3. Stem Point Extraction Based on the Growth Direction

After individual trees are extracted, the individual tree not only contains the trunk but also the
canopy, branches, leaves, and other components. For 3D stem mapping, the 3D stem points should be
extracted further from the individual tree points. Some methods treat the trunk as a vertical cylinder
with pole-like characteristics and identify it by using a single vertical cylinder model [46]. However,
a single cylinder model cannot describe the trunk exactly, which will degrade the stem extraction result.
Therefore, improved methods are proposed by utilizing the multi-cylinders model instead of the single
cylinder model, which can describe the trunk better [12].

Based on the multi-cylinder model, the tree stem points can be extracted according to the fitting
results. The RANSAC algorithm has the characteristics of fewer iterations and a strong ability of
resisting gross errors [35], which is a robust fitting method and was utilized. In the fitting process,
a stem buffer is created firstly, which will include other tree components, such as branches, that would
introduce the errors in fitting. If a stem buffer is created using the growth direction constraint, which can
remove the interference components (e.g., branches) in the point cloud of the candidate area in advance,
the accuracy of the RANSAC calculation results can be enhanced.

Figure 3 shows the process for stem extraction. Firstly, we divided the tree point cloud into
sections based on height and sorted them from the bottom to the top. The first stem buffer was
established containing the points of bottom section. The RANSAC algorithm was applied for fitting
optimal cylindrical parameters that describe the buffer best. Then, the central axis of the cylinder
was calculated by the cylindrical parameters. Considering that the growth direction of the adjacent
sections of the tree stem is similar, the next stem buffer was established with the central axis parameter
of the former section, which can reject part of the points of other components from the stem buffer
and improve the RANSAC fitting result. Considering that the growth direction of trees is not fixed,
the frustum-shaped buffer zone was more robust than the cylindrical buffer zone. It can reduce the
misjudgment of the stem caused by the deviation of the growth direction and allow more main stems
to be included in the buffer to be calculated. This process was repeated until the last section.
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Figure 3. Flow chart of the segment-based method for detecting tree stem points. Figure 3. Flow chart of the segment-based method for detecting tree stem points.

The stem buffer establishment with the central axis parameter is the key to stem point extraction
based on the growth direction. As shown in Figure 4a, the cylindrical axis parameter, L(l, m, n), can be
defined and calculated by the two points on the cylindrical axis, which are P(x, y, z) and P0(x0, y0, z0)

in the figure. R is the radius of the cylinder. The steps of the next stem section extraction considering
the L and R are as follows:

1. As Figure 4b shows, a frustum buffer was established by the coordinates of a point on the axis,
L and R. The frustum buffer can be regarded as the result of the angle of rotation of the fitted
RANSAC cylinder around the central axis of the cylinder;

2. As shown in Figure 4d, the pink cylinder is represented by the RANSAC cylinder that best fits
the trunk of this section. The inside point of the RANSAC cylindrical model is considered the
stem point;

3. As shown in Figure 4e, the yellow area in the figure is a frustum buffer created based on the
cylinder parameters provided by the RANSAC cylinder; and

4. Figure 4f shows that the central trunk components of tree clustering were extracted layer by layer
with fixed steps. By splicing the extraction results of each layer together, the splicing results can
be regarded as the trunk of an individual tree.
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Figure 4. Sketch map of the stem point extraction. (a) Schematic diagram of the cylinder and its
parameters; (b) frustum schematic; (c) individual tree; (d) random sample consistency (RANSAC)
cylinder fitting for the first section of tree points; (e) frustum-shaped buffer established based on
cylindrical parameters; (f) stem points extracted.
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2.4. Robust Least Squares Elliptic Fitting for DBH Estimation

After stem extraction, the DBH can be estimated from the stem points at breast height. There have
been many DBH methods proposed, such as linear least square (Landau algorithm) circle fitting [3,10],
nonlinear least squares (Gauss Newton) circle fitting [7], crescent moon method proposed by Kiraly and
Brolly [47], RANSAC circle detection [39], Hough transform, and random Hough transform [26,31,40].
However, most of them are based on the assumption that the stem section is circular.

Although the shape of stem profiles is similar to a circle, there are still small differences.
Compared with the circular model, the elliptic model can describe the shape of stem profiles,
which also includes the circular model, and hence can improve the fitting parameters’ accuracy of stem
profiles. Moreover, the elliptic model cannot directly calculate the diameter. It needs to calculate the
perimeter of the ellipse according to the model parameters and then divide it by pi to obtain the DBH
parameters, which is also the same for the actual measurement method of the current forestry survey.

The accuracy of the fitting is reduced because the extracted stems cannot completely remove
the branch points. At the same time, the outliers of the measurement will also affect the fitting
results. The DBH estimation method should reduce the effect of these errors on the estimation results.
Robust estimation is an estimation method widely used in the measurement field, which can alleviate
the influence of outliers [48]. IGG III is one of the widely used robust estimation methods.

This paper applies robust least squares based on the IGG III method to ellipse fitting. The IGG
III weight function can effectively remove the interference of the coarse data points on the result by
assigning zero weights to the coarse domain data and enhance the robustness of the algorithm.

For sliced DBH point cloud data, we regarded them as ellipses and used robust least squares
elliptic fitting to find the best fitting for the given set of points. The mathematical representation of use
is the conics equation of the ellipse, which is:

Ellipse = Ax2 + Bxy + Cy2 + Dx + Ey + F = 0, (1)

In order to avoid the trivial solution, [A B C D E F]T = 06×1, the constraint F = −1 is applied. Note
that F does not depend on edge point (x, y), so Equation (2) is a least squares problem instead of a total
least squares problem [48]:

f (a, x) = aTx− 1 = Ax2 + Bxy + Cy2 + Dx + Ey− 1 = 0, (2)

where ellipse parameters are given by a = [A B C D E]T, and the data point is X =
[
x2 xy y2 x y

]T
.

The fitting of a general conic may be approached by minimizing the sum of squared algebraic distances:

g(a) =
∑I

i=1
f 2(a, xi). (3)

According to Equation (3), a least squares fit is performed on the quantities that do not satisfy the
equation; then, the equations can be written in the matrix form (Equation (4)):

V = GX − L, (4)

where,

V =



v1
...

vi
...

vN


, G =



x2
1 x1y1 y2

1 x1 y1
...

...
...

...
...

x2
i xiyi y2

i xi yi
...

...
...

...
...

x2
N xN yN y2

N xN yN


, X =


A
B
C
D
E


, L =



1
...
1
...
1


. (5)
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According to the principle of least squares, there are the following formulas:

X =
(
GTPG

)−1(
GTPL

)
, (6)

where P is the equivalent weight matrix of the edge points of an ellipse. In order to improve the
accuracy of the ellipse parameter solution, we introduced the robust method and selected the robust
weight function as follows:

wi =


1

∣∣∣vi
∣∣∣ ≤ k0

k0(k1−|vi|)
|vi|(k1−k0)

k0 ≤
∣∣∣vi

∣∣∣ ≤ k1

0
∣∣∣vi

∣∣∣ ≥ k1

, (7)

where vi is the residuals’ error of the measurement, σ0 is the standard deviation of the measurement
error,

∣∣∣vi
∣∣∣ = |vi |

σ0
is the standardized residuals, and k0 and k1 are the modulation coefficients of the

robust threshold. According to Equation (7), the normal data is retained, the weight of suspicious
data is reduced, and bad data is eliminated. It can effectively eliminate the effect of gross errors on
ellipse fitting.

According to elliptic coefficients, it can be calculated as follows: Ellipse center coordinate (x0, y0),
two semi-axes ae and be, and orientation θ. The perimeter of the ellipse and the DBH can be calculated
by the following formula:

Cellipse = 4(ae + be)−4
[
4− π+

0.1218(ae − be)
2

(ae + be)
2 + 2.8aebe

]
aebe

ae + be
, (8)

DBHellipse = C_ellipse/π. (9)

The proposed robust least square ellipse fitting (RLSEF) method and the other three commonly used
DBH estimation methods, random sampling consistency circle fitting (RANSAC_CF), random sampling
consistency ellipse fitting (RANSAC_EF), and random Hough transform (RHT), were compared. In the
RLSEF and RANSAC_EF methods, the perimeter of the ellipse is calculated first by the model
parameters, and DBH is calculated by the perimeter divided by π. In the RANSAC_CF and RHT
methods, the DBH can be calculated directly by the model parameters.

2.5. Evaluation Methods

In tree extraction, two types of error were quantified in this study. Type I error, or omission,
is represented by the number of trees not extracted. Type II error, or commission, is the number
of trees falsely extracted [36]. In accordance with the TLS benchmarking project [49], the accuracy
of tree extraction was assessed by the completeness, correctness, and mean accuracy of detection.
The completeness is defined by the percentage of the extracted trees in the field. The correctness
measures the percentage of the trees extracted correctly. The mean accuracy is the joint probability that
an extracted tree randomly chosen is correct. They were calculated as:

Completeness =
nmatch
nre f

, (10)

Correctness =
nmatch
nextr

, (11)

Mean accuracy o f detection =
2nmatch(

nre f + nextr
) . (12)

Ravaglia et al. used the maximum extraction height that is defined as the height above the ground
of the highest diameter of the stem to evaluate three tree stem diameter algorithms [50]. In our study,
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the integrity of stem extraction was calculated further to evaluate the ability of algorithms for stem
extraction by the maximum extraction height, Hmax, and tree height, Htree, in the scanned points cloud.
The Hmax is calculated by zmax and zground, where zmax is the height of the extracted highest off-ground
stem point and zground is the height at which the tree intersects the ground. Htree is calculated by the
ztree and zground, and ztree is obtained manually from the individual tree point cloud:

Hmax = zmax − zground, Htree = ztree − zground. (13)

The integrity is calculated as:

Integrity =
Hmax

Htree
. (14)

Mean DBH is the diameter corresponding to the average basal area of the dominant tree species,
which is a basic index reflecting the forest roughness. The accuracy of DBH estimation has also
been addressed by other authors. The accuracy of the estimated DBH at tree level was evaluated by
calculating R2, bias, root mean squared error (RMSE), relative bias, relative RMSE, and relative accuracy
in this study. The relative bias, relative RMSE, and relative accuracy were calculated according to the
following formula, where di is the estimated DBH, Di is the measured DBH, and n is the total number
of trees in forest sample plots:

Bias =
1
n

∑n

i=1
(di −Di), (15)

RMSE =

√
1
n

∑n

i=1
(di −Di)

2, (16)

ralative Bias =
Bias

mean DBH
, (17)

relative RMSE =
RMSE

mean DBH
, (18)

relative accuracy = 1− relative RMSE. (19)

3. Results

3.1. Individual Tree Extraction Result

Firstly, the ground point and the non-ground point were segmented by the cloth simulation filter
in the open source software Cloud Compare. For plot Gongan, the Euclidean clustering algorithm in
the PCL (Point Cloud Library) was used to segment ground points. The planting distance of each tree
in plot Gongan was about four meters, so the search radius of the nearest neighbor search was set as
0.1 m, which can effectively divide the forest into individual trees. By setting the minimum cluster size
to 500, outlier point clusters could be deleted.

For plot Finland and plot Wuhan, we used the label connected components algorithm that has
been integrated into Cloud Compare to find the connected components within organized point cloud
data. When the octree level equals 10, trunks, shrubs, and weeds show better separability and the
amount of data increased substantially when the octree level is bigger than 10 [40]. We used a 3D grid
to extract the connected components. This grid was deduced from the octree structure, and the octree
level was set to 10. As can be seen from the Figure 5, the non-ground point cloud can be divided into
individual trees’ point clouds after segmentation.

In order to analyze the results of tree extraction, the number of trees in the original data was
counted manually as in the reference. The numbers of trees that were extracted correctly and incorrectly
were counted separately. Table 3 lists the accuracy assessments for three plots. The tree density of plot
Gongan is 400 stems/ha. All trees were correctly extracted. In plot Wuhan, 11 of the extracted trees
belong to type II error. Eight of them contained some clusters from the another tree, and three of them
contained several trees. In plot Finland, six of the extracted trees belonged to Type II error and all of
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them contained several trees. The statistical results are shown in Table 3. According to the standard
in [49], the individual tree extraction is effective.Remote Sens. 2020, 12, 352 12 of 22 
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Figure 5. Individual tree extraction result. (a) Plot Gongan; (b) plot Wuhan; (c) plot Finland.

Table 3. Accuracy of trunk extraction using the terrestrial laser scanning (TLS) data.

Plot Reference Mapped Type I Error Type II Error True Culms Completeness (%) Correctness (%) Mean Accuracy

Gongan 160 160 0 0 160 100 100 100
Wuhan 122 118 2 11 107 87.70 90.68 89.17
Finland 84 78 2 6 72 85.71 92.31 88.89

3.2. Stem Point Extraction Result

For the separated individual tree point cloud, we used the improved 3D stem-mapping algorithm
by considering the growth direction in RANSAC multi-cylinder fitting to extract the stem point.
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The results, without considering the growth direction, were compared. The maximum extraction
heights for the piecewise RANSAC cylinder fitting method and piecewise RANSAC cylinder fitting
method constrained by the growth direction were calculated, respectively. To analyze the integrity
of stem mapping, the visible heights of the tree stems were measured manually from the original
point cloud.

Extraction of the individual tree and stem were performed on all trees on three plots.
Some representative extraction results were selected to reflect our algorithm and the stem extraction
results of the two methods for stem extraction, which is shown in Figure 6. The left figure is the
piecewise RANSAC cylinder fitting method, and the right figure is our improved algorithm. The black
points in the figure are the tree points, and the red points are the extracted stem points. As shown
in Figure 6a,b, the stem extraction results of two typical trees in plot Finland by the two methods
were compared to show the improvement. As shown in Figure 6c,d, the stem extraction results of two
randomly selected trees in plots Gongan and Wuhan by the two methods were compared.Remote Sens. 2020, 12, 352 14 of 22 
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Figure 6. Comparison of piecewise random sample consistency (RANSAC) cylinder fitting and
piecewise RANSAC cylinder fitting constrained by growth direction. (a) Plot Finland; (b) plot Finland;
(c) plot Gongan; (d) plot Wuhan. (Left: sectional RANSAC fitting. Right: RANSAC fitting combined
with growth direction. Stem points are shown in red and tree points are shown in black).
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From Figure 6, it is obvious that the maximum extraction heights by the improved method are
higher in three plots, which means the integrity of the extracted stem points is improved. For quantitative
analysis, the mean maximum extraction heights and mean tree heights were calculated by all the trees
of three plots, respectively. The mean integrities in three plots were calculated further. As shown in
Table 4, the statistic of the mean tree height and the mean maximum extraction height of each plot are
listed. In three plots, the integrity of stem extraction is improved by 31%, 19.8%, and 56.8%. The mean
integrity of the proposed method in the three plots is 84.0%, compared with the other method with a
mean integrity of 62.3%. The mean improvement is 36%.

Table 4. Stem extraction with two algorithms.

Plot Mean Tree Height(m)
Piecewise RANSAC Piecewise RANSAC Constrained by Growth Direction

Mean Maximum Extraction
Height(m) Mean Integrity (%) Mean Maximum Extraction

Height (m) Mean Integrity (%)

Gongan 27.03 17.22 63.71 22.57 83.50
Wuhan 17.82 11.99 67.28 14.37 80.64
Finland 13.69 7.67 56.03 12.03 87.87

3.3. DBH Estimation Result

A point cloud with a height of 1.275 to 1.325 m was selected for slicing, called a DBH point cloud,
and projected onto the XOY plane. Instead of the circle model, the elliptical model was applied in the
robust least square elliptic fitting algorithm for DBH estimation.

To evaluate the accuracy of the DBH estimation, the true DBHs of some trees were measured
by the diameter ruler, which are shown in the Figure 2. There are 45 trees in the Gongan, 23 trees
in the Wuhan, and 77 trees in the Finnish plot, with true DBHs analyzed to evaluate the accuracy of
DBH estimation.

The proposed RLSEF method and the other three commonly used DBH estimation methods,
RANSAC_EF, RANSAC_CF, and RHT, were compared. We used the coefficient of determination
(R2), bias, RMSE, relative bias, relative RMSE, and relative accuracy to measure the accuracy of
DBH estimation.

Figure 7 shows the scatter plot of TLS-estimated DBH and field-measured DBH in three plots.
From the graph, the goodness-of-fit of the RLSEF method is the highest. The R-squared of this method
is also the highest of the four methods. The results show that the RLSEF method produces lower mean
errors for the three plots than with the other three algorithms.

From Table 5, we can see that the robust least squares ellipse fitting performs the best out of
the four algorithms. The mean RMSE of the proposed estimation method is 1.14 cm, compared with
the other methods’ mean RMSE values of 1.70, 2.03, and 2.14 cm. The mean relative accuracy of the
proposed estimation method is 95.2%; compared with other methods, the mean relative accuracy is
92.9%, 91.9%, and 90.9%. Stem profiles are elliptical, and as the DBH increases, this elliptical shape
becomes more pronounced. The average DBH of the trees in plots Wuhan and the Gongan are both
greater than 26 cm and the relative RMSE and relative accuracy of the robust least square ellipse fitting
algorithm in these two plots is higher than that in Finland. This proves that the elliptical model can
describe the stem profiles better. The result is also verified in Figure 8, which shows the fitted results of
three plots. Obvious ellipse characteristics are seen from the experimental stem profiles of Wuhan and
Public Security. The average DBH of the Finnish plot is less than 17 cm. Furthermore, each index in
Table 5 shows that robust least squares ellipse fitting is the best fitting method among them. It should
be mentioned that, due to the voting mechanism of the random Hough transform, the detected circle
results have a certain false positive rate. For example, the best fitting circles of two trees in plot Gongan
are not unique while using the RHT method, and the fitted circle is significantly smaller, which is
shown in Figure 9.



Remote Sens. 2020, 12, 352 14 of 19

Table 5. Accuracy comparison of four methods for estimating the diameter at breast height (DBH).

Plot Algorithms R2 RMSE (cm) Bias (cm) RMSE% Bias% Relative Accuracy

Gongan

RLSEF 0.952 1.114 1.188 4.1 4.4 0.959
RANSAC_EF 0.871 1.2 1.400 4.5 5.2 0.955
RANSAC_CF 0.838 2.161 1.683 8 6.3 0.92

RHT 0.777 1.645 1.920 6.1 7.1 0.939

Wuhan

RLSEF 0.932 1.185 0.950 3.5 2.8 0.965
RANSAC_EF 0.856 2.263 1.903 6.8 5.7 0.932
RANSAC_CF 0.86 2.377 2.044 7.1 6.1 0.929

RHT 0.739 2.546 2.052 7.6 6.1 0.924

Finland

RLSEF 0.978 1.12 0.876 6.7 5.3 0.933
RANSAC_EF 0.955 1.643 1.235 9.9 7.4 0.901
RANSAC_CF 0.973 1.54 1.247 9.2 7.5 0.908

RHT 0.897 2.233 1.951 13.4 11.7 0.866Remote Sens. 2020, 12, 352 16 of 22 
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4. Discussion

In the stem extraction experiment, the mean integrities of the proposed method in three plots are
higher than those with the cylindrical RANSAC fitting method. Especially in plot Finland, the mean
integrity of the proposed method is 87.7%; compared with the cylindrical RANSAC fitting method,
the mean integrity is 56.03%. The experimental results show that the improved 3D stem-mapping
method can improve the maximum extraction height significantly, especially in the Finland plot where
the trees have dense branches. This is because when the candidate points for fitting contain many
branch points, the cylindrical RANSAC fitting may fail to fit the cylinder, which will lead to the failure
of stem extraction. Because the stem points are decreasing while branch points are increasing in the
upper part of the trunk, the fitting method cannot work effectively. By introducing the growth direction
into the establishment of the candidate points buffer in the next layer, most of the branch points can
be removed, which will help the fitting process. Hence, the improved 3D stem mapping method is
effective for the stem extraction of trees with dense branches.

In the DBH estimation experiment, the mean RMSE of the proposed estimation method is 1.14 cm;
compared with other methods, it is 1.70, 2.03, and 2.14 cm. The mean relative accuracy of the
proposed estimation method is 95.2%, and compared with other methods, it is 92.9%, 91.9%, and 90.9%.
The experimental results show that the elliptic model fitting method can improve the accuracy of the
DBH estimation, which verifies that the DBH calculated based on perimeter is also equivalent to the
existing measurement method. Even when the shape of the stem section is close to a circle in the
Finland plot, the elliptic model fitting method can still obtain the equivalent DBH estimate accurately
compared with the circular model methods. The robust least squares elliptic fitting shows the best
fitting effect and robustness, and it can fit all scatter points in the maximum range. The results indicate
that extracting DBH through the robust least squares ellipse fitting method is feasible and shows better
accuracy. This is because when the circular model cannot describe the stem section well, the fitting
model will introduce the errors in DBH estimation. An elliptic model can include the possibility of a
circular model and be more robust to fit the stem section. Furthermore, the robust least squares elliptic
fitting method can reduce the weight of gross errors and noise points, which can improve the accuracy
of fitting compared with the RANSAC method.

Furthermore, the DBH estimation accuracy of random Hough transform is relatively lower than
other methods, because rasterization of the 2D layer at DBH will cause a loss of accuracy. The first
reason is that random Hough circle detection after pixel transformation decreases the accuracy and
data format conversion reduces the availability of data. The second reason is that circle fitting does not
adapt to the actual shape of the tree breast height, thus resulting in a decline of the detection accuracy.

5. Conclusions

This paper improved a 3D stem mapping algorithm to collect individual tree information from
plot-level terrestrial laser scanning data. This method can effectively remove most of the branches and
reduce the interference of the branches in the discrimination of trunks. This paper also presented a
robust least square ellipse fitting method that better fits the actual shape of the stem section and can
improve the accuracy of DBH estimation.

The methods were tested by the data from forest plots in Gongan, Wuhan, and Finland. According
to the experimental results, the following conclusions were drawn:

• With the combination of the tree growth direction and the sectional RANSAC cylindrical fitting
method, the integrity of stem extraction is improved compared with that without considering the
growth direction. Therefore, the growth direction is an important attribute of the stem and should
be considered in stem extraction methods;

• Compared with the circular model, the elliptic model can describe the stem section better, and the
DBH estimation accuracy based on the elliptic fitting method is higher than that based on circular
fitting methods; and
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• Compared with other algorithms, the robust least square ellipse fitting method has performed
best in the estimation of DBH, with an average RMSE of 1.14 cm, which can greatly improve the
accuracy of DBH estimation based on TLS.

At present, the entire process requires the use of multiple software products and is complicated
and time consuming. In future research, automation is an important task in order to apply the methods
in actual forestry surveys.
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