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Abstract: Urban sustainable development has attracted widespread attention worldwide as it is 
closely linked with human survival. However, the growth of urban areas is frequently 
disproportionate in relation to population growth in developing countries; this discrepancy cannot 
be monitored solely using statistics. In this study, we integrated earth observation (EO) and 
statistical data monitoring the Sustainable Development Goals (SDG) 11.3.1: “The ratio of land 
consumption rate to the population growth rate (LCRPGR)”. Using the EO data (including China’s 
Land-Use/Cover Datasets (CLUDs) and the Defense Meteorological Satellite Program/Operational 
Linescan System (DMSP/OLS) nighttime light data) and census, we extracted the percentage of 
built-up area, disaggregated the population using the geographically weighted regression (GWR) 
model, and depicted the spatial heterogeneity and dynamic tendency of urban expansion and 
population growth by a 1 km × 1 km grid at city and national levels in mainland China from 1990 
to 2010. Then, the built-up area and population density datasets were compared with other products 
and statistics using the relative error and standard deviation in our research area. Major findings 
are as follows: (1) more than 95% of cities experienced growth in urban built-up areas, especially in 
the megacities with populations of 5–10 million; (2) the number of grids with a declined proportion 
of the population ranged from 47% in 1990–2000 to 54% in 2000–2010; (3) China’s LCRPGR value 
increased from 1.69 in 1990–2000 to 1.78 in 2000–2010, and the land consumption rate was 1.8 times 
higher than the population growth rate from 1990 to 2010; and (4) the number of cities experiencing 
uncoordinated development (i.e., where urban expansion is not synchronized with population 
growth) increased from 93 (27%) in 1990–2000 to 186 (54%) in 2000–2010. Using EO has the potential 
for monitoring the official SDGs on large and fine scales; the processes provide an example of the 
localization of SDG 11.3.1 in China. 
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1. Introduction 

Urbanization, including urban expansion and demographic changes, is one of the most 
significant and irreversible effects of human population increase [1]. The worldwide increase in urban 
area has increased by 58,000 km2 from 1970 to 2000, with an estimated increase of an additional 
1,527,000 km2 expected by 2030 [2]. Since the late 2000s, with the large-scale migration of the rural 
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population to cities, the urban built-up area in China has grown by 78.5% while the urban population 
has grown by 46% [3]. The numbers show that human activities increase urban built-up area and 
urban population, speeding up the process of urbanization. 

Both urban expansion and population growth produce certain benefits and challenges. Rapid 
urbanization has increased convenience in people’s daily lives, including more infrastructure and 
investment. Rapid population growth has increased the labor force and business opportunities and 
stimulates domestic demand. However, unplanned urban growth has created problems such as 
environmental pollution, traffic congestion, and water stress [4]. The excessive increase in population 
has intensified traffic pressure, poor living conditions, high unemployment rates, hunger, poverty, 
and resource shortages. 

Furthermore, mutual interdependence and influence still exist between urban expansion and 
population change. With the massive flow of population into cities, the increase in population has 
driven urban expansion. As cities continue to expand, more rural people have moved to the cities, 
thereby accelerating urban expansion. The physical growth of urban areas is frequently 
disproportionate in relation to population growth. This discrepancy further results in less efficient 
land use in many forms, followed by expansion and encroachment of the built-up area on 
surrounding agricultural land. When the agricultural land is converted to built-up areas, reverse 
conversion is difficult. This discrepancy can result in an inadequate supply of urban resources due to 
the excessive population, as evidenced by the proportion of the urban population that lives in slums. 
Therefore, monitoring the speed of transition and area is necessary where growth is occurring 
spatially [5], and a plan for future city growth should be considered due to population growth. 

The 17 sustainable development goals (SDGs), including 169 targets and 232 indicators, were 
designed to meet the ambitious goals of the millennium development goals (MDGs) that guide 
socially sustainable development [6]. SDG 11.3.1, defined as the ratio of the land consumption rate 
(LCR) to the population growth rate (PGR), is used to describe the relationship between urban 
expansion and demographic change. The LCR reflects the annual rate at which cities consume land 
for urbanized users, measures the compactness of cities, and represents the progressive expansion of 
urban space. Demographic change can be reflected by the PGR, which is the rate of population change 
caused by the natural population and migration in a given area over a unit period. The indicator 
reflects whether urban development is sustainable along a coordinated and orderly path (i.e., 
whether urban expansion keeps pace with population growth). SDG 11.3.1 not only assesses urban 
sustainable development, but also incorporates other indicators (e.g., SDGs 11.7.1, 11.2.1, 11.6, and 
11.a.1). 

The research on the SDG 11.3.1 indicator is still in an early stage with scarce related literature, 
and few reports released by various countries and organizations in relation to SDG 11.3.1. In the U.K. 
report [7], Wales’ LCR was 1.4% and PGR was 1.9%, and England’s LCR was 4.4% and PGR was 2.3%, 
from 2013 to 2016. During the same period, Scotland’s LCR rose by 6.1% while the PGR declined by 
1.4%, which reveals sharply uneven land expansion and population growth in Scotland. The LCR in 
France grew by 1.4% and the PGR by 0.5% in 2006–2015 [8], which is significantly lower than in the 
U.K. Portugal’s LCR was 2.7% and the PGR was 0.04% from 2007 to 2015 [9]. The ratio of land 
consumption rate to the population growth rate (LCRPGR) of 194 global sample cities stratified 
according to world regions, city population ranges, and number of cities in the country groups, was 
1.68 in 1990–2000 and 1.74 in 2000–2015, which are slight increases from the previous decade [10]. 

Except for Wales, existing reports show that urban growth being higher than population growth 
in the sample cities and countries reflect escalating inconsistency. However, existing reports 
concentrated on developed countries or sample cities, and developing countries in Africa, South 
America, and East Asia, have been neglected. The expansion of built-up areas was often carried out 
in an unplanned manner in developing countries, and administrations have been unable to keep track 
of growth-related processes. The natural population growth rate in developing countries is higher 
than that in developed countries. The contradiction between people and land is continuously 
increasing. China has been a developing country in the past few decades, and the coupling between 
urban expansion and demographic change in China has been neglected by researchers [4,11]. 
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The SDG indicators were classified into three levels by Inter-Agency and Expert Group on SDG 
Indicators (IAEG-SDGs) according to the method and data availability. SDG 11.3.1 is listed as Tier II 
with explicit concepts, acknowledged formulas, and evaluation standards, but the data are hard to 
obtain. In the vast and sparsely populated Western China, some areas do not produce statistical data. 
Changes in administrative divisions result in statistical inconsistency, and earth observation (EO) can 
be used to obtain consistent data using the same data source and interpretation method, eliminating 
incomparability. More human, material, and financial resources are required for statistical data 
updates, whereas EO data updates are often less expensive. Therefore, for Tier II indicators, EO 
solutions have the ability to offset the lack of datasets, having wide coverage, high spatial resolution, 
strong timeliness, and a short acquisition period [12]. 

Monitoring SDG 11.3.1 can be disaggregated into two aspects: urban expansion and 
demographic change. For the first aspect, new options available through the use of remote sensing 
techniques can provide synoptic views in space and time for the periodic monitoring of the land that 
is or will be developed [13]. However, scientists have so far concentrated on megacities [14], eastern 
coastal regions [15], and the provincial cities [16] in mainland China. Using results from the local 
scale to determine China’s overall features is difficult [17]. Due to image acquisition and 
interpretation workloads, the expansion patterns of small and medium cities (accounting for 80% of 
all Chinese cities) have received less attention [18]. 

For the second aspect, determining the exact population within the extent of the built-up area 
defined in SDG 11.3.1, metadata was important because the built-up area expansion has increased 
the statistical scope of the urban residents. However, the population statistics data are usually 
collected by administrative regions, which are inconsistent with the boundaries of the built-up area 
in practical research (the built-up area is usually smaller than the administrative area), often causing 
the modifiable areal unit problem in geoscience research [19]. The population’s spatial distribution 
calculated by the average density of the region cannot reflect the spatial heterogeneity, and the 
accuracy does not meet the requirements of scientific research and engineering applications [20]. 

Therefore, the United Nations Human Settlements Programme (UN-HABITAT) Workshop 
emphasized the need for disaggregated population data when estimating the number of urban 
residents [21]; the best method recommended in SDG 11.3.1 metadata is to disaggregate the total 
population of the region in the form of a geographic grid to reveal the real spatial information in a 
census. A variety of remote sensing data can provide sources for population density data, such as 
night-time light [22], land use data [23], spectral reflectivity [24], and texture data [25]. Methods of 
population disaggregation, such as those based on pixel features [26], geostatistics [27], and 
interpolation methods [28], have been developed and widely used. However, due to the complex 
topography and large population in China, large-scale, long-term, and refined population density 
mapping is accompanied by challenges. 

To address this knowledge gap, the built-up area and population density datasets were built 
and validated in mainland China from 1990 to 2010. Existing land use products were used to obtain 
area percentage of the built-up area at the grid level. The population was disaggregated to the grid 
level derived from EO and statistics. Moreover, the spatial heterogeneity and dynamic tendency of 
LCR, PGR, and LCRPGR in SDG11.3.1 metadata in 340 cities in mainland China were analyzed at 1 
km × 1 km grids at city and national levels. Finally, the findings provide an example of the localization 
of SDG 11.3.1 in China. 

The remainder of this paper is structured as follows: The data sources and methods are discussed 
in Sections 2 and 3. The results are outlined in Section 4. A comparative analysis and the method 
validation are provided in Section 5, and Section 6 outlines the conclusions. 

2. Data 

2.1. Land Use/Land Cover (LULC) Data 

Existing land use products from 1990, 2000, and 2010 in mainland China were used [5,29] in this 
paper (Table 1). Land use/land cover (LULC) datasets were obtained by interpretation of Landsat 
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Thematic Mapper/Enhanced Thematic Mapper (TM/ETM+) remote sensing data with a spatial 
resolution of 30 m and were derived from the China’s Land-Use/Cover Datasets (CLUDs) provided 
by the Data Centre for Resources and Environmental Sciences (RESDC). The construction land that 
we used included three types: urban construction land, rural construction land, and other 
construction land with classification accuracies exceeding 75%, representing the most accurate and 
long-term sequence of land use remote sensing monitoring products available for China [5]. 

Table 1. Data resources. 

Datasets Resolution Time Sources Reference 

LULC 30m 
1990, 
2000,
2010 

Data Centre for Resources 
and Environmental Sciences 

http://www.resdc.cn/data.asp
x?DATAID = 99 

Population County 
1990, 
2000,
2010 

The Fourth, Fifth, Sixth 
National Population Census, 
National Bureau of Statistics 
of China 

http://www.stats.gov.cn/tjsj/p
csj/ 

DMSP/OLS 1 km 
1992, 
2000, 
2010 

National Oceanic and 
Atmospheric Administration 

https://www.ngdc.noaa.gov/e
og/dmsp/downloadV4compo
sites.html 

Administrative 
boundary map 

County 2013 
National Fundamental 
Geography Information 
System 

http://www.ngcc.cn/ngcc/ 

2.2. DMSP/OLS Night-time Light Time Series 

The Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) night-
time light data were provided by the National Geographic Data Centre of the National Oceanic and 
Atmospheric Administration (NOAA), which quantitatively records the intensity of night-time light 
worldwide [30]. A continuity correction was performed, and the pixel overflow effect was eliminated 
before using the stable lights [31]. 

2.3. Census Data 

The census data were provided by the National Bureau of Statistics of China. We selected 
county-level census data from 1990, 2000, and 2010. Due to changes in administrative divisions, the 
county-level census datasets across the 20-year period were inconsistent with county-level 
administrative boundaries. In order to match census datasets and the corresponding administrative 
boundary map, we revised the problem (i.e., the change of county range). For example, the 
Chongwen district of Beijing merged into the Dongcheng district of Beijing in 2010, which showed 
that the administrative boundary of Chongwen was merged spatially with Dongcheng. The census 
values of Dongcheng district and Chongwen district were separated before 2010. The population of 
the Chongwen district and Dongcheng district needs to be summarized as the total population of the 
Dongcheng district, corresponding to the administrative boundary map which was joined spatially. 

3. Methods 

3.1. SDG 11.3.1 Indicator 

SDG 11.3.1 aims to monitor the coupling between the land expansion rate and the population 
growth rate in a given spatial extent and time period. UN-HABITAT issued a report that described 
detailed concepts and individual cases. The report used the urban built-up area to replace the urban 
agglomeration area and used the exact population range (within the built-up area) instead of the total 
population [21]. The SDG 11.3.1 indicators are calculated using the following formulas: 

LCR=Ln(Urbt+n/Urbt)/y (1) 
PGR=Ln(Popt+n/Popt)/y (2) 

https://www.ngdc.noaa.gov/eog/dmsp/downloadV4compos
https://www.ngdc.noaa.gov/eog/dmsp/downloadV4compos
https://www.ngdc.noaa.gov/eog/dmsp/downloadV4compos
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LCRPGR=LCR/PGR (3) 
where Urbt+n and Urbt represent the built-up area in the final and initial years, respectively; Popt+n and 
Popt represent the urban residents within the built-up area in the final and initial years, respectively; 
and y is period span. Both LCR and PGR reflect the average annual growth rates. 

LCR and PGR quantitatively describe the expansion intensity and demographic change in two 
phases. The higher the positive value, the larger the area of new growth, and vice versa. LCR < 0 
indicates a built-up area decrease compared with the previous period, whereas LCR > 0 indicates an 
increase in the built-up area. Similarly, PGR > 0 indicates a population increase contrasted to the 
previous period; PGR < 0 indicates a population decrease, and the city is classified as a shrinking city, 
suggesting that the population and vitality are decreasing. 

LCRPGR is the ratio of LCR to PGR. A LCRPGR < 0 indicates that either LCR or PGR is negative, 
but it is impossible to judge whether land or population is growing faster. When LCR and PGR are 
both positive, the LCRPGR value is greater than 0 and the LCRPGR value can be divided into two 
cases of LCRPGR > 1 and 0 < LCRPGR < 1. Therefore, in this case, we need to use the signs of LCR 
and PGR and define land growth type as LCRPGR > 1 or LCR > 0 and PGR < 0, and population growth 
type as 0 < LCRPGR < 1 or LCR < 0 and PGR > 0. 

Ideally, the LCR should be synchronized with the PGR, indicating that the development of the 
two is coordinated. Then, according to the classification of SDG 11.3.1 provided by UN-HABITAT 
(Table 2), the LCRPGR value is divided at the city level into 6 categories depending on the 
relationship between population density and the LCRPGR value [21]. Efficient land use, moving 
toward efficiency, and moving toward sufficient land per person in Table 2 indicate that the 
relationship between land use and population growth is coordinated, and the remaining three in 
Table 2 indicate that it is uncoordinated. 

Table 2. The classification criteria proposed by UN-HABITAT. 

City Urban Extent Density LCRPGR Value 

10–150 persons/hectare 
<1: Efficient land use 

>1: Inefficient land use 

151–250 persons/hectare <1: Moving toward efficiency 
>1: Moving away from efficiency 

>250 persons/hectare 
<1: Insufficient land per person 

>1: Moving toward sufficient land per person 

3.2. Calculation Process 

The calculation process consisted of three major steps: (1) calculating the area percentage of 
built-up area in 1 km × 1 km grids, (2) disaggregating the population data at the 1 km × 1 km grid 
level, and (3) calculating the SDG11.3.1 indicator using Equations (1)–(3) in SDG 11.3.1 metadata. The 
flowchart is shown in Figure 1. 
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Figure 1. The flowchart of calculating SDG 11.3.1 (SDG: sustainable development goals; LCRPGR: 
The ratio of land consumption rate to population growth rate; LCR: land consumption rate; PGR: 
population growth rate). 

Step 1: The built-up areas were derived from urban construction land based on the definition 
(Section 5.3) of the built-up boundary that maintained the core area of the city, and we removed 
independent pixels (within 5 pixels), small areas at the edge of the city, and satellite cities [32]. Then, 
the extracted built-up area was divided into 1 km × 1 km grids, and the percentage of the built-up 
areas was calculated in each grid in mainland China from 1990 to 2010. 

Step 2: To calculate population density, the area percentages of rural and other construction were 
calculated. Next, a refined resolution was obtained using a proposed model [27] to disaggregate the 
census data into 1 km × 1 km grids in mainland China over the 20 year period. Using the process in 
1990 as an example, the specific steps were as follows (a–c): 

(a) According to the light value of DMSP/OLS data, which was either zero or nonzero, the 
corrected DMSP/OLS data (called Light) were divided into two layers: Light0 and Light1. Three land 
class layers (urban, rural, and other construction land), were divided by the two layers (Light0 and 
Light1). Then, six layers were finally named: Urban0 (urban class with light equal to 0), Urban1 (urban 
class with light equal to 1), Rural0, Rural1, Other0, and Other1. 

(b) The layers of Light and the area percentage data of urban, rural, and other construction land 
were summarized at the county level, called T_Light, T_S1, T_S2, and T_S3, respectively. Then, the 
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partial correlation coefficients were calculated between T_Light and T_S1, T_S2, and T_S3, labeled F1, 
F2, and F3, respectively. Next, L1, L2, and L3 were calculated using Equation (4): 

Lj=Light
T_Sj×Fj

∑ T_Sj×Fjj
 (4) 

where Lj represents the light-emission index; Light is the corrected DMSP/OLS data; Fj is partial 
correlation coefficient; T_Sj is the area sum of urban, rural, and other construction land at the county 
level; and j has a value range of 1, 2, and 3. 

(c) The nine independent variables (Urban0, Urban1, Rural0, Rural1, Other0, Other1, L1, L2, and L3) 
were aggregated at the county level individually, and the dependent variable (census at the county 
level) was applied to the geographically weighted regression (GWR) model. Finally, the population 
density map was obtained at 1 km ×1 km grid level with model accuracies of 0.65, 0.74, and 0.79 at 
county levels in 1990, 2000, and 2010, respectively. 

Step 3: According to the results of steps 1 and 2, the built-up area and population density datasets 
were obtained at the grid level. The area percentage of built-up area and population density were 
aggregated within the built-up extent at the city level, and the national LCRPGR was calculated 
similarly. Then, the LCR, PGR, and LCRPGR were calculated at the grid, city, and national levels. 

3.3. City Sizes 

To monitor the urbanization process, the classification of cities would be beneficial for 
subsequent analysis due to a large number of cities. Considering the characteristics of urban 
population change, the original division criteria are not suitable for current needs [33]. The 2010 
report proposed new division criteria of cities more in line with our period. According to the division 
criteria [33], the 340 cities were divided into 5 sizes based on the urban populations within the built-
up extent in 2010: (1) large megacities: >10,000,000; (2) megacities: 5,000,000–10,000,000; (3) large 
cities: 1,000,000–5,000,000; (4) medium cities: 500,000–1,000,000; and (5) small cities: <500,000. The 
whole list of 340 cities (divided into 5 sizes) is available for download in the Supplementary Materials 
(Table S1). 

4. Results 

4.1. Spatial Expansion of the Built-Up Area 

The LCR was used to quantify urban expansion (Figure 2a,b). At the grid level, the average LCR 
increased from 0.03 in 1990–2000 to 0.05 in 2000–2010, suggesting urban expansion in the two 
decades. The LCR value is not statistically significant, and we cannot say that it is a growing trend. 
The LCR value is low because LCR represents the annual rate at which cities uptake land for 
urbanized uses, and our measurement period is 10 years. Cities show higher LCR for the more recent 
decade than in the previous decade, suggesting that the urban expansion happened mostly in the 
first decade of the current century. The proportions of the grid that experienced a new increase 
(converted from other land types to construction land) were 13.7% and 41.7% during the periods of 
1990–2000 and 2000–2010, respectively, indicating the built-up area encroached upon other land-use 
types. In the interior of the city, the LCR in large megacities increased from the center to the 
periphery, such as in Beijing city (Figure 2a,b). The LCR value in the urban center was zero, and the 
LCR values in the suburbs ranged from 0 to 0.2. 
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Figure 2. The LCR value in China in 1990–2010. (a,b) The spatial distribution of the LCR at 1 km × 1 
km grid level; the increased grid indicates that the initial image has no built-up area in the grid and 
the final image has a built-up area in the grid, while the decrease grid means the opposite. (c,d) The 
spatial distribution of the LCR at the city level. (a,c) The LCR value in 1990–2000. (b,d) The LCR value 
in 2000–2010. 

More than 95% of prefecture-level cities in China expanded in the two studied decades (Figure 
2c,b). However, contrary to the inherent impression that the large megacities cities with the largest 
populations are expanding the fastest, more attention should be focused on the megacities (the 
second largest population size group), which demonstrated the most dramatic increase in intensity, 
with an average LCR of 0.13 from 1990 to 2010 (Table 3). Large megacities have an average LCR value 
of 0.11, which is slightly lower than that of megacities; large, medium, and small cities, with similar 
rates, have average values ranging from 0.72 to 0.88. 

Table 3. The average value of LCR and PGR. 

City Size 
LCR PGR 

1990–2000 2000–2010 1990–2010 1990–2000 2000–2010 1990–2010 
Large Megacities 0.049 0.064 0.113 0.071 0.047 0.118 

Megacities 0.042 0.088 0.13 0.041 0.056 0.098 
Large cities 0.026 0.062 0.088 0.022 0.044 0.066 

Medium cities 0.023 0.049 0.072 0.006 0.04 0.047 
Small cities 0.024 0.057 0.081 0.008 0.052 0.06 

When disaggregated by region, the average LCR values in 1990–2000 were eastern (0.036) > 
western (0.028) > central (0.024), with growth areas of 5069, 1060, and 1823 km2, respectively. The 
eastern region has advantages in terms of location, economy, and policy, whereas most western cities 
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expanded slowly due to the sparse population, economic development, and a lack of infrastructure. 
In 2000–2010, the average LCR values were eastern (0.059) > western (0.042) > central (0.041), and the 
growth areas were 20,025, 3465, and 6489 km2, respectively. Overall, the growing regions were 
concentrated along the eastern coast while the growth of the central and western regions was mainly 
reflected in the provincial capital cities. 

Figure 3 depicts the proportion of other land types that were consumed by the newly increased 
built-up area at the provincial level. Paddy fields, dry land, rural residential, grassland, and 
woodland declined to different degrees. The proportion of dry land and paddy fields decreased in 
total from 77.2% to 65.8% during the period of 1990–2000 to 2000–2010, while the proportion of rural 
residential areas and other construction land increased in total from 10.4% to 18.6%. The decline in 
the proportion of agricultural land consumed by construction land is due to the protection outlined 
in China’s cultivated land policy that the total amount of cultivated land should be at least 1.8 billion 
acres, preventing the reduction of the amount of cultivated land by urbanization. As cities continue 
to spread, more land in suburbs and rural areas near suburbs has transformed into construction land, 
leading to more rural settlements being converted into construction land. 

 

 
Figure 3. The source of new built-up areas at the provincial level in China in 1990–2010. 
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4.2. Spatiotemporal Dynamics of Population Density 

Figure 4 shows that the population density in the large megacities and the Pearl River Delta in 
Southeast China was higher than 4000 people/km2. The population in these areas accounted for 5% 
of the total population. The western region, which includes Xinjiang, Tibet, and Qinghai provinces, 
accounts for 40% of the total area, but the population accounts for only 2% of the total. The population 
distribution formed a dense spatial pattern in the low-elevation southeast areas, with sparse density 
in the northwest. As shown in Figure 5, the population density layers were divided into seven levels, 
of which the population density of 200–1000 people/km2 has the highest share, containing 
approximately 70% of the total population. The proportion distribution of the population is similar 
to normal distribution. 

 

Figure 4. Population density maps with a 1 km × 1 km grid in 1990–2010. 
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Figure 5. The area percentage of the grid number of population in 1990–2010. The histogram 
represents the area percentage of the grid number; the straight line represents the area percentage 
cumulative value of the grid number. 

The PGR was used to quantify demographic change (Figure 6a,b). At the grid level, the average 
PGR decreased from 0.004 in 1990–2000 to −0.010 in 2000–2010, showing a change from positive 
growth in the first period to negative growth in the second. Grids with a reduced proportion of the 
population accounted for 47% and 54% in the two periods, respectively. Despite the increase in total 
urban population, half of the grid showed a decrease in population density, and the PGR was 
relatively high in the remaining half of the grid, indicating an increase in the uneven population 
distribution. 

 
Figure 6. The PGR value in China in 1990–2010. (a,b) The spatial distribution of the PGR at the 1 km 
× 1 km grid level; the increased grid indicates that the initial map has no population in the grid and 
the final image has a population in the grid, while the decrease grid means the opposite. (c,d) The 
spatial distribution of the PGR at the city level. (a,c) The PGR value in 1990–2000. (b,d) The PGR value 
in 2000–2010. 
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We identified 112 shrinking cities with a population decline (PGR < 0) in 1990–2000 and 69 
shrinking cities in 2000–2010 (Figure 6c,d). Shrinking cities were mainly concentrated in northeastern 
China in 1990–2000 and in 2000–2010 in southwestern China. The shrinking cities were mainly 
medium and small cities, but large megacities did not experience population decline. We highlight 
shrinking cities because the outcomes of the phenomenon may place pressure on urban vitality 
factors including transportation, housing, employment, public facilities, and other issues. 

The average PGR values from 1990 to 2000 in the eastern, central, and western regions were 
0.002, 0.010, and −0.004, respectively. In 2000–2010, the average values in the eastern, central, and 
western regions were −0.006, −0.011, and −0.018, respectively. The PGR in the central and western 
regions showed a downward trend reflected in the flow of the central and western populations to the 
eastern areas. 

In terms of population mobility, the core peripheral effects reflected the population migration 
from the underdeveloped urban periphery to the core areas of economically developed urban 
agglomerations in the east, such as Beijing, Tianjin, and Hebei agglomeration. Provincial capitals in 
the central and western regions, such as Xi’an and Wuhan, as shown in Figure 6d, are strongly 
appealing to the population in surrounding urban, suburban, and rural settlements. The populations 
of small cities around the provincial capital cities were being seriously depleted. 

4.3. Spatial and Temporal Dynamic Changes in LCRPGR 

Based on the grid level, the percentage of LCRPGR in 1990–2000 showed population growth 
(51%) > land growth (48%) > uncertain (1%) for the 1.15 million grids (Figure 7a). The population 
growth type was mainly distributed in developed cities or in underdeveloped rural areas because 
economically developed cities were positively affected by both natural population growth and 
mechanical growth (population migration), whereas the rural areas in the central and western areas 
had low LCR values during this period. 

The percentage of LCRPGR type in 2000–2010 showed land growth (55%) > population growth 
(41%) > uncertainty (4%) for the 1.36 million grids (Figure 7b). The number of cities with land growth 
exceeded that with population growth type because urban development requires a large amount of 
land resources. In addition, based on geography and family membership, the household registration 
divided the population into a rural and urban population. Because migrants from rural to urban areas 
may not enjoy certain benefits, including schooling, employment, and medical, household 
registration restrictions impede the growth of the urban population. The number of land growth type 
is unlikely to decrease in a short period of time. 

Table 4 shows that the number of cities experiencing land growth increased from 205 (60%) in 
1990–2000 to 223 (65%) in 2000–2010, and the number of population growth type cities decreased 
from 135 (40%) in 1990–2000 to 117 (34%) in 2000–2010. During the period 1990–2010, the number of 
cities experiencing land growth type exceeded the population growth type cities.  
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Figure 7. The LCRPGR valued in China in 1990–2010. (a,b) The spatial distribution at the 1 km × 1 km 
level. The data sources of uncertain type included an increase/decrease grid when calculating the LCR 
and PGR, which cannot calculate the LCRPGR value according to Formula (3). (c,d) The spatial 
distribution at the city level. The orange legend shows that the relationship between the LCR and 
PGR tends to be effective and shows coordinated development, while the blue legend indicates that 
the relationship tends to be ineffective and uncoordinated and should be considered. The darker the 
orange and blue legends are, the greater the population density of the city is. (a,c) The LCRPGR value 
in 1990–2000. (b,d) The LCRPGR values in 2000–2010. 

Table 4. The classification of the LCRPGR result. 

LCRPGR Value 
Number of Cities 

Type 
1990–2000 2000–2010 

LCRPGR > 1 93 154 Land growth type 
0 < LCRPGR < 1 129 113 Population growth type 

LCRPGR < 0 
LCR > 0 & PGR < 0 112 69 Land growth type 
LCR < 0 & PGR > 0 6 4 Population growth type 

4.4. Coupling between LCR and PGR 

Based on the division of UN-HABITAT, 247 (72%) cities were categorized as demonstrating 
coordinated development types and 93 (27%) cities as uncoordinated development in 1990–2000 
(Figure 7c). In 2000–2010, 186 (54%) cities were categorized as demonstrating coordinated 
development types and 154 (45%) cities as uncoordinated development (Figure 7d). According to the 
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UN-HABITAT standards, the number of uncoordinated cities has grown significantly to almost half 
of all cities, and the coordination relationship between LCR and PGR has deteriorated. 

From the trend in LCR and PGR growth rates (Figure 8), first, although both the LCR and the 
PGR were positive in large megacities from 1990 to 2010, the LCR showed an upward trend, and the 
PGR decreased. Although the population of large megacities rose, the growth rate was slow. Then, 
both the LCR and the PGR of the megacities and large cities displayed growth trends, and the LCR 
growth rate was faster than the PGR rate in 1990–2010. Instead, the growth rates of the LCR in 
medium and small cities were significantly lower than the PGR rates in 1990–2010. 

 

Figure 8. The average LCR and PGR in 1990–2010. 

In 1990–2000, the correlation coefficient of LCR and PGR in 340 cities in mainland China was 
0.35, whereas the correlation coefficient of LCR and PGR was 0.11 for all the cities from 2000 to 2010 
at the 0.01 significance level. The significance test indicates that a relationship exists between LCR 
and PGR, but the low correlation coefficient indicates that the linear relationship between the LCR 
and PGR is very weak (Figure 9). The coupling between LCR and PGR is a complex nonlinear 
relationship. 

 

Figure 9. The scatter plots of LCR and PGR in 1990–2010. 
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5. Discussion 

5.1. Analysis of LCR and PGR Change 

More than 95% of the cities expanded from 1990 to 2010. The increase in the LCR was due to the 
city center being fully developed, and the suburbs provide the primary future reserve of urban 
development. More infrastructure and public resources shifted to the suburbs. Simultaneously, under 
the influence of compensation policy for cultivated land (the phenomenon of legal and paid 
occupation of rural land), cultivated land in the suburbs was converted into construction land. The 
cities presented a stall-style development model where the built-up area range is like many concentric 
circles, expanding outward and continuing to expand from the city center to the suburbs. 

The population density decreased in half of the grids from 1990 to 2010. The decline in PGR was 
mainly due to the low birth rate (first, the number of women of childbearing age continued to 
decrease; second, the fertility rate was slightly lower than that in the previous period) and the outflow 
of the urban population. The urban population mainly flowed out from the west to the east; the 
population in underdeveloped urban areas flowed to developed urban agglomerations or provincial 
capital cities. The causes of population movements are complex. For example, passive population 
movements may be due to depletion of urban resources, while active population movements include 
migrants working outside the city. The decline of the urban population may cause shrinking in 
medium and small cities. 

5.2. Comparisons with Previous Studies of Data and SDG 11.3.1 Indicator 

5.2.1. Comparisons with Previous Studies of Built-Up Area and Population Density Map 

The built-up area and population density datasets were compared with other products and 
statistics (Table 5) using evaluation criteria including the relative error, standard deviation, and 
correlation coefficients in our research area. Among them, Liu’s product [29] is the built-up area 
dataset used and Wang’s product is the population density map produced in this article. 

Table 5. The data descriptions of other products. 

 Products Descriptions Resolution Reference 

 

Liu 
Built-up areas in large, medium and 
small cities and above counties and 

towns 
30 m [29] 

ESA 
Artificial surfaces and associated areas 

(urban areas >50%) 300 m [34] 

GHS 
The values representing the built-up area 

density ranging from 0 to 1 
250 m [35] 

MOD12Q1 
At least 30% impervious surface area 
including building materials, asphalt, 

and vehicles 
1 km [36] 

Statistical 
data 

Built-up area City 

https://kns.cnki
.net/kns/brief/r
esult.aspx?dbp
refix = CYFD 

Population 

GHS 

Estimates of numbers of people per pixel 

1 km [37] 
WorldPop 30″ [38] 

Xu 1 km [39] 
Wang 1 km This paper 

Census  County 
http://www.sta
ts.gov.cn/tjsj/pc

sj/ 
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First, we compared the relative error between the built-up area using statistical data and several 
products (Figure 10a). The relative error showed that the built-up area in the products was larger 
than the statistical value. The possible reasons for this finding are the following: (1) when the mixed 
pixels were decomposed, the end member abundance determined the possibility of misclassification; 
(2) nonvegetative land in the suburbs was easily interpreted as an urban built-up area [11], which 
increased the actual built-up area; and (3) parts of selected training samples, squares, parks, green 
spaces, and roads, which are limited by resolution, were often classified into built-up areas. 
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Figure 10. Statistical information on built-up area and population products at prefecture-level city 
scales in 1990–2010. Among them, (a,b) are the relative errors, and (c,d) are the normalized standard 
deviations and correlation coefficients. 

Among the four products (Figure 10a,c), Liu’s [29] has the highest spatial resolution of 30 m. We 
found that Liu’s relative error and standard deviation in three phases were the lowest. The correlation 
coefficients were approximately 0.8. In contrast, the relative error of the European Space Agency 
Climate Change Initiative (ESA CCI) [34] was larger with more extreme values, whereas Global 
Human Settlement (GHS) [35] had the highest relative error. The public land cover datasets 
(MCD12Q1 in MODIS products) [36] data are only suitable for monitoring the change in land-use 
after 2000. Therefore, Liu’s product [29] best met the requirements of large-scale and long-term 
sequences in our study area. 

Second, we compared the accuracies of multiple population density products. No real measured 
1 km × 1 km population density map exists in China. We chose an indirect method for verification as 
a compromise. We aggregated the population density products according to the administrative 
boundaries of prefecture-level cities and compared them with the census data using evaluation 
metrics, including the relative error, standard deviation, and the correlation coefficient. 

As shown in Figure 10b, the relative errors of all products were close to zero. Overall, we found 
no obvious overestimation or underestimation. Among the four products, the relative errors of GHS 
[37] in 1990 and WorldPop [38] in 2010 were larger than those of the other products, with more 
extreme points and extensive distribution. The relative error distribution of Wang’s product 
produced in this article and Xu’s product [39] was more concentrated. In addition, Wang’s had fewer 
extreme data points and a smaller relative error; the standard deviation of Wang’s method was the 
lowest in these three time periods, and the correlation coefficient was high, within 0.95 to 1, as shown 
in Figure 10d. Finally, our population density map showed higher accuracy in our research area 
compared with the other population density datasets. 

5.2.2. Comparisons with Previous Studies of LCR, PGR, and LCRPGR 

The newly increased built-up areas in China increased by 37,950 km2, while the urban 
population increased by 250 million in 1990–2010. For every additional city dweller, the newly built-
up area increased by 151 m2. In 1990–2015, the global newly built-up area increased by 255,000 km2, 
while the urban population increased by 2 billion [40]. For every additional person in the global urban 
areas, the newly built-up area only increased by 102 m2. This finding shows China is developing at 
the expense of land and needs to promote urban intensification. 

China’s built-up area increased by 2.5 times, and the urban population increased by 1.7 times, 
from 1990 to 2010. Compared with previous research results, Wang et al. [4] reported that the built-
up area had more than doubled in 1990–2010. Schneider et al. [11] found that from 1978 to 2010, 
China’s built-up area and population had been growing with a threefold increase in urban areas and 
a twofold increase in population. Our results showed that the increase in both built-up area and 
population and the growth rates aligned with the previously published results. 

The LCR grew faster (1.8 times) than PGR from 1990 to 2010, with an LCR value of 0.09 and a 
PGR value of 0.05. Gao et al. [18] reported that China’s land expansion rate was higher than the 
population growth rate in 1990–2010; Nicolau et al. [9] found that Portugal’s land expansion has been 
faster than population expansion in the past few decades. A study of 10,000 selected urban centers 
worldwide showed that the urban land growth rate was 1.2 times greater than the population growth 
rate in 1990–2015 [40]. In this regard, China and many other countries are in a state of faster land 
expansion compared with population expansion. 

China’s LCRPGR values were 1.69 and 1.78 during the 1990–2000 and 2000–2010 periods, 
respectively. The findings show that cities sampled in developed countries received LCRPGR values 
of 2.1 and 1.9 in 1990–2000 and 2000–2015, respectively; the LCRPGRs of 194 stratified sampling cities 
worldwide were 1.68 and 1.74 for the same periods [10]. Our values are closer to the global LCRPGR 
average value and lower than those of the developed countries because China’s urbanization is 
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undergoing a period of formation. China’s urbanization processes are close to those of the United 
Kingdom in 1851, the United States in 1930, Japan in 1955, and South Korea in 1980. When China 
implemented the policy of reform and opening policy in 1978, the urban economy started developing. 
At present, China’s urbanization remains low, expressed by the industry and tertiary industry being 
constrained by factors such as institutions, markets, and industrial structure. 

China’s LCR is higher than PGR in 1990–2010 at the national level. The number of cities with a 
land growth being higher than that of population growth shows that some built-up areas in cities 
have expanded too fast, exacerbating the imbalance. For example, the built-up areas in many 
southeast coastal cities increased more than threefold. We also found a small number of cities with 
higher LCRPGR (LCRPGR > 3)—19 (5%) cities in 1990–2000 and 47 (14%) cities in 2000–2010 
indicating that LCR was much higher than the PGR in these cities, which reveals the need for more 
effective control of the intensity of urban expansion. 

5.3. Uncertainty and Limitations 

To assess the uncertainty of the SDG 11.3.1 indicator, we needed to evaluate the uncertainty of 
LCR with a focus on clear concepts, because the concept between a more semantic built-up area in 
the SDG and the classification in LULC products (Table 5) is heterogeneity. According to data from 
231 cities around the world, 59% of built-up areas was composed of public space [41]. The key 
difference lies in the definition of public space, including parks, gardens, and roads. Public space 
impacts the estimation of the built-up area. However, no product can accurately estimate the built-
up area due to inconsistent definitions and limited technology. As an alternative, many institutions 
and scholars adopted a compromise approach. For example, the U.K. used human-made surfaces [7] 
and France used artificial areas [8] as the built-up area. In practical applications, the classification of 
the LULC products relies more on data sources or training samples than on the semantic definition, 
resulting in a discrepancy when estimating built-up area boundaries [42]. We adopted the practical 
definition proposed by Song et al. [32], who retained the core area of the city and eliminated the rural 
areas in the periphery. Although the data differed from the metadata, our definition retained the 
content defined in the metadata to an extent and was suitable for calculation. 

From the long-term, broad space, and multi-scale observations, we have learned the 
shortcomings of the LCRPGR indicator, including the following three points: (1) when the LCRPGR 
value is negative, it is not possible to rely solely on the LCRPGR value to reflect whether population 
or land has grown, so the sign of LCR and PGR is needed; (2) when the LCR and PGR values are both 
negative and LCRPGR > 1, the built-up area reduces faster than the population. In contrast, when the 
LCR and PGR values are both positive and LCRPGR > 1, the rate of urban expansion is faster than 
the rate of population growth. Here, it is also necessary to rely on the signs of LCR and PGR; and (3) 
the LCRPGR indicator is not suitable for identifying new growth construction land converted from 
other land types or for the built-up area or population that remained a constant value in a spatial unit 
and period span. 

6. Conclusions 

In this study, we monitored land-use efficiency, including the LCR, PGR, and LCRPGR 
proposed by the internationally agreed-upon methodology in SDG 11.3.1 metadata. The results were 
obtained by extracting the percentage of built-up area and disaggregating the population using the 
datasets derived from EO and statistical data, covering 340 prefecture-level cities in mainland China 
from 1990 to 2010. The spatial heterogeneity and dynamic tendency of urban expansion and 
population growth were explained at grid, city, and national levels, and were compared with the 
data from developed countries. We assessed the hypothesis that EO can be used for official SDG 
indicator monitoring in China. The major findings are as follows: (1) more than 95% of cities 
expanded from 1990 to 2010, especially in the megacities with populations of 5–10 million; (2) grids 
with a reduced proportion of the population accounted for 47% and 54% in the two periods, 
respectively; (3) the LCRPGR value of China increased from 1.69 to 1.78 during the period of 1990–
2000 to 2000–2010, and the LCR was 1.8 times higher than the PGR in 1990–2010; and (4) the number 
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of cities with uncoordinated development increased twofold from 93 (27%) to 186 (54%) between 
1990–2000 and 2000–2010. Overall, the LCR is greater than the PGR, resulting in a one-third increase 
in the number of uncoordinated cities and a declining trend in land-use efficiency in 1990–2010. 

We quantitatively described the characteristics of the land and population growth rates in five 
sizes of cities, which can provide a theoretical basis for land planning and population control. Our 
population datasets provide information for other indicators listed in the SDGs (e.g., poverty, health, 
education, energy, inequality, and climate change). The processes and evaluation criteria used in this 
article can be extended to other countries or regions, providing a reference for a unified comparison 
of the SDG 11.3.1. Our proposed method is not limited by data resolution, so globally available LULC 
and population density data can be used to calculate SDG11.3.1 indicators. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: The whole 
list of 340 cities. 
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