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Abstract: Accurately mapping the spatial distribution information of soil organic carbon (SOC) stocks
is a key premise for soil resource management and environment protection. Rapid development
of satellite remote sensing provides a great opportunity for monitoring SOC stocks at a large scale.
In this study, based on 12 environmental variables of multispectral remote sensing, topography
and climate and 236 soil sampling data, three different boosted regression tree (BRT) models were
compared to obtain the most accurate map of SOC stocks covering the forest area of Lvshun District
in the Northeast China. Four validation indexes, including mean absolute error (MAE), root mean
square error (RMSE), coefficient of determination (R2), and Lin’s concordance correlation coefficient
(LCCC) were calculated to evaluate the performance of the three models. The results showed that the
full variable model performed the best, except the model using multispectral remote sensing variables.
In the full variable model, the regional SOC stocks are primarily determined by multispectral remote
sensing variables, followed by topographic and climatic variables, with the relative importance of
variables in the model being 63%, 28%, and 9%, respectively. The average prediction results of full
variables model and only multispectral remote sensing variables model were 8.99 and 9.32 kg m−2,
respectively. Our results indicated that there is a strong dependence of SOC stocks on multispectral
remote sensing data when forest ecosystems have dense natural vegetation. Our study suggests that
the multispectral remote sensing variables should be used to map SOC stocks of forest ecosystems in
our study region.

Keywords: soil organic carbon stocks; multispectral remote sensing; forestry ecology; spatial variation

1. Introduction

Forest ecosystems are the largest carbon pool in terrestrial ecosystems, which account for nearly
half of the global total terrestrial carbon stocks [1]. They also maintain 73% of the global soil carbon
pool and 86% of the global vegetation carbon pool, which is of great significance to the global
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carbon balance [2,3]. Compared with other terrestrial ecosystems, forest ecosystems demonstrate
higher productivity and constitute the largest contributor of primary productivity in the biosphere [4].
Accurately estimating the spatial distribution of soil organic carbon (SOC) stocks and clarifying its main
controlling factors are of great practical significance in regional carbon management and formulating
soil carbon sequestration policies [5]. The spatial distribution pattern of SOC stocks is affected by both
natural and human factors [6]. It is a challenging task to accurately predict the SOC stock in the region.
Also, due to the high cost for data collection, it is difficult to inventory SOC by intensive sampling.

With the development of remote sensing (RS), global position system (GPS) and geographic
information system (GIS) have opened up new approaches for the study of SOC stocks [7]. Those had
been widely used in the field of global and regional SOC stocks, spatial distribution difference of organic
carbon density and dynamic change of organic carbon [8]. The traditional research on carbon cycle is
limited by a small number of measuring points [9]. In contrast, remote sensing data with real-time
information can be combined with sampling data to broaden the research scope [10]. A mathematical
analysis is used to link the measured data and remote sensing imagery data to estimate SOC [11].
Each point in the remote sensing prediction method has its own pixel characteristic value [4]. After the
inversion model is established, the eigenvalues of each pixel are calculated by the model. Different
models to build the relationship between multispectral remote sensing data and sampling data have
been used to predict SOC stocks [10]. For example, Chen et al. [12] analyzed the potential relationship
between the topsoil SOC and the image element values of R, G and B bands of remote sensing images
based on the data of 28 sampling points of the study area, and estimated the SOC content using the
established logarithmic equation model. Fox et al. [13] collected the digital information of bare soil by
means of digital photography system in the Midwest research area of the United States, and obtained
the relationship between the Euclidean distance of pixel along the soil line and the content of organic
matter in the topsoil. The soil collected by Hill and Schütt [14] was taken back to the laboratory for
spectral analysis, and it was found that the characteristics of 0.35 µ m-1.4 µ m spectral band determined
the SOC content. Although there are various methods and techniques for SOC stocks estimation, there
are few researches based on tree model [8].

Tree-based learning algorithm has high accuracy and is easy to explain [15]. Different from
the linear model, the tree-based model can well express the nonlinear relationship [8]. Therefore,
tree-based model as a classical machine learning algorithm is widely used in the spatial prediction
of soil properties [8,16,17]. In general, it is unrealistic to build a single tree to accurately predict
soil properties, so researchers introduce bagging, boosting and random subspace methods into the
tree model to improve the model performance [16]. Boosted regression tree (BRT) is based on the
traditional classification regression tree algorithm, which generates multiple regression trees by
continuous random selection and self-learning, thus improving the stability and prediction accuracy of
the model [8]. In the process of operation, a certain amount of data is randomly selected through
repeated iterations to analyze the influence of independent variables on dependent variables [17].
The rest of the data is used for cross validation of fit results. Finally, the averages value of the generated
multiple regression trees and output is obtained. The model can calculate the relationship between
the independent variable and the dependent variable when other independent variables take the
mean value or remain unchanged. The biggest advantage of BRT is that there is no need to consider
the interaction between independent variables [8]. BRT model can be flexible to deal with linear,
polynomial, exponential, logistic, periodic, or general nonlinear problems. As a data mining method,
BRT model has many advantages, including its limited number of user-defined parameters and ability
to model nonlinear relationships. It also can effectively manage both of qualitative and quantitative
variables. The model is also robust when there is an absence of data and outliers and reduces over
fitting [7].
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With these advantages, the BRT model is widely used in many fields, such as environmental
science [18], medicine [19], ecology [20], remote sensing [21], genetics [22], and soil science [7]. For soil
science, remote sensing technology is widely used in soil sampling and the characterization of soil
properties [23]. Compared with the traditional method of soil type or land type assignment to estimate
SOC stocks in the region, multispectral remote sensing data is low-cost, faster and more accurate [24].
Most importantly, there are few researches on the prediction of SOC stocks using the BRT model
combined with multispectral remote sensing technology [17].

This study compared three BRT models with different combinations of environmental variables
to map the SOC stocks of forest ecological topsoil (0–30 cm) in the coastal area of Northeast China.
The special research objectives were to: (1) construct three BRT models based on 236 sampled data and
12 environmental variables to predict SOC stocks; (2) explore potential utilization value in the prediction
of SOC stocks, and (3) evaluate the potential application of this method for similar landscape areas.

2. Materials and Methods

2.1. Study Area

The study area is located in Lushun District (38.72◦–38.97◦N, 121.08◦–121.47◦E)), Liaoning Province,
Northeast China (Figure 1), and the southernmost part of Liaodong Peninsula. It is a municipal area
of Dalian City, with a total area of 512 km2. The terrain is low in the southwest and high in the
northeast. Its elevation is 0–466 m above sea level. There are a number of geomorphic types in the
area including middle and low mountains, hills, platforms, plains, and beaches. Its mean average
temperature is 8–11 °C, which is the warmest area in Northeast China. Its mean annual precipitation is
between 550–1000mm, more in the east than in the west, more in the north than in the south, increasing
from southwest to northeast. The area is dominated by forests, accounting for 53% of the total area.
In addition, it is also a national scenic spot, National Nature Reserve and National Forest Park. Its main
plant communities are coniferous forest, coniferous broad-leaved mixed forest, deciduous broad-leaved
forest, artificial broad-leaved forest, deciduous broad-leaved shrub, shrub grass, non-zonal vegetation
and agricultural vegetation. Its main soil types in this area are Cambisols (59%) and Fluvisols (17%)
(World soil resource reference base) [25].
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Figure 1. Location of the study area and sampling points, which are superimposed on a 30-m 
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Due to the abundant forest area (53.1% of the area) and the limited funding and rough roads, 
extensive field sampling is impractical. In order to truly and accurately reflect the spatial 
characteristics of SOC stocks, the purpose sampling method [26] is used to design sampling points in 
this study. According to the corresponding relationship between soil properties and soil forming 
environment, the method assumes that the soil formed in a similar environment is similar [27]. The 
fuzzy c-means clustering method is used to cluster the main environmental factors such as slope 
gradient, slope aspect, elevation, mean annual temperature, mean annual precipitation and 
normalized vegetation index. According to the fuzzy membership value of each point in the 
combination of environmental factors, the representative grid of the corresponding category of 
environmental combination of each point and the accessibility degree of sample points are 
determined [28]. Finally, the high representative points are selected as the design sample points in 
combination with the vegetation type map [27]. Twenty-four clustering results were generated, and 
8–10 samples were collected in each category, we obtained a total of 236 points in 2016. In order to 
determine the bulk density of soil, the undisturbed samples of 100 cm3 cores were collected in the 
center of soil layer. The samples were numbered and bagged respectively, and brought back to the 
laboratory for air drying before sample treatment; the bagged soil sample was dried by natural air, 
weighed, ground and passed through a nylon screen with a diameter of 2 mm. Soil samples were 
pretreated and measured in the Key Laboratory of agricultural resources and environment of 

Figure 1. Location of the study area and sampling points, which are superimposed on a 30-m resolution
remote sensing image.

2.2. Sampling Strategy and Experimental Method

Due to the abundant forest area (53.1% of the area) and the limited funding and rough roads,
extensive field sampling is impractical. In order to truly and accurately reflect the spatial characteristics
of SOC stocks, the purpose sampling method [26] is used to design sampling points in this study.
According to the corresponding relationship between soil properties and soil forming environment,
the method assumes that the soil formed in a similar environment is similar [27]. The fuzzy c-means
clustering method is used to cluster the main environmental factors such as slope gradient, slope aspect,
elevation, mean annual temperature, mean annual precipitation and normalized vegetation index.
According to the fuzzy membership value of each point in the combination of environmental factors,
the representative grid of the corresponding category of environmental combination of each point and
the accessibility degree of sample points are determined [28]. Finally, the high representative points are
selected as the design sample points in combination with the vegetation type map [27]. Twenty-four
clustering results were generated, and 8–10 samples were collected in each category, we obtained a
total of 236 points in 2016. In order to determine the bulk density of soil, the undisturbed samples
of 100 cm3 cores were collected in the center of soil layer. The samples were numbered and bagged
respectively, and brought back to the laboratory for air drying before sample treatment; the bagged
soil sample was dried by natural air, weighed, ground and passed through a nylon screen with a
diameter of 2 mm. Soil samples were pretreated and measured in the Key Laboratory of agricultural
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resources and environment of Liaoning Province to determine SOC (Potassium dichromate sulfuric
acid digestion method). Cores were dried at 105 °C for 48 h for soil bulk density measurement.

2.3. Environmental Data

In this study, 12 environmental variables representing multispectral remote sensing, topography
and climate were selected. Since the data were obtained from different departments, we resampled
them to raster data with a 30 m spatial resolution in ArcGIS 10.2. High precision environment variable
is one of the essential conditions for accurate prediction of SOC stocks. The environment variable
with high spatial resolution can provide more detailed attribute information, but the 30 m of spatial
resolution is enough to reflect the distribution characteristics of SOC stocks in the area.

2.3.1. Multispectral Remote Sensing Variables

L1T level Landsat-8 imageries were acquired from one image (Path-row: 120-33) downloaded
from the United States Geological Survey (USGS) covering the spatial domain of study area from July
to September 2016. In order to ensure image quality and avoid the interference of cloud on model
prediction, the cloudiness value error of the downloaded image data is controlled within less 10%.
The Environment for Visualizing Images (ENVI) Fast Line-of-sight Atmospheric Analysis of Spectral
Hypercubes (FLAASH) atmospheric correction method was used to correct the multispectral remote
sensing data. We used a bilinear interpolation method to resample these data to raster format with
a 30m spatial resolution in ArcGIS 10.2. The bilinear interpolation method takes the distance from
the sampling point to the surrounding 4 neighborhood pixels to calculate the grid value. The grid
value of the pixel is obtained by interpolation in Y direction (or X direction) and then in X direction
(or Y direction). The boundary cleaning and main filtering tools were used to generalize the edges
of the regions in the grid. According to the value of the neighborhood in each position, the edge
was smoothed by expanding and contracting the boundary, or increasing or reducing the area [29].
The selected multispectral remote sensing variables include green band (BGREEN) (0.52–0.60 µm), red
band (BRED) (0.63–0.69µm), near-infrared band (BNIR) (0.77–0.90 µm), normalized difference vegetation
Index (NDVI), and soil adjusted vegetation index (SAVI). Three selected bands were attributed to the
fact that they could represent the growth and biomass of vegetation, and the images of ground objects
were rich, distinct, and well-organized, and were used for vegetation classification and water body
recognition [16]. NDVI is widely used in the detection of vegetation growth state, and the closer its
value is to 1, the better the vegetation growth. Huete [30] proposed soil adjusted vegetation index
(SAVI) based on NDVI and a large number of observation data to reduce the impact of soil background.
Huete’s research [30] was conducted for the grassland and cotton fields, when L is 0.5, SAVI had a
better effect on eliminating soil reflectance. NDVI and SAVI were calculated as follows:

NDVI = (BNIR − BRED)/(BNIR + BRED) (1)

SAVI = (BNIR − BRED)(1 + L)/(BNIR + BRED + L) L = 0.5 (2)

where BNIR and BRED were expressed as near-infrared band and red band; L is a parameter with the
change of vegetation density, the value range is 0–1, the value for this study is set to 0.5.

2.3.2. Topographic Variables

Topographic variables data come from the Shuttle Radar Topography Mission and Digital Elevation
Model (SRTM DEM) with a 30 m resolution. Due to the limitation of the accuracy of Space Surveying
and mapping, only medium and small scale map data could be produced in the past. SRTM is a joint
measurement mission carried out by the National Aeronautics and Space Administration (NASA),
the national imaging and Mapping Agency (NIMA) of the United States Department of defense, Italy
and Germany. From 11 to 22 February 2000, this survey mission acquired radar image data of about
119 million km2 between 60◦N and 60◦S, covering more than 80% of the global land surface. Five
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terrain variables are selected in this study. Based on SRTM DEM data, four terrain variables are derived
by using Arc GIS 10.2 software, which are elevation, slope gradient, slope aspect, and plan curvature.
Topographic wetness index (TWI) is extracted by system for automated geoscientific analysis (SAGA)
GIS [31] software.

2.3.3. Climatic Variables

Climate data were obtained from China Meteorological Science Data Sharing Service System (http://
cdc.cma.gov.cn/), including MAP and MAT. Through collecting the MAT and MAP of 673 meteorological
stations in China in 30 years (from 1980 to 2020 calculated by monthly average value), the raster data
with 1 km resolution is generated by Kriging interpolation. Finally, the raster data were resampled to
generate a resolution of 30 m by using the nearest neighbor principle, and the altitude data were used
to correct it in ArcGIS 10.2.

2.4. Boosted Regression Tree

In this study, the BRT model proposed by Friedman et al. [16] was selected to predict the topsoil
SOC stocks of a forest ecosystem in Northeast China. The BRT method had two technical components:
boosting technology and regression tree [15]. Regression tree (RT) uses a set of predictive variables to
analyze response variables, and applies binary segmentation to fit the simple model to each result
part [17]. Boosting technology is to iterate multiple regression trees to make common decisions [7].
When the square error loss function is used, each regression tree drew conclusions and provided
residuals of all previous trees, and a current residuals regression tree is obtained by fitting. Regression
tree is the accumulation of regression trees generated in the whole iterative process [16]. The BRT
model is more accurate and fast through gradient lifting technology and multiple data optimization.

In this study, the BRT model was constructed by “gem” package [32] in R language environment.
In BRT model, four parameters required users to set: learning rate (LR), tree complexity (TC),
bag fraction (BF), and tree number (TN) [17]. LR represents the contribution of each tree to the growth
of the model [16]. TC represents the scale of the control tree and the interaction between variables [8].
BF sets the observation proportion for selecting variables [16]. NT represents the scale of the tree
based on the combination of LR and TC [17]. We tested different combinations of LR, TC, BF, and NT.
The optimal parameter combination was the one that provided the minimum predictive deviation.
Finally, we determined the optimal parameter settings LR, TC, BF, and NT as 0.025, 12, 0.75, and 1200,
respectively, so that the model demonstrated the best performance.

2.5. Model Evaluation

In order to evaluate the prediction performance of the three constructed BRT models on the spatial
distribution of SOC stocks, we choose a common test method, namely the 10-fold cross validation
technology. The dataset was divided into ten parts, nine of which were used as training data and
one as test data in turn. In order to evaluate the performance of the BRT model, four indexes are
calculated, including error (MAE), root mean square error (RMSE), coefficient of determination (R2)
and Lin’s concordance correlation coefficient (LCCC) [33], in R software 3.2.2. Their specific formulae
are as follows:

MAE =
1
n

n∑
i=1

∣∣∣xi − yi
∣∣∣ (3)

RMSE =

√√
1
n

n∑
i=1

(xi − yi)
2 (4)

http://cdc.cma.gov.cn/
http://cdc.cma.gov.cn/
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R2 =

n∑
i=1

(
xi − yi

)2

n∑
i=1

(
yi − yi

)2
(5)

LCCC =
2r∂x∂y

∂2
x + ∂

2
y + (x + y)2 (6)

where xi and y, represent the predicted value and measured value at point i; x and y are the mean of
the predicted and measured values; ∂x and ∂y represent the variance of the predicted and measured
values; n is the number of sampling sits; r is the correlation coefficient between the predicted value and
the measured value.

3. Results

3.1. Descriptive Statistics

The statistical results between SOC stocks and environmental variables at each sampling site are
shown in Table 1. The average value of SOC stocks is 9.07 kg m−2, and the coefficient of skewness is
0.37 kg m−2, indicating that SOC presents a slightly skewed distribution. In addition, since SOC stocks
are not evenly distributed on both sides of the average values, we Ln-transformed the SOC data s for
later modeling and simulation. The SD of the sampling point is 3.95 kg m−2, and it is lower than the
average value.

Table 1. Summary statistics of soil organic carbon (SOC) stocks (0–30 cm) and environmental variables
at samples sites.

Category Property Unit Min. Median Mean Max. SD Skewness Kurtosis

Soil SOC stocks kg m−2 1.37 9.30 9.07 20.86 3.95 0.37 −0.93

Remote sensing
imagery

BGREEN digital number 0.00 45.72 71.92 217.13 66.14 0.70 −0.93
BRED digital number 5.97 182.90 162.89 253.22 68.31 −0.58 −0.84
BNIR digital number 0.00 38.77 64.57 218.68 63.73 0.92 −0.43

NDVI 0.15 0.38 0.40 0.56 0.08 −0.18 0.30
SAVI 0.12 0.46 0.43 0.77 0.15 −0.43 0.58

Topography

Elevation m 4.96 52.63 65.51 272.63 49.78 1.66 3.56
Slope gradient degree 0.00 6.81 9.33 34.10 8.20 1.03 0.38
Slope aspect degree 0.00 223.20 194.53 350.83 101.29 −0.44 −0.94

Plan_cur −1.83 0.00 0.03 1.51 0.49 −0.44 2.73
TWI 2.45 4.27 4.70 10.07 1.51 1.00 1.32

Climate
MAT degree celsius 9.44 10.43 10.34 10.84 0.23 −1.32 2.73
MAP mm 600.95 602.64 606.05 618.14 3.85 1.53 1.85

Notes: SOC, Soil organic carbon; BGREEN, green band; BRED, red band 4; BNIR, near-infrared band; NDVI, normalized
difference vegetation index; SAVI, soil adjusted vegetation index; Plan_cur, plan curvature; TWI, topographic
wetness index; MAP, mean annual precipitation; MAT, mean annual temperature; SD, standard deviation; Min.,
minimum; Max., maximum.

In order to explore the relationship between Log-SOC stocks and environmental variables,
we calculated the Pearson correlation coefficient among them, as shown in Table 2. NDVI (r = 0.71),
SAVI (r = 0.63), elevation (r = 0.70), slope gradient (r = 0.68), and MAP (r = 0.28) were positively
correlated with SOC stocks. Correspondingly, SOC stocks was negatively correlated with BGREEN

(r = −0.57), BRED (r = −0.33), BNIR (r = −0.61), TWI (r = −0.59), and MAT (r = −0.35). Surprisingly,
the correlation between multispectral remote sensing variables and SOC stocks was significant in
this study.
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Table 2. Pearson correlation analysis between Ln-transformed SOC stocks and environmental variables based on 236 samples.

Property SOC Stocks BGREEN BRED BNIR NDVI SAVI Elevation Slope Gradient Slope Aspect Plan_cur TWI MAT

BGREEN −0.57 **
BRED −0.33 ** 0.33 **
BNIR −0.61 ** 0.63 * 0.31 **
NDVI 0.71 ** −0.71 ** 0.52 ** −0.47 **
SAVI 0.63 ** −0.63 ** 0.44 ** −0.36 ** 0.67 **

Elevation 0.70 ** −0.43 ** −0.23 * −0.49 ** 0.17 0.16
Slope gradient 0.68 ** −0.52 ** −0.12 −0.53 ** 0.08 0.09 0.63 **

Slope aspect 0.17 −0.06 0.06 −0.14 −0.05 −0.08 0.19 0.17
Plan_cur 0.07 −0.09 −0.08 −0.04 0.14 0.13 0.13 0.05 −0.07

TWI −0.59 ** 0.53 ** 0.24 * 0.41 ** −0.06 −0.06 −0.53 ** −0.73 ** −0.21 * −0.19
MAT −0.35 ** 0.27 ** −0.06 0.21 * −0.16 * −0.21 ** −0.37 ** −0.34 ** 0.09 0.07 0.21 *
MAP 0.28 ** −0.13 0.22 * −0.14 0.15 * 0.23 ** 0.31 ** 0.45 ** 0.16 −0.04 −0.27 * −0.13

Notes: p < 0.05 shown in “*”; p < 0.01 shown in “**”; SOC, Soil organic carbon; BGREEN, green band; BRED, red band 4; BNIR, near-infrared band; NDVI, normalized difference vegetation
index; SAVI, soil adjusted vegetation index; Plan_cur, plan curvature; TWI, topographic wetness index; MAP, mean annual precipitation; MAT, mean annual temperature.
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3.2. Model Performance

We compared the spatial prediction performance of three BRT models with different variable
combinations to predict the topsoil SOC stocks in Lushun, where is mainly controlled by forest
ecosystems. The accuracy verification results are shown in Table 3. Among all models, the full variable
model presents the best prediction performance, followed by the only multispectral remote sensing
data model, and the finally topographic and climatic variables model, which could explain the spatial
variation of 65%, 61%, and 53% SOC stocks in the region, respectively. The results showed that,
using the multispectral remote sensing variable, the prediction model (MAE = 0.11, RMSE = 0.13,
R2 = 0.61, and LUCC = 0.81) could catch up with the full-variable prediction model (MAE = 0.06,
RMSE = 0.07, R2 = 0.65, and LUCC = 0.87). Model A and Model C were significantly better than model
B (no multispectral remote sensing data). The density distribution map of the observed and predicted
values of the sampling sites further confirms this finding (Figure 2). Model A and Model C showed a
similar distribution trend, while Model C showed a steeper distribution pattern.

In order to further evaluate the performance of the model, we calculated the absolute residuals
of Model A and Model B at all sampling sites. We found that only a small part of the sampling sites
showed a decreasing trend and showed a small variation (Figure 3). In addition, we subtracted the final
prediction results of Model A and Model C using raster calculation module in ArcGIS 10.1, and formed
the prediction difference diagram of the two methods. The average and SD values of the difference
results were 0.32 kg m−2 and 4.67 kg m−2 respectively, which further showed that the difference
between Model A and Model C in the prediction of SOC stocks was not obvious in the region.

Table 3. Predictive quality of three boosted regression trees (BRT) models for SOC stocks.

Model Index Min. 1st Quartile Median Mean 3rd Quartile Max.

Model A

MAE 0.05 0.06 0.06 0.06 0.06 0.06
RMSE 0.07 0.07 0.07 0.07 0.08 0.08

R2 0.64 0.65 0.65 0.65 0.66 0.67
LUCC 0.86 0.87 0.87 0.87 0.87 0.87

Model B

MAE 0.14 0.15 0.15 0.15 0.15 0.15
RMSE 0.18 0.19 0.19 0.19 0.19 0.20

R2 0.51 0.52 0.53 0.53 0.54 0.55
LUCC 0.70 0.71 0.72 0.72 0.72 0.73

Model C

MAE 0.10 0.10 0.10 0.11 0.11 0.11
RMSE 0.12 0.13 0.13 0.13 0.13 0.13

R2 0.59 0.60 0.61 0.61 0.63 0.64
LUCC 0.80 0.81 0.81 0.81 0.81 0.81

Notes: Model A, full variables model (multispectral remote sensing variables + topographic variable + climatic
variables); Model B, only topographic and climatic variables; Model C, only multispectral remote sensing variables;
MAE, the mean absolute error; RMSE, the root mean squared error; R2, the coefficient of determination; LCCC, Lin’s
concordance correlation coefficient.
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Figure 3. Difference of absolute residual values between full variable model (Model A) and only
topographic and climatic variables model (Model B). Decreased: prediction accuracy decreased;
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To further evaluate the prediction potential of multispectral remote sensing variables, we calculated
the difference between the spatial mapping results of full variable model and only multispectral remote
sensing variables mode (Figure 4). As shown in Figure 4, only some areas showed a downward trend,
and the differences between them were slight. In addition, we also calculated the standard deviation
(SD) of a hundred iterations of the three models to further evaluate the performance and uncertainty.
From Figure 5, it could be seen that all models produce lower SD. The mean SD of Model A, Model B
and Model C were 0.17, 0.36, and 0.23 kg m−2, respectively.

Remote Sens. 2020, 12, 393 11 of 19 

 

Figure 3. Difference of absolute residual values between full variable model (Model A) and only 
topographic and climatic variables model (Model B). Decreased: prediction accuracy decreased; 
Improved: prediction accuracy increased. 

To further evaluate the prediction potential of multispectral remote sensing variables, we 
calculated the difference between the spatial mapping results of full variable model and only 
multispectral remote sensing variables mode (Figure 4). As shown in Figure 4, only some areas 
showed a downward trend, and the differences between them were slight. In addition, we also 
calculated the standard deviation (SD) of a hundred iterations of the three models to further evaluate 
the performance and uncertainty. From Figure 5, it could be seen that all models produce lower SD. 
The mean SD of Model A, Model B and Model C were 0.17, 0.36, and 0.23 kg m−2, respectively. 

 
Figure 4. Difference map of soil organic carbon stocks (kg m−2) derived from full variable model 
(Model A) and only multispectral remote sensing variables (Model C). 
Figure 4. Difference map of soil organic carbon stocks (kg m−2) derived from full variable model
(Model A) and only multispectral remote sensing variables (Model C).

3.3. Relative Importance of Environment Variables

Model A (full environment variable) was iterated 100 times and the mean relative importance (RI)
of each environment variable was calculated. For the convenience of analysis, the relative importance
of each environment variable was reduced to 100%. From Figure 6a, we found that NDVI, SAVI, B3,
elevation, TWI and MAP were the main environmental variables (accounting for 75% of the total relative
importance) that affect the spatial variation of SOC stocks in this region. In addition, multispectral
remote sensing variables played an important role in Model A (63%), followed by topographic variables
(28%) and climatic variables (9%). In addition, in Model C with only multispectral variables, BGREEN

(31%) showed the highest relative importance, followed by NDVI (27%), SAVI (22%), BNIR (11%),
and BRED (9%) (Figure 6b).

3.4. Spatial Distribution of SOC Stocks

Different from a single linear model, the results of each iteration with the BRT model were
different. Therefore, we selected the three BRT models by iterating 100 times and calculating their
average values as the final prediction results. Figure 7 showed the final prediction results of the three
models. The average prediction results of Model A, Model B, and Model C were 8.99, 10.22, and
9.32 kg m−2, respectively.
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4. Discussion

4.1. Effect of Multispectral Remote Sensing Variables on SOC Stocks

Multispectral remote sensing variables were the powerful and effectual variables in the full
variables model, which showed that multispectral remote sensing data can predict forest topsoil SOC
stocks, which is consistent with many previous research results [23,24,34–38]. In the Bale Mountains,
Ethiopia, Yimer et al. [24] concluded that vegetation was the main source of SOC stocks and affected its
distribution, and there was a significant positive correlation between vegetation and SOC stocks, which
has been certified in this study (Table 2). BGREEN and NDVI were efficient variables to characterize
vegetation density and biomass, so they were important predictors in predicting of SOC stocks [17].
SAVI is very sensitive to the change of soil background [30]. Many studies showed that there were
some potential applications of multispectral remote sensing data in SOC stocks mapping with better
natural vegetation coverage areas [7,17,34–39]. BGREEN is a better predictor than NDVI and SAVI in
the full variable model, although many scholars considered NDVI was a more effective and powerful
predictor [35,37]. Therefore, BGREEN should be recommended as an influential factor in the future
studies, especially in the areas with dense vegetation coverage. In addition, the Pearson correlation
coefficients of BGREEN, NDVI, and SAVI with SOC stocks are −0.57, 0.71, and 0.63, respectively, which
indirectly proved that they had potential value in mapping of SOC stocks. In Liaoning Province, China,
Qi et al. [7] pointed out that SAVI was a highly effective and powerful predictor in the prediction of
topsoil SOC in forest ecosystem. Yang et al. [17] found BGREEN and NDVI were the most important
remote sensing variables in the prediction of topsoil SOC in the Tibetan Plateau. Gomez et al. [38]
conducted multispectral remote sensing data were effective to deduce the spatial characteristics
information of SOC stocks. Kim and Grunwald [23] also proved that multispectral remote sensing
related variables could represent the spatial variability and quantity of soil carbon. In Tanzania,
Winowiecki et al. [39] found that the spatial distribution pattern of SOC stocks was closely related to
vegetation types and coverage. However, we would like to point out that, due to low-density sampling,
the sampling in the study may not be representative. The results might overemphasize the importance
of some variables in the model and increased the uncertainty of model prediction.
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Terrain related variables are good predictors of SOC stocks in complex terrain change areas [8,17].
As one of the five soil-forming factors [40], topographic variables as a common variable in digital
soil mapping (DSM) were selected as the main prediction factor in this study. In the process of SOC
stocks prediction, the relative importance of terrain related variable was lower than that of multi
spectral remote sensing related variable, which was consistent with previous research results [7,8,17,34].
Yang et al. [17] considered that, in the area with abundant vegetation, the influence of terrain elements
on SOC stocks was integrated by remote sensing variables. Elevation had the most important
influence on the spatial distribution of SOC stocks among all topographic variables. It was observed
that the terrain was highly variable in the region, and the elevation could adjust the role of local
microclimate [38]. Our research confirmed that the climate characteristics affected by elevation were
significantly correlated with MAP (0.35) and MAT (−0.28)

As the main climatic factors, MAP and MAT were widely used in the spatial simulation of
SOC stocks [8,36]. MAP was the fourth most important predictor in the full variable BRT model
(Figure 3) and played a more important role than MAT in predicting SOC stocks. In the mountain
ecosystem, the hydrothermal condition affected the decomposition and accumulation of organic matter,
indirectly impacting the spatial distribution characteristics of SOC stocks in those regions [17]. At the
micro-level, the increase of forest productivity means a large amount of input of soil organic matter [37].
However, low temperature will slow down the decomposition rate of SOC. Although SOC stocks
had a good correlation with MAP and MAT (Table 2), they were generated by data interpolation
of 673 meteorological stations in China. Its spatial resolution was 1000 m, which is too coarse to
characterize the spatial distribution of SOC stocks. In contrast, high spatial resolution remote sensing
data could improve the spatial distribution characteristics of SOC stocks in the prediction area, because
the data contain more detailed, higher resolution vegetation coverage information.

Our research concluded that the multispectral remote sensing data are effective to map SOC
stocks in high-density vegetation coverage area. Many studies have a similar conclusion regarding
the major controls of SOC distribution [7,34–37]. For instance, in the Qilian Mountains of China,
Yang et al. [17] used three bands of Landsat-5 TM (BGREEN, BRED, and BNIR) and random forest to
predict SOC and obtain higher prediction accuracy in the natural field (R2 = 0.72). Similarly, we used
three multispectral remote sensing bands (BGREEN, BRED, and BNIR), NDVI and SAVI constructed a
BRT model to predict the spatial distribution of SOC stocks in this densely covered natural vegetation
with a high prediction accuracy.

4.2. Uncertainty in Current Research

The uncertainty of the three BRT model predictions was shown in Figure 5. These results revealed
that the BRT model had excellent performance in predicting the spatial distribution of SOC stocks.
However, there were still some uncertainties in this study. First, this study was divided into different
groups to collect and analyze samples, so there might be sampling errors and experimental errors.
Second, all environment variables were resampled to 30 m spatial resolution in ArcGIS 10.2 using a
bilinear interpolation method, which will cause some method errors. Third, the accuracy and scale of
the environment data obtained from different platforms were different, which resulted in subsequent
modeling errors. Finally, this study was limited to the estimation of SOC in the topsoil (0–30 cm) forest,
which will lead to the underestimation of SOC stocks in the region. In the forest ecosystem, the SOC
stocks were generally stored in the deeper soil.

In addition, despite the success of using multispectral remote sensing data in this study, there
were still some aspects worthy of special attention. These include: (1) affected by the terrain and
clouds, the high-altitude areas were prone to produce shadows in the process of segmentation, so
these reflectivity errors were large in satellite imageries data; (2) terrain variables have proved to be a
powerful predictor of the spatial distribution of SOC stocks, especially in the forest ecosystem with
obvious terrain change and dense vegetation coverage. Therefore, we recommend that the terrain
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related variables shall be added to the remote sensing prediction model for future forest organic carbon
stock mapping.

Although the environmental conditions, sampling strategies, and sampling methods in this study
were different from previous studies, the performance of the BRT model prediction was comparable to
those studies. In Denmark, Adhikari et al. [41] used a regression kriging model and 18 environmental
variables as predictors to model the vertical distribution of SOC content, and which only explained
23%–43% of SOC content variability. Were et al. [42] used the RF model to predict the SOC stocks and
concluded that the RF model could explain 52% of the spatial changes of SOC in an Afromontane
landscape. In Liaoning Province of China, Wang et al. [43] used a BRT model and nine environmental
variables to predict the spatial distribution of SOC stocks of topsoil forests and could explain 58% of
the spatial change of SOC stocks.

5. Conclusions

By comparing three BRT models, the best prediction model of topsoil SOC stocks in Liaoning
coastal forest ecosystem was obtained. We found that using multispectral remote sensing variables
alone, the model was not inferior to the full variable model, suggesting that using the remote
sensing data is efficient and robust for predicting topsoil SOC stocks. The addition of climatic and
topographic variables could improve the performance of the prediction model to some extent. In the
selection of environmental variables, the use of multispectral remote sensing variables had a high
practical significance in the spatial simulation of topsoil SOC stocks. Our study suggests that, in the
future mapping of topsoil SOC stocks, especially in the forest ecosystem area with dense vegetation,
appropriate multispectral remote sensing variables should be selected. Our accurate mapping of SOC
stocks shall have great significance for studying the carbon cycle, soil fertility maintenance, and the
ecological environment protection of forest ecosystems in our study region.
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