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Abstract: Soil conservation and water retention are important metrics for designating key ecological 
functional areas and ecological red line (ERL) areas. However, research on the quantitative 
identification of dominant environmental factors in different ecological red line areas remains 
relatively inadequate, which is unfavorable for the zone-based management of ecological functional 
areas. This paper presents a case study of Beijing’s ERL areas. In order to objectively reflect the 
ecological characteristics of ERL areas in Beijing, which is mainly dominated by mountainous areas, 
the application of remote sensing data at a high resolution is important for the improvement of 
model calculation and spatial heterogeneity. Based on multi-source remote sensing data, 
meteorological and soil observations as well as soil erosion and water yield were calculated using 
the revised universal soil loss equation (RUSLE) and integrated valuation of ecosystem services and 
tradeoffs (InVEST) model. Combining the influencing factors, including slope, precipitation, land 
use type, vegetation coverage, geomorphological type, and elevation, a quantitative attribution 
analysis was performed on soil erosion and water yield in Beijing’s ERL areas using the geographical 
detector. The power of each influencing factor and their interaction factors in explaining the spatial 
distribution of soil erosion or water yield varied significantly among different ERL areas. Vegetation 
coverage was the dominant factor affecting soil erosion in Beijing’s ERL areas, explaining greater 
than 30% of its spatial heterogeneity. Land use type could explain the spatial heterogeneity of water 
yield more than 60%. In addition, the combination of vegetation coverage and slope was found to 
significantly enhance the spatial distribution of soil erosion (>55% in various ERL areas). The 
superposition of land use type and slope explained greater than 70% of the spatial distribution for 
water yield in ERL areas. The geographical detector results indicated that the high soil erosion risk 
areas and high water yield areas varied significantly among different ERL areas. Thus, in efforts to 
enhance ERL protection, focus should be placed on the spatial heterogeneity of soil erosion and 
water yield in different ERL areas. 

Keywords: ecological red line; soil erosion; water yield; remote sensing data; quantitative 
attribution; geographical detector 

 

1. Introduction 

Ecosystem services refer to products and benefits obtained by humans from the ecosystem, and 
constitute the basis for maintaining human survival and development [1,2]. In recent years, research 
on ecosystem services has achieved marked progress, primarily in fields such as ecosystem service 
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evaluation, trade-off and interaction mechanisms, ecological security patterns and payments for 
ecosystem services [3–6]. Research on ecosystem services has been conducted in a wide variety of 
areas, including ecologically vulnerable areas such as the Tibetan Plateau, the Loess Plateau, and 
Karst areas [7–9], and various ecosystems, including wetlands [10], forests [11], and grasslands [12]. 
Additionally, research also focuses on animal and plant species protection areas, including nature 
reserves [13] and national parks [14]. Soil erosion and water yield are important indicators for 
measuring ecosystem services. Research on soil erosion and water yield has mainly focused on spatio-
temporal patterns using models and the identification of impact factors through correlation analysis 
[15–20]. However, studies aimed at the quantitative identification of dominant factors and interaction 
factors, and indicating high soil erosion risk areas and high water yield areas remain rare. 

Currently, scientifically understanding the importance of ecosystems in areas of high ecological 
functional levels and evaluating the impact of environmental factors on ecosystem services will help 
to identify the leading ecological environment problems and foster ecological civilization 
construction [21]. China is currently implementing an ecological red line system with an aim to 
prohibit any industrialization and urbanization activity through strict management measures, and it 
is pushing to protect and restore ecological functions in vulnerable ecological areas to ensure safety 
in people’s living environments [22]. The delineation of the ecological red line constitutes spatial 
boundaries and management limits that must be strictly protected to safeguard national ecological 
security and to clarify key national or regional ecological security areas. Analyzing possible ecological 
problems in these areas can provide a scientific basis for industrial distribution, environmental 
protection, and prevent environmental degradation caused by human activities [23]. In Nationwide 
Major Function Oriented Zoning, published by China in 2011, 25 national key ecological functional 
areas were designated. Later, Opinions of the State Council of China on Strengthening Major 
Environmental Protection Work stated that ecological red line would be designated in China’s key 
ecological functional areas, terrestrial and marine vulnerable ecological areas. The Guide for 
Designating Ecological Red Line, which was published by the Ministry of Ecology and Environment 
of China in 2017, provided instructions for designating a national ecological red line. China has 
designated more than a quarter of its territory, exceeding 2.4 million km2 in total, within ecological 
red line areas. Now, the ecological red line has become a national policy and regional framework for 
ecological protection and development. Although some studies have been conducted from an 
ecosystem service perspective to designate, monitor, and analyze ERL areas at various scales [24,25], 
research on the identification of dominant factors affecting metrics of great ecological significance, 
such as soil erosion and water yield, particularly the quantitative identification of various 
environmental influencing factor interactions, remains inadequate. This is unfavorable for the 
implementation of ecological red line protection work, improvement, and enhancement of ecological 
functions noted in Several Opinions on Designating and Strictly Maintaining Ecological Red Line. 

The available research primarily focuses on the overall evolution of the characteristics in key 
ecological functional areas and ERL areas [23,26–28]. For example, Zhai [23] analyzed the changes of 
soil and water conservation and biodiversity threat level in Hainan Island of China. In comparison, 
there is little research aimed at the quantitative identification of dominant factors affecting soil 
erosion and water yield within and across ERL areas. Multisource remote sensing data are 
advantageous due to their heterogeneity, dynamics, and high accuracy, and they have become core 
basic data for evaluating regional scale ecosystem services and analyzing the underlying mechanisms 
of ecosystem services. With the development of remote sensing technology, high resolution remote 
sensing data can meticulously reflect the situation of the land surface. Combined with RUSLE and 
InVEST model, it can accurately simulate soil erosion and water yield in ecological red line areas. In 
this study, soil erosion and water yield in Beijing’s ERL areas were simulated using RUSLE and 
InVEST model based on multi-source remote sensing data as well as meteorological and soil 
observations. Additionally, the geographical detector was employed for the quantitative attribution 
of environmental factors affecting key ecosystem services in the soil conservation and water retention 
ERL areas. The dominant factors affecting soil erosion and water yield were identified by the 
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geographical detector with the goal of providing scientific support for ecological protection and 
management work in ERL areas. 

2. Materials and Methods 

2.1. Study Area 

Beijing’s ERL areas are distributed predominantly in the western and northern mountainous 
areas and encompass a total area of 4290 km2, representing 26.1% of Beijing’s total area. Based on 
their dominant ecological function, Beijing’s ERL areas are categorized into four types, specifically: 
soil conservation ERL areas (primarily distributed in the Xi Mountain area in the west); water 
retention ERL areas (primarily distributed in the Jundu Mountain area in the north, namely Miyun 
Reservoir, Huairou Reservoir and the upstream of Guanting Reservoir); biodiversity maintenance 
ERL areas (primarily distributed in the Baihua and Dongling Mountain in the west, the Song, Yudu 
and Haituo Mountain in the northwest, and the Labagoumen area in the north); important river and 
wetland ERL areas distributed in important rivers, lakes and wetlands, including the primary rivers 
(Yongding, Chaobai, Beiyun, Daqing and Jiyun River), three reservoirs (Miyun, Huairou and 
Gongting Reservoirs) and one channel (Beijing-Miyun Diversion Channel). The Beijing ERL areas 
map was obtained by Beijing Municipal Ecological Environment Bureau (sthjj.beijing.gov.cn), and 
obtained Figure 1 by digitization. In this study, Beijing’s ERL areas, with soil conservation and water 
retention being the dominant functions, were selected for dominant factors affecting soil erosion and 
water yield (Supplementary: Table S1). 

 
Figure 1. The spatial distribution of Beijing and ERL areas. 

2.2. Data Sources 

Remote sensing data include digital elevation model (DEM) data, land use data, normalized 
difference vegetation index (NDVI) data, and geomorphological type data (Supplementary Figure 
S1). DEM, NDVI, and land use data were all used for model calculation. NDVI data for the study area 
were obtained using the following method. Landsat 8 OLI images of 24 scenes were selected as the 
data source. These remote sensing images were preprocessed (radiometric calibration, atmospheric 
correction and orthorectification). Then, NDVI was calculated by a linear combination of reflectance 
values in the near-infrared and red band. Finally, NDVI data were obtained after such postprocessing 
treatments (outlier processing, data mosaicking, target area cropping, projection transformation). In 
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addition, taking the GF-1 images as the main data source, images have been preprocessed (projection 
transformation, geometric correction, image fusion) to improve the applicability of remote sensing 
data and the ability to identify ground objects. Then, according to the object-oriented classification 
method, land use type data were extracted through the processes (image segmentation, attribute 
calculation, feature selection, object classification). The interpretation data were verified based on the 
sample data collected on the land surface. As a result, the accuracy of the interpretation results was 
recognized by the Beijing Municipal Bureau of Ecology and Environment with the resolution of 15 
m. Daily meteorological data from 35 meteorological stations in Beijing and its surrounding areas 
were acquired (Supplementary Figure S2). Precipitation data were interpolated using professional 
interpolation software of ANUSPLIN (Supplementary Figure S3). For ANUSPLINE software, the 
SPLINE command was first executed to generate a list file, residual file, optimal parameter file, 
surface coefficient file, and covariate error information. Then LAPGRD command was used to 
generate the surface coefficient file and covariate error information, thereby obtaining the 
precipitation interpolation file and the standard error surface file. Mechanical composition data for 
soil were extracted from the China Soil Database (Version 1.1) of the Harmonized World Soil 
Database (HWSD) which were used to model calculation. Watershed distribution and soil depth data 
were also used to model calculation. In addition to the above data, we used geomorphological type 
data for the quantitative attribution of environmental factors. The data requirements and description 
are shown in Table 1. 

Table 1. Data requirements and description. 

Data Sources Resolution 
DEM Google Earth 9 m 

Watershed Beijing Municipal Ecological Environment Bureau  
Geomorphological 

Type 
Resource and Environment Data Cloud Platform 

(http://www.resdc.cn) 1:1000000 

Landsat 8 OLI images 
(2015, 2018) 

USGS 
(https://glovis.usgs.gov/) 

30 m 

GF-1 images 
(2015, 2018) 

China Centre for Resources Satellite Data and Application 
(http://www.cresda.com/CN/) 8 m 

Meteorological 
(2015, 2018) 

National Meteorological Information Center of China 
(http://data.cma.cn/) Monthly 

Mechanical Composition Cold and Arid Regions Sciences Data Center at Lanzhou 
(http://westdc.westgis.ac.cn/) 

1 km 

Soil Depth Soil Data Center, National Science & Technology 
Infrastructure of China (http://soil.geodata.cn) 

1 km 

2.3. Method 

2.3.1. RUSLE Model 

The RUSLE model [29] is a simulation model developed by the United States Department of 
Agriculture for predicting annual average soil erosion, one of the most widely used soil erosion 
prediction models in the world. The RUSLE model is expressed as follows: 

A R K LS C P= × × × ×  (1)

where A is annual soil erosion rate ( )1 1 at h yr− − , R is precipitation erosivity factor 

( )1 1 1 mm aMJ h h yr− − − , K is erodibility factor ( )1 1 1t a  ah h MJ mm h− − − , LS is slope length and 

steepness factor, C is vegetation cover land management factor, and P is the conservation and 
supporting factor. 
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The soil erodibility factor quantitatively describes the extent of soil erodibility. In this study, the 
soil erodibility factor was calculated using the erosion productivity impact proposed by Williams et 
al. [30]. 
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where Wd is sand fraction (%), Wi is silt fraction (%), Wt is clay fraction (%), and Wc refers to the content 
of soil organic carbon (%). 

The precipitation erosivity factor describes the extent of potential precipitation impact on soil 
erosion. In this study, the precipitation erosivity factor was calculated using Arnoldus [31] modified 
version of the precipitation erosivity equation proposed by Wischmeier. 
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where Pi and P represent monthly mean and annual average precipitation, respectively, and i 
represents the month, with the values of 1, 2..., 12. 

The slope length and steepness factor affects soil erosion mainly in two areas, namely, slope 
length (L) and slope (S). In this study, the LS factor was calculated based on 9-m DEM data 
downloaded from Google Earth, using Zhang’s [32] modified version of the method proposed by 
McCool [33,34] for calculating the LS factor as follows: 
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where λ is the slope length, α is the variable length-slope exponent, β is the coefficient of variation 
with slope gradient, and θ is the slope. 

Vegetation is the most sensitive factor affecting soil erosion [35]. Vegetation coverage has a 
relatively strong inhibiting effect on soil erosion. Thus, vegetation coverage is strongly correlated 
with the vegetation cover land management (C) value. In this study, C value was calculated based on 
30 m NDVI data using the method proposed by Cai [36] which has been used in Hebei Province, 
North China plain, and Chaobai River Basin in Beijing, China [37–39]. 
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where f is the vegetation coverage (%), C is the vegetation cover and management factor, NDVI is the 
normalized vegetation index, and NDVImax and NDVImin are the maximum and minimum values of 
the normalized vegetation index. 

Different soil and water conservation measures have different value of conservation and 
supporting factor (P), P є [0,1]. In this case, 0 means no erosion, and 1 means no water and soil 
conservation measures. There is no unified calculation method and standard for the P value. In this 
study, P value was assigned to each land use type based on the study by Xu [39] which is suitable in 
North China plain. Table 2 summarizes the assigned p values. 

Table 2. p value of different land use types in Beijing. 

Land use 
type 

Paddy 
field 

Dry 
land 

Garden 
plot Grassland Forest Waste 

grassland Water Construction 
land 

Bare 
land 

p Value 0.35 0.6 0.8 1 1 1 0 0 1 

2.3.2. InVEST Model 

The widely used InVEST model can comprehensively and dynamically evaluate ecosystem 
service functions on multiple scales [40]. Based on the Budyko coupled water–energy balance 
assumption [41], the water-yield module uses annual average precipitation data to calculate the water 
yield. Based on such factors of the study area as climate, soil depth, and land use type, water yield 
was calculated by subtracting the actual evapotranspiration from the precipitation in a specific grid 
cell as follows:  

( ) ( ) )(
)(

1 xP
xP
xAETxY ⋅







−=  (11)

where AET(x) and P(x) are the actual annual evapotranspiration and actual precipitation in the grid 
cell x, respectively. AET(x)/P(x) was calculated using the Budyko coupled water–energy balance 
assumption equation as follows: 
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where 𝐴𝐸𝑇(𝑥) 𝑃(𝑥)⁄  is the Budyko dryness index, which is defined as the ratio of potential 
evapotranspiration PET(x) to precipitation P(x), and PET(x) is the annual potential 
evapotranspiration (unit: mm) in each grid cell x, which is calculated using the standard Penman–
Monteith equation. 

( )xETlKxPET xc 0)()( ⋅=  (13)

( )
( ) 25.1)( +=
xP
xAWCZxω  (14)

where ET0(x) is the reference evapotranspiration in pixel x, Kc(lx) is the plant evapotranspiration 
coefficient associated on pixel x, which is largely determined by vegetative characteristic, while Z is 
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a seasonality parameter that represents seasonal precipitation distribution and other hydrogeological 
characteristics. AWC(x) is the plant-available water content. 

2.3.3. Geographical Detector 

Geographical detector is a statistical method for studying spatial heterogeneity and determining 
relevant influencing factors, and is currently extensively used in such fields as the natural [42], social 
[43] and environmental science [44] and human health [45]. The basic principle of geographical 
detector is that if the sum of variances in the subareas of an area is smaller than the total variance of 
the area, then there is spatial heterogeneity in the area, which may be measured using the q-statistic 
[46]. Geographical detector is capable of objectively reflecting the extents of impact for natural 
geographic elements on geographic phenomena. This method can reveal the driving forces behind 
soil erosion and water yield by detecting spatially heterogeneity in geographic phenomena. 
Geographical detector includes the factor detector, interaction detector, ecological detector and risk 
detector. 

The factor detector detects the extent to which X (environmental factors) explains the spatial 
heterogeneity of Y (soil erosion or water yield), namely explanatory power, measured by q value: 

SST
SSW

N
N

q
L

h hh −=−=  = 11 2
1

2

σ
σ

 (15)

2
1

2 , σσ NSSTNSSW L

h hh ==  =  
(16)

where h = 1,…, L is the stratification (i.e., classification or zoning) of the variable Y or factor X, Nh and 
N are the numbers of units in the layer h and the entire area, respectively; 2

hσ  and 2σ are the 
variances of the layer h and the entire area, respectively; SSW and SST are the sum of the intralayer 
variances and the total variance of the entire area; and q є [0,1]. The higher the q value, the higher 
explanatory power of the influencing factor for the spatial heterogeneity of soil erosion and water 
yield. Additionally, the dominant factors affecting soil erosion and water yield are identified based 
on the q value. 

The interaction detector is a unique advantage of geographical detector, capable of identifying 
the interactions of various factors. Whether two factors interact with one another and, if so, the 
intensity and direction of their interaction and whether their interaction is linear or nonlinear, can be 
determined by calculating and comparing the q value of each factor and the q value of the 
superposition in two factors [46]. The superposition of two factors is not only limited to a 
multiplication relation, but also includes other relations (Table 3). The interaction detector can detect 
the interaction of two factors if it exists. 

Table 3. Types of interaction between two covariates. 

Description Interaction 
( ) ( ) ( )( )1 2 1 , 2q X X M i n q X q X<  Weaken, nonlinear 

( ) ( )( ) ( ) ( ) ( )( )2,1212,1 XqXqMaxXXqXqXqMin <<   Weaken, single factor nonlinear 

( ) ( ) ( )( )2,121 XqXqMaxXXq >  Enhance, double factors 

( ) ( ) ( )2121 XqXqXXq +=  Independent 

( ) ( ) ( )2121 XqXqXXq +>  Enhance, nonlinear 

The ecological detector determines whether there is a significant difference in the impact of 
various factors on spatial distribution of soil erosion and water yield and is measured using the F 
statistic. The risk detector is used to determine high soil erosion risk and high water yield areas. The 
risk factor compares differences in layer 1 and layer 2 (soil erosion and water yield) of environmental 
factors to determine whether the impact of an influencing factor in each subarea significantly differs 
when the study area is stratified by a potential risk environmental factor and examines significance 
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using t statistic [47]. The environmental factor using t statistic compares differences in 1dY , 2dY and
3dY of factor D to check whether the soil erosion and water yield in each subarea is statistically 

different when ERL areas are stratified by factor D (environmental factors). It is assumed that soil 
erosion and water yield occur independently and identically over space. The greater the difference 
in significance, the higher the t statistic, the higher soil erosion risk and higher water yield areas. 
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where hY  represents the mean value of attributes in sub-area h, such as soil erosion or water yield, 
nh represents the number of samples in sub-area h, and Var represents variance. This statistic is 
distributed approximately as t statistic with a number of degrees of freedom (df) equal to: 
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The null hypothesis is H0: 1 2h hY Y= == . If H0 is rejected under a significant level α (usually 5%), 
it indicates that there is a significant difference between the soil erosion and water yield of subareas. 

3. Results 

3.1. Simulation and Pattern Analysis of Soil Erosion and Water Yield in Beijing and ERL Areas 

Based on the RUSLE model, Beijing’s average soil erosion in 2015 was 5.46 t·ha−1a−1, which is 
consistent with the average soil erosion range of 1.53–8.18 t ha−1a−1 in the mountainous areas of Beijing 
obtained through simulation by Zhou [48]. Soil erosion in Beijing was determined to exhibit spatial 
heterogeneity with relatively severe soil erosion of the Xi Mountain area in the west. This outcome 
agrees with the spatial distribution of soil erosion in Beijing calculated by Lu [49] based on 
Geographic Information System (GIS).Based on the RUSLE model, the range of soil erosion calculated 
for Beijing’s ERL areas was 0–571.74 t·ha−1 a−1, with an average soil erosion of 7.72 t·ha−1 a−1. Evidently, 
the average soil erosion was higher in the ERL areas than Beijing. The high value area of soil erosion 
included not only the soil conservation ERL areas, but also other dominant functional ERL areas. 
Based on the InVEST model, Beijing’s total annual water yield in 2015 was calculated to be 
approximately 2.761 billion m3, which is close to the total amount of Beijing’s water resources in 2015 
(2.676 billion m3), as reported in the 2015 Beijing Water Resources Bulletin. Additionally, the water 
yield of the Beiyun, Chaobai, Daqing, Jiyun, and Yongding Rivers in Beijing were also simulated. The 
simulated value of water yield was approximately equivalent to the statistic reported in the 2015 
Beijing Water Resources Bulletin, and the simulated trends were the same as those reported in the 
Beijing Water Resources Bulletin. Based on the InVEST model, the water yield of Beijing’s ERL areas 
in 2015 were calculated to be in the range of 0–639.94 mm. Soil erosion and water yield in Beijing and 
its ERL areas exhibited high spatial heterogeneity (Figure 2). Soil erosion in Beijing was primarily 
distributed in the mountainous areas, with low values in the plain. High water yield areas in Beijing 
were primarily distributed in the Beiyun River. The water yield of the Beiyun River catchment area 
was higher than that of other catchment areas. Regarding ERL areas, the Xi ERL area, with a 
significantly higher average elevation than other ERL areas, had relatively low vegetation coverage. 
The SW ERL area, with the highest average slope among the ERL areas, had the lowest precipitation 
and vegetation coverage. The BDL ERL area had the highest precipitation but lower slope and 
elevation than other ERL areas. The MY ERL area and SZL ERL area had the highest vegetation 
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coverage. The JD ERL area and BE ERL area had relatively high vegetation coverage and 
precipitation. Soil erosion and water yield differed significantly among ERL areas. Due to the 
combined action of multiple factors, such as geomorphological type, slope, precipitation and 
vegetation coverage, the Xi ERL area had the highest soil erosion among the ERL areas, and the BDL 
ERL area had the highest water yield (Supplementary: Table S2). 

 

Figure 2. Distribution of soil erosion (a), water yield (b) in Beijing and Beijing ERL areas(c). 

3.2. Quantitative Attribution of Single Factor Affecting Soil Erosion and Water Yield in ERL Areas 

The factor detector can determine the dominant factor affecting soil erosion and its explanatory 
power. The results of the factor detector were shown in Figure 3a, the dominant factor of soil erosion 
in Beijing was slope, with an explanatory power of 26.96%, and the dominant factor in Beijing ERL 
areas was vegetation coverage, which explained 36% of the spatial heterogeneity in soil erosion. The 
relatively significant difference and heterogeneity of slope in Beijing weakened the explanatory 
power of vegetation coverage for soil erosion. In comparison, as a result of the relatively insignificant 
difference in slope and the relatively significant difference in vegetation coverage, the latter was 
found to have a higher explanatory power for soil erosion than the slope in Beijing’s ERL areas. The 
explanatory power of precipitation for soil erosion in Beijing and its ERL areas was insignificant. The 
explanatory power of geomorphological type for the spatial distribution of soil erosion differed 
between the ERL areas. The explanatory power for Beijing was 10.66%, and the explanatory power 
for the ERL areas was less than 3%. Compared to its ERL areas, there is a richer variety of 
geomorphological type and more significant heterogeneity in geomorphological type in Beijing. Land 
use type and elevation were found to have similar explanatory power, which did not exceed 10%. 
The ecological detector results revealed that the impact of precipitation, vegetation coverage and 
slope on the spatial distribution of soil erosion in Beijing differed significantly from other factors, and 
the impact of vegetation coverage on soil erosion in the Xi ERL area and SW ERL area differed 
significantly from other factors. 

The significance of each environmental factor in affecting water yield differed among ERL areas, 
as shown in Figure 3b. Land use type had the highest explanatory power among environmental 
factors for water yield, exceeding 60% in each ERL area. Vegetation coverage had the second highest 
explanatory power for water yield in all areas except the JD ERL area. In the JD ERL area, 
precipitation was relatively abundant and exhibited high heterogeneity which had a higher 
explanatory power than vegetation coverage for water yield. Geomorphological type and slope both 
had low explanatory power for water yield in the ERL areas. The ERL areas have different natural 
conditions and differ relatively significantly in geomorphological type and elevation. A significant 
difference about explanatory power was found in elevation and precipitation for water yield in the 
ERL areas. The impact of land use type, vegetation coverage, elevation and precipitation on the 
spatial distribution of water yield in Beijing differed significantly from other factors. In comparison, 
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the impact of land use type on the spatial distribution of water yield in the ERL areas differed 
significantly from other factors. 

 

Figure 3. Statistics of q value affecting soil erosion (a) and water yield (b) in Beijing and ERL areas. 

3.3. Identification of Interactions Factors Affecting Soil Erosion and Water Yield in ERL Areas 

The interaction detector was primarily used to determine the explanatory power about the 
interaction of every two environmental influencing factors for soil erosion. The explanatory power of 
every two interaction factors for soil erosion in Beijing and its ERL areas was higher than that of the 
corresponding individual factors. The dominant interaction differed between different ERL areas. 
Table 4 summarizes the statistics of interactions, including the three with highest explanatory power. 
In both Beijing and its ERL areas, the interaction of vegetation coverage and slope had the highest 
explanatory power which was above 55% and was the main controlling factors for soil erosion. The 
area with high vegetation coverage can effectively reduce soil erosion, and the steep slope is prone 
to soil erosion. The superposition of vegetation coverage and slope greatly enhanced the 
interpretation of soil erosion. Each secondary dominant interaction was the superposition of 
vegetation coverage and another influencing factor. For Beijing, it was the interaction of vegetation 
coverage and geomorphological type; for the Xi ERL area and SW ERL area, it was the combination 
of vegetation coverage and precipitation. Beijing has a rich variety of geomorphological types which 
includes six types: plain, platform, hill, low relief mountain, middle relief mountain and high relief 
mountain. Environmental factors such as precipitation and slope differed relatively significantly 
between different geomorphological types. The superposition of vegetation coverage and 
geomorphological types enhanced the explanatory power for the spatial distribution of soil erosion. 
Precipitation is one of the primary driving forces for soil erosion and will aggravate soil erosion in 
the ERL areas. Beijing and its ERL areas were found to differ in the third dominant interaction of 
influencing factors and their explanatory powers were all more than 30%. 

The dominant interactions for water yield with the top three highest explanatory powers were 
determined which differed among the ERL areas (Table 5). In Beijing and its ERL areas, highest 
interaction factors were the superposition of land use type and another influencing factor. All of the 
dominant interactions had an explanatory power exceeding 60%, and there was little difference in 
explanatory power among the dominant interactions. The combination of land use type and 
precipitation could explain 81.1% of spatial distribution for water yield in the JD ERL area. Average 
precipitation was high in Beijing and the JD ERL area, with significant difference in precipitation. The 
superposition of land use type and precipitation significantly increased the explanatory power for 
water yield in Beijing and the JD ERL area. BE ERL area has a rich variety of geomorphological types. 
In this area, the superposition of land use type and geomorphological type enhanced the explanatory 
power for the spatial distribution of water yield. In the SZL ERL area, there was a relatively significant 
stratified heterogeneity in slope, and the superposition of slope and land use type explained 85.57% 
of the spatial distribution on water yield. Land use type and vegetation coverage were the top two 
dominant factors affecting water yield in the BDL ERL area and their superposition was found to 
significantly increase the explanatory power for the spatial distribution of water yield. Elevation 
varies significantly in the MY ERL area, and elevation indirectly affects such factors as precipitation 
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and vegetation coverage. As a result, the superposition of land use type and elevation explained 
80.36% of the spatial distribution for water yield in this area. 

Table 4. The dominant interactions of factors affecting soil erosion in soil conservation ERL areas. 

 Beijing Xi ERL area SW ERL area 
Dominant 

interaction1 
vegetation coverage ∩ 

slope 
vegetation coverage ∩  

slope 
vegetation coverage ∩ 

slope 
q value 0.579 0.682 0.586 

Dominant 
interaction2 

vegetation coverage ∩ 
geomorphological 

type 

vegetation coverage ∩ 
precipitation 

vegetation coverage ∩ 
precipitation 

q value 0.325 0.463 0.440 
Dominant 

interaction3 
slope ∩  

geomorphological 
type 

slope ∩  
precipitation 

vegetation coverage ∩ 
land use type 

q value 0.303 0.446 0.437 

Table 5. The dominant interactions of factors affecting water yield in water retention ERL areas. 

 
Beijing BDL ERL area MY ERL 

area  
SZL ERL area JD ERL 

area  
BE ERL 

area 
Dominant interaction1 LU ∩ 

precipitation 
LU ∩  
VC 

LU ∩ 
elevation 

LU ∩ 
slope 

LU ∩ 
precipitation 

LU ∩ 
GT 

q value  0.792 0.848 0.804 0.856 0.811 0.779 
Dominant interaction2 LU ∩ 

elevation 
LU ∩ 
slope 

LU ∩ 
GT 

LU ∩ 
elevation 

LU ∩ 
elevation 

LU ∩ 
slope 

q value 0.654 0.834 0.791 0.855 0.739 0.778 
Dominant interaction3 LU ∩ 

GT 
LU ∩ 
GT 

LU ∩ 
slope 

LU ∩  
VC 

LU ∩ 
slope 

LU ∩ 
elevation 

q value 0.634 0.788 0.770 0.851 0.735 0.768 
LU: land use type. VC: vegetation coverage. GT: geomorphological type. 

3.4. Distribution of High Soil Erosion Risk Areas and High Water Yield Areas 

The risk detector can be used to judge the most important types or ranges of environmental 
factors in high soil erosion risk areas and identify high soil erosion risk areas (at a confidence level of 
95%). In addition, it can also be used to detect whether there is a significant difference of its spatial 
distribution according to the impact on the average value of different influencing factor types, and 
thus the percentage of stratified combinations with significant differences can be counted (Table 6). 
High soil erosion risk areas were found to differ significantly between different areas. Unused land 
was found to have suffered the most severe soil erosion. This is because the surface of unused land 
is heavily exposed and the soil is unprotected by vegetation, and thus prone to erosion. Soil erosion 
differed between different ERL areas and increased with slope. Areas with slope greater than 35° 
were at high risk of soil erosion. No significant positive or negative correlation was found between 
precipitation and the spatial distribution of soil erosion. Furthermore, there was no significant 
correlation between vegetation coverage and the spatial distribution of soil erosion in Beijing. 
However, soil erosion in the Xi ERL area and SW ERL area was found to decrease with increasing 
vegetation coverage. Geomorphological type serves as background where soil erosion occurs. The 
formation of geomorphological type is complex and affects by a multitude of factors. The 
geomorphological type in high soil erosion risk areas were found to differ between different ERL 
areas. In Beijing, high relief mountainous areas at relatively high elevation were at high risk of soil 
erosion. In the Xi ERL area and SW ERL area, plain and platform at relatively low elevation were at 
high risk of soil erosion. The percentage of significant differences in each natural influencing factor 
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affecting soil erosion differed relatively significantly between different areas (Figure 4a). The strata 
difference in vegetation coverage was at maximum (100%) in the Xi ERL area. The strata difference 
in slope reached 100% in Beijing. The strata difference in elevation was 80% in the SW ERL area. The 
strata differences in each of land use, precipitation, and geomorphological type reached relatively 
insignificant. 

The risk detector was used to explain the difference in the significance of each influencing factor 
between areas and identify high water yield areas. High water yield areas differed relatively 
significantly between different areas (Table 7). In all ERL areas except BDL ERL area, construction 
land was found to have high water yield. The construction land has a large area of impervious layers 
which is easy to form surface runoff. However, low coverage grassland had high water yield in the 
BDL ERL area. With the difference in root depth and coefficient of evapotranspiration, low coverage 
grassland had significant influence for water yield. Unused land had high water yield in Beijing. 
Unused land has a low coefficient of evapotranspiration and is weak for soil and water conservation. 
which has high potential for the formation of runoff. Slope is one of the most important factors 
reflecting underlying surface properties. A negative correlation was found between water yield and 
slope in Beijing and MY ERL area. No significant correlation was found between water yield and 
slope in other ERL areas. No significant positive or negative correlation was found between 
precipitation, elevation and vegetation coverage and the spatial distribution of water yield. 
Additionally, the ranges of these three factors resulting in high water yields also differed. The 
geomorphological type serves as an important background where runoff occurs and is affected by 
many factors. As a result, high water yield areas in different ERL areas were found to differ in 
geomorphological type. The impact factors in the different ERL areas had significant combined 
percentage differences in the amount of water yield (Figure 4b). The strata difference in precipitation 
differed relatively significantly between different ERL areas and reached 94.44% in Beijing, 52.38% in 
the JD ERL area, and 0 in all other ERL areas. The strata difference in elevation differed relatively 
significantly in Beijing and all ERL areas except the BE ERL area. Land use type differed significantly 
among areas. The strata difference in land use type reached 81.29% in Beijing and over 20% in the 
ERL areas. The strata difference in geomorphological type reached 100% in Beijing and was relatively 
insignificant in the ERL areas. The strata differences in slope and vegetation coverage were low. 

Table 6. High soil erosion risk in soil conservation ERL areas. 

 Beijing Xi ERL area SW ERL area 
Elevation (m) 1783–2007 229–451 7–229 

Geomorphological type High relief mountain Plain Platform 
Precipitation (mm) 507–530 530–553 576–599 

Land use type Unused land Unused land Unused land 
Slope (°) >35 >35 >35 

Vegetation coverage 0.3–0.4 0.5–0.6 0.4–0.5 

Table 7. High water yield areas in water retention ERL areas. 

 
Beijing BDL ERL  

area  
MY ERL area SZL ERL  

area  
JD ERL 

area  
BE ERL  

area 
Elevation (m) 7–229 229–451 7–229 673–895 229–451 7–229 

Geomorphological 
type 

Plain Plain Hill Hill High relief 
mountain  

Plain 

Precipitation (mm) 668–691 645–668 576–599 622–645 645–668 553–576 
Land use  

type 
Unused 

land 
Low coverage 

grassland 
Construction 

land 
Construction 

land 
Construction 

land  
Construction 

land 
Slope (°) 0–5 >35 0–5 30–35 >35 5–10 

Vegetation coverage 0.1–0.2 0.1–0.2 0.3–0.4 0.4–0.5 0.4–0.5 0.4–0.5 
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Figure 4. The percentage of stratification combinations with significant difference in each influencing 
factor affecting soil erosion (a) and water yield (b). 

4. Discussion 

Important ecological functional areas are essential for fostering national ecological civilization 
development, establishing an ecological security pattern, containing the deteriorating trend of 
ecosystem services and facilitating the harmonious coexistence of humans and nature. Soil erosion 
and water yield are key metrics for evaluating ecological environments in key ecological functional 
areas. In this study, Beijing’s ERL areas were found to differ significantly in the spatial distribution 
and quantitative attribution characteristics of soil erosion and water yield. A quantitative attribution 
analysis was performed on soil erosion and water yield in Beijing and its ERL areas in 2015–2018 
(each of four years) to analyze the impact of climate and land use changes on attribution analysis 
results (Supplementary Tables S3–S6). The results for these four years were found to be consistent. 
Vegetation coverage was found to be the dominant factor affecting the spatial distribution of soil 
erosion in Beijing’s ERL areas, with an explanatory power exceeding 30%. Land use type was the 
dominant factor affecting the spatial distribution of water yield in Beijing’s ERL areas that the 
explanatory power exceeded 30%. These results confirmed that this study’s findings were applicable 
to the ERL areas and could provide the reference for the protection of ERL areas. 

Vegetation coverage was found to be the dominant factor affecting the spatial distribution of soil 
erosion in Beijing’s soil conservation ERL areas. Interception by vegetation canopies can effectively 
reduce raindrop energy and increase rainwater infiltration. Plant roots can enhance soil’s resistance 
to erosion. Therefore, vegetation coverage is a sensitive factor affecting soil erosion [50]. In terms of 
the water yield in Beijing’s ERL areas, land use type was found to be the dominant factor, having the 
highest explanatory power among the factors. Land use changes underlying surface conditions and 
affects precipitation interception, infiltration and runoff processes. Different land use types differ 
relatively significantly in hydrological effects [51]. Elevation and precipitation were found to differ 
relatively significantly in the explanatory power for water field in the ERL areas. This difference may 
be due to significant differences among ERL areas in geomorphological type and climatic factors. 
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The interaction detection results indicated that vegetation coverage and slope had a combined 
explanatory power over 55% for soil erosion, suggesting that steep slope with relatively low 
vegetation coverage is extremely prone to soil erosion. Zhang [52] noted that soil erosion was 
primarily distributed on steep slope in the Xi Mountain area of Beijing and found aggravated soil 
erosion in areas with large slope and relatively low vegetation coverage. This finding agreed with the 
finding of this study that the superposition of vegetation coverage and slope will enhance the 
controlling effect on soil erosion. High soil erosion risk areas and the critical value of each influencing 
factor differed between Beijing’s ERL areas. Unused land was found to be associated with a high risk 
of soil erosion. Transforming unused land by implementing such projects as afforestation and 
greening the barren hill can effectively curb soil erosion. Forest and grassland were found to have a 
low risk of soil erosion in the Xi ERL area and SW ERL area, respectively. The interaction detector 
was used to detect the interactions of factors affecting water yield. The results indicated that the most 
significant interactions for water yield were superposition of land use type and another influencing 
factor. Owing to their relatively significant difference in natural conditions such as geomorphological 
type and climate, the factor superposed with land use type varied between different ERL areas. For 
example, Wu [53] pointed out that climate and land use changes were the primary causes of change 
in the water yield of Guanting Reservoir in Beijing. Similar conclusions were derived from this study. 
The combination of land use type and precipitation in the JD ERL area was found to enhance the 
controlling effect on water yield and have an explanatory power as high as 81.1% for water yield. 

ERL is the base of regional ecological security in China. Monitoring, evaluation and attribution 
analysis of dominant ecosystem services in ERL areas will effectively help maintain and improve 
ecological functions and facilitate sustainable social economic development. In this study, the RUSLE 
and InVEST models were employed to simulate Beijing’s ERL areas and calculate soil erosion in 
Beijing’s soil conservation ERL areas and water yield in Beijing’s water retention ERL areas. 
Additionally, geographical detector was used to examine the dominant factors affecting the spatial 
distribution of soil erosion and water yield in Beijing’s ERL areas and their interactions. Moreover, a 
quantitative attribution analysis was performed on soil erosion and water yield. The results can 
provide the reference for accurately managing ERL areas. The LS, C, and P factors in the RUSLE 
model were calculated using 9-m DEM data, 30-m NDVI data and 15-m land use data, respectively, 
which significantly improved simulation accuracy. However, the P factor more suitable for Beijing 
which relies on field investigation and observation of experimental station should be further explored 
in the future work. Ecosystem services are inseparable from human activity. Human disturbances 
such as the construction of terraced fields, slope farmland, and fish-scale pit have a relatively 
significant impact on soil erosion. In future investigations, focus should be directed to the impact of 
human factors on soil and water conservation and the correction of the related models based on 
human influencing factors. Additionally, it is also necessary to quantitatively study different 
ecosystem services in ERL areas and to identify the dominant influencing factors for their trade-off 
or synergy interactions. These efforts will help to ensure environmental quality and ecosystem 
integrity and stability in ERL areas. 

5. Conclusions 

In this study, ERL areas in Beijing are mainly located in deep and shallow mountains, which 
have strong spatial heterogeneity because of the complicated terrain. Compared with the ecological 
environment of the plain, mountainous areas remain more complex because the vertical zonality of 
the ecological environment. Using high resolution remote sensing data is important for reflecting the 
spatial heterogeneity. The RUSLE and InVEST models were employed to calculate soil erosion and 
water yield in Beijing and its ERL areas. Additionally, geographical detector was used to examine the 
dominant factors affecting the spatial distribution of soil erosion and water yield in Beijing’s ERL 
areas and their interactions, and to identify high soil erosion risk and high water yield areas. The 
following conclusions were drawn and were expected to provide the reference for controlling and 
managing key ecological functional areas. 
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Factors were found to affect soil erosion and water yield in Beijing and its ERL areas to vary 
extents. Due to its significant difference in Beijing, slope had an explanatory power of 26.96% for the 
spatial distribution of soil erosion in Beijing. In the soil conservation ERL areas, primarily at relatively 
high elevation and with relatively steep slope, vegetation coverage had an explanatory power 
exceeding 36% for soil erosion which the reason may be canopy interception reducing erosion 
dynamic and root distribution which can consolidate of soil and prevent soil erosion. Land use type 
had the highest explanatory power for water yield which was exceeding 60% in Beijing, as well as 
the water conservation ERL areas. 

Relative to the explanatory power of individual factors, the interaction of any two impact factors 
was found to increase the explanatory ability for soil erosion and water yield. The dominant 
interactions for soil erosion and water yield differed between different ERL areas. The superposition 
of vegetation coverage and slope was found to significantly enhance the explanatory power for soil 
erosion, explaining more than 50% of its spatial distribution. This suggested that implementation of 
such programs as “Grain for Green” and “Natural Forest Protection Program” could effectively 
prevent and control soil erosion. In terms of water yield, the superposition of land use type and 
another influencing factor was found to slightly enhance the explanatory power. The explanatory 
power of this superposition differed between areas due to area differences in natural geographical 
background which were above 70% in all ERL areas. 

In the control and management of ERL areas, it is necessary to comprehensively consider the 
natural geographical backgrounds in different ERL areas. In this study, based on the spatial 
distribution characteristics of soil erosion and water yield, as well as the identified dominant factors, 
high soil erosion risk areas in different soil conservation ERL areas and high water yield areas in 
different water retention ERL areas were identified. The following areas were identified as key 
control and management areas: slopes greater than 35°, areas at elevations below than 450 m in the 
soil conservation ERLs of Beijing. The key areas for different water retention ERLs are slightly 
different: slopes of 0–10°, areas at elevations below 250 m in the MY ERL area and BE ERL area, slopes 
greater than 30°, elevations below than 450 m in the BDL ERL area, SZL ERL area, and JD ERL area. 

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/12/3/399/s1, Figure 
S1. The spatial distribution of meteorological stations and precipitation in Beijing of 2015; Figure S2. 
Geomorphological types of Beijing; Figure S3. Spatial distribution of monthly precipitation in ERL areas; Table 
S1: Beijing’s ERL areas; Table S2: Statistics of soil erosion, water yield and environmental factors in Beijing and 
ERL areas; Table S3: Statistics of q value about factors affecting soil erosion in soil conservation ERL areas; Table 
S4–S6. Statistics of q value about factors affecting water yield in water retention ERL areas of 2016, 2017 and 2018. 
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