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Abstract: Quantifying western U.S. rangelands as a series of fractional components with remote
sensing provides a new way to understand these changing ecosystems. Nine rangeland ecosystem
components, including percent shrub, sagebrush (Artemisia), big sagebrush, herbaceous, annual
herbaceous, litter, and bare ground cover, along with sagebrush and shrub heights, were quantified at
30 m resolution. Extensive ground measurements, two scales of remote sensing data from commercial
high-resolution satellites and Landsat 8, and regression tree models were used to create component
predictions. In the mapped area (2,993,655 km2), bare ground averaged 45.5%, shrub 15.2%, sagebrush
4.3%, big sagebrush 2.9%, herbaceous 23.0%, annual herbaceous 4.2%, and litter 15.8%. Component
accuracies using independent validation across all components averaged R2 values of 0.46 and an
root mean squared error (RMSE) of 10.37, and cross-validation averaged R2 values of 0.72 and an
RMSE of 5.09. Component composition strongly varies by Environmental Protection Agency (EPA)
level III ecoregions (n = 32): 17 are bare ground dominant, 11 herbaceous dominant, and four shrub
dominant. Sagebrush physically covers 90,950 km2, or 4.3%, of our study area, but is present in
883,449 km2, or 41.5%, of the mapped portion of our study area.

Keywords: sagebrush; rangeland; fractional vegetation; shrub; bare ground; herbaceous; Landsat;
remote sensing; land cover

1. Introduction

Arid and semiarid rangeland ecosystems comprise one-third of the Earth’s terrestrial environment
and provide critical ecosystem services to human populations around the world [1,2]. Increasing
direct and diffuse anthropogenic usage and threats on these ecosystems create an urgent need to better
understand their biodiversity, function, mechanisms of change, biogeochemical cycles, and current
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distribution [3–7]. Rangelands are important sources of livestock forage, critical wildlife habitat,
provide water resources, control erosion when managed properly, and modulate fire activity [8].
Rangelands in the western U.S. are highly variable, being composed of several major ecosystems,
with each facing unique threats, and each with unique flora. Shrubland ecosystems include desert
shrubland, California chaparral, salt desert shrubland, and sagebrush shrubland [8]. Grassland
ecosystems dominate the short and mixed grass prairies of the Great Plains, annual grasslands in the
Central Valley of California [9], and desert grasslands in the Sonoran and Chihuahuan Deserts.

The most common shrubland in the West, sagebrush, estimated to have once covered much of
west and southwestern Canada, now occupies only approximately 56% of its historical range [10]. The
contraction and degradation of the ecosystem is due to agricultural conversion, improper livestock
grazing, increased fire intervals, invasive species, resource development, and climate change [11–17].
Ecosystem changes have impacted the flora and fauna, altered soil vitality, invasive species susceptibility,
fire risk, and climate vulnerability [5,18–23]. Large-scale annual exotic grass invasion of species such as
cheatgrass (Bromus tectorum) and medusahead (Taeniatherum caput-medusae), especially in the western
parts of the ecosystem, have dramatically increased fire frequencies and made large regions vulnerable
to permanently transitioning out of sagebrush shrubland [24,25]. At least 350 sagebrush-associated
species have been identified as warranting concern [26], with sage grouse (Centrocercus urophasianus)
receiving much of the conservation focus [13,27,28]. Continued change forces will likely further
fragment and degrade remaining sagebrush areas [13,15]. Many of the other ecosystems of the West
are subject to similar change agents including renewable and non-renewable energy production,
mining, invasive species, land conversion, and woody plant expansion. Updated understanding of
the abundance and quality of remaining sagebrush, and other rangeland, habitats is paramount to
developing new scientific models and management tools [29,30].

Inventorying and quantifying western U.S. rangelands over large geographies with remote
sensing has been evolving for many years. First-generation remote sensing efforts in the 1990s were
produced on a state-by-state basis as land cover vegetation maps to support analysis of wildlife habitats
and species distributions (i.e., gap analysis [31]). Next-generation efforts in the 2000s were part of
more comprehensive database approaches developed across multi-state geographies to characterize
rangelands into broad land cover classes through the National Land Cover Database [32] or represented
as ecological systems by LANDFIRE [33]. Availability of these large area databases has facilitated
better understanding of the general distribution of rangeland as land cover; however, these approaches
have still proven inadequate to characterize rangelands with enough detail to facilitate local resource
management and change monitoring. To be useful to monitoring agencies and on the ground operators,
satellite monitoring of rangeland needs to correspond with units that these entities are familiar
with and avoid calibration to small regions [34]. Hence, next-generation characterization work has
focused on developing fractional predictions of shrub and grass components that can better localize
characterization needs and improve the ability to monitor change across time [35–40]. For highly
heterogeneous rangeland ecosystems, vegetation cover usually has a large range of variability, making
it difficult to quantify effectively using only thematic land cover characterization. This new fractional
component approach depends upon multi-scaled use of satellite imagery and intensive field sampling
to capture rangelands as synergistic vegetative and bare ground components capable of then being
re-assembled into a variety of habitat and monitoring applications [36,38,39]. However, to date,
this approach which requires extensive field sampling, has not been applied to large regions of the
western U.S.

This research effort characterizes western U.S. rangelands as a series of nine fractional cover
components at 30 m resolution. Components include percent shrub, sagebrush, big sagebrush,
herbaceous, annual herbaceous, litter, and bare ground cover, and sagebrush and shrub height in
centimeters. Quantifying the landscape as a series of multiple components provides greater flexibility
to create a complete range of habitat, management, and site indicator products and analysis. In
this paper, we report the completion of our component characterization over much of the western
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U.S. This paper has three specific objectives. First, we report on total quantities and distributions of
mapped components with associated validation accuracies. Second, we report U.S. Environmental
Protection Agency (EPA) level III ecoregion [41] average component cover and climate associations.
Third, we evaluate key fractional component proportions to better quantify and visualize component
spatial distributions.

2. Materials and Methods

2.1. Study Area Description

This paper focuses on a large area of the western U.S. over a region covering parts of 16 states.
We mapped the region as a series of 27 smaller mapping units over a 5-year span to accommodate
field data collection logistics (Figure 1). Elevation varies across the region from a low of −86 m to a
high of 4421 m. Vegetation varies widely and spans all altitudinal zones including alpine, subalpine,
montane, foothills, and plains vegetation communities. In the alpine zone, vegetation communities are
often above the tree line and consist of native shrub and perennial forb and grassland communities.
Forest and woodland tree communities dominate the subalpine and montane zones, but substantial
portions are occupied by herbaceous and shrubland communities, which often occur as an early
successional response to disturbance before being ultimately replaced by trees. Shrub and herbaceous
communities of the plains and foothills zones of the Great Plains and North American deserts EPA
Level I ecoregions [41] constitute the greatest portion of our study area. Shrub vegetation is dominated
by native shrub species, with herbaceous vegetation containing both native and exotic perennial and
annual forb and grassland areas.
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Figure 1. Mapping regions and field data used in model development and assessment of fractional 
cover components in the western U.S. Mapping region names are indicated by italicized text, and 
state abbreviations annotated. Inset map shows the nominal year in which field observations and 
Landsat imagery were obtained for each region. 

2.2. Methods 

We quantified nine rangeland ecosystem components, including percent shrub, sagebrush, big 
sagebrush, herbaceous, annual herbaceous, litter, and bare ground cover, along with sagebrush and 
shrub heights, at 30 m resolution. This process was completed by independent mapping regions 

Figure 1. Mapping regions and field data used in model development and assessment of fractional
cover components in the western U.S. Mapping region names are indicated by italicized text, and state
abbreviations annotated. Inset map shows the nominal year in which field observations and Landsat
imagery were obtained for each region.

2.2. Methods

We quantified nine rangeland ecosystem components, including percent shrub, sagebrush, big
sagebrush, herbaceous, annual herbaceous, litter, and bare ground cover, along with sagebrush and
shrub heights, at 30 m resolution. This process was completed by independent mapping regions
(Figure 1), which were subsequently mosaicked into a cohesive regional product. Mapping regions
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required extensive ground measurements for model training and validation, and two scales of remote
sensing data. High-resolution satellite imagery (HRS) commercially available from WorldView-2,
WorldView-3, QuickBird, or Pleaides resampled to 2 m nominal resolution provided the first scale
for ground level interaction and measurement. Landsat 8 imagery acquired between 2013 and 2017
provided the second scale for landscape modeling. Mapping regions represented relatively similar
ecological conditions and were identified by grouping one or more EPA level III ecoregions [41].
Mapping based on regions allowed for the collection of field and HRS data from the correct season of a
single year. Also, since regression tree models tend to flatten the dynamic range of each component,
dividing mapping into regions tends to limit this effect while exposing the regional regression tree
model to more locally pertinent data, which also tends to improve model accuracy and relevancy.
The main processing steps are described in Figure 2. Methods covering field measurement, image
processing, component modeling, product masking, product validation and product analysis are
described in detail below.
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2.2.1. Field Sampling

Our field measurements created the foundation for all component modeling and validation.
We targeted field measurements to coincide with HRS observation whenever possible to ensure
correspondence in vegetation phenology. We used two field measurement protocols: a validation plot
protocol using a randomized design for model assessment (described in the component validation
section) and a more dynamic training plot protocol described here. Achieving acceptable model
accuracy at the mapping region scale requires adequate distribution and quantity of training plots. To
ensure training data collection was logistically feasible, field measurement was done on pre-selected
HRS sites, which were located to collectively contain the full range of biophysical, ecological, and
climatic conditions across each mapping region. HRS sites were strategically located in each mapping
region through analysis of Landsat imagery, elevation, ecoregion boundaries, National Land Cover
Database (NLCD) 2011 land cover, road accessibility, and public land access [39]. HRS images from
the WorldView-2, WorldView-3, Pleiades-1, or QuickBird sensors were tasked for collection over each
sample area at the approximate time the field crew was expected to be doing ground measurement.
Hence, field crews typically had the satellite images to assist with analysis and placement of ground
sampling. Further, any cloud or shadow cover present in the HRS image could be avoided in the field.
If satellite images were not available, we used 1 m National Aerial Image Program (NAIP) imagery
only to aid in field sampling. In these cases, HRS imagery was still used for component modeling.
HRS sites were typically a single acquired image, approximately 15 by 15 km in size. All HRS imagery
was ortho-rectified and resampled to 2 m nominal resolution prior to field data collection.

Initially, in the 2013 mapping region, we sampled predetermined locations on HRS deemed to
be ecologically and spectrally critical to mapping with the goal of covering the range of cover values
present for each component. This approach was cumbersome and quite slow. So, in later years
(2014–2017), we evolved to an approach in which individual plots were dynamically selected for
sampling, while still maintaining the goal of covering the range of cover values for each component.
Specifically, on each HRS site, we simultaneously examined imagery displayed on a tablet (equipped
with Environmental Systems Research Institute ArcMap and sub-meter accuracy global positioning
system (GPS) units (Geneq inc. SX Blue II, Anjou, QB, Canada) and ground conditions. Criteria
for plot selection included collecting adequate samples to represent the 1) cover histogram of each
component, 2) topographic conditions; various elevation, aspect, and slopes, 3) range of management
practices (i.e., grazed versus ungrazed, intensity of grazing, etc.), vegetation condition, or disturbances,
and 5) the gross range of color and brightness of bare ground (referencing soil color charts when
necessary) within each HRS site. Field plots needed to be homogenous over a large enough patch
size to find the corresponding pixels on the HRS imagery, and so the vegetation patches measured
were at minimum 2 m by 2 m in size. Overall, the sampling approach was dynamic based on the
complexity of the sample area, available access, timing of the satellite collection and field sampling
logistics. Although this approach required in-the-field judgment on where and how many samples
should be collected, it dramatically reduced field sampling time and improved predictions over other
more inflexible pre-determined methods used in 2013 by allowing ad hoc selection of plots by field
personnel. To maintain consistency and rigor in the sampling procedures, the same field personnel
collected data during the entire course of the research. Field personnel were extensively and regularly
trained together to improve measurement consistency among personnel, HRS sites, and mapping
regions and to calibrate field plot measurements to target components.

HRS plots varied in size and shape depending on the area of the patch being sampled, ranging
from one 2 m pixel (4 m2) to 100 2 m pixels (400 m2). The average plot size on HRS imagery was
approximately eight 2 m pixels (32 m2), which typically reflected the size of vegetation patch needed
to gather reliable measurements. The goal was to make plots as large and homogeneous as possible,
with a maximum size of 400 m2. Small, single pixel, plots were sometimes necessary to capture more
extreme component values. Plots were edited/digitized in the field using ArcMap with component
cover or height attributed to each plot on site. At each plot, we recorded an ocular estimate of cover for
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each component [36], with the total cover of all primary components (shrub, herbaceous, litter, and
bare ground) and tree cover (not mapped) in a plot summing to 100%. We found that the potential
reduction of accuracy and consistency in ocular estimation of component cover relative to pin drop
methods, Daubenmire frames, etc., was more than compensated for in the vastly increased number of
data points collected.

The shrub component encompassed numerous species and was discriminated by the presence of
woody stems on a plant approximately <6 m tall (Table S1). The sagebrush component encompassed
almost all species of sagebrush (Artemisia spp.) including big sagebrush (Artemisia tridentata), low
sagebrush (Artemisia arbuscula), black sagebrush (Artemisia nova), three-tip sagebrush (Artemisia triparta),
and silver sagebrush (Artemisia cana). However, we strived to exclude prairie sage (Artemisia frigida) and
white sagebrush (Artemisia ludoviciana) from the sagebrush component as these suffrutescent shrubs
were more spectrally and ecologically similar to herbaceous vegetation and subsequently grouped with
the herbaceous component. Distinguishing the big sagebrush subspecies for sagebrush is important
as big sagebrush is a critical indicator of sage grouse habit and landscape status/function. The big
sagebrush component was dominated by big sagebrush (Artemisia tridentata spp.) but, because of
spectral and ecological similarities, may also contain areas of three-tip sagebrush and silver sagebrush.
The herbaceous component consisted of all grasses (live and residual standing), forbs, and cacti. The
annual herbaceous component included only annual grasses and forbs (based on [42]), which in
many portions of the study area were dominated by invasive grass species such as cheatgrass (Bromus
tectorum), medusahead (Taeniatherum caput-medusae), red brome (Bromus rubens), or annual mustards
such as tumble mustard (Sisymbrium altissimum), and tansy mustard (Descurainia pinnata). Annual
herbaceous native species also are present in this component, but their cover is typically insignificant.
The litter component included the combined cover of dead standing woody vegetation, detached
plant and animal organic matter, and biological soil crusts. The bare ground component included any
exposed soil or rocks. The average height of all shrubs and sagebrush in the plot was measured (in cm)
using meter sticks on a representative shrub. Though we did not produce a fractional tree canopy
cover map, a fractional component map developed by the U.S. Forest Service [43] was considered
throughout production. See Table S1 for a complete description of each component.

We also collected additional training data outside of HRS sample areas to supplement the overall
training pool. These Landsat-scale training plots (n = 5382) were designed to focus on large landscape
features that may have been underrepresented in HRS sample areas, but still needed representation
in the training pool (Figure 1). Using the same plot measurement technique employed with the
high-resolution data collection, these plots were located directly on Landsat imagery. Additionally,
Assessment, Inventory and Monitoring (AIM) data collected by the Bureau of Land Management
(BLM) plots were added in mapping regions where available [44] (Figure 1). AIM data are standardized
field observations of rangeland component cover collected to assess the condition and trend of natural
resources. Further processing steps were required to ensure AIM data were directly relevant to
our other training data, including aggregating the AIM classes into six components (bare ground,
annual herbaceous, herbaceous, sagebrush, litter, and shrub). Next, we ensured AIM plots occurred
on enough homogenous Landsat pixels to justify inclusion in our training data. Plots located on
spectrally heterogeneous areas were deemed too diverse for training samples and were excluded.
Following these procedures approximately half (n = 3226) of the available AIM data were included in
model development.

2.2.2. Satellite High-Resolution Image Processing and Modeling

Field data samples from within HRS sites were used as training data to predict fractional cover of
nine different components on HRS images using a Cubist regression tree algorithm [45] following [38,39]
at 2 m resolution. Our default condition choices were 10 committee members, 500 maximum rules
and 10% extrapolation. Based on testing numerous settings, these parameters represented the best
options to maximize the robustness of the models. All HRS bands were used in predictions applied
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across the entire HRS footprint for each of the nine components. Once predictions were completed,
masking to exclude non-rangeland areas such as urban areas, agriculture, water bodies, and forests
was performed. This exclusion process was typically done in three steps. First, an unsupervised
classification on the HRS was completed to identify target clusters that represented forested areas for
masking exclusion. Next, non-rangeland areas such as urban, water, and agricultural were identified
using ancillary data and operator interpretation for exclusion. Finally, cloud or cloud shadow areas and
snow were identified manually and excluded. The result was nine separate component predictions,
with non-relevant areas excluded, ready for aggregation to 30 m scale model training data.

2.2.3. Landsat-Scale Image Processing and Modeling

For each mapping region, we aggregated the 2 m HRS predictions by averaging within 30 m pixels
to serve as training data for regional predictions. Once aggregated to 30 m training pixels, data were
filtered through summation of the four primary components (percent bare ground, shrub, herbaceous,
and litter) for each pixel. Summation of the primary components should equal 100%, as they did so in
all field plots. Deviation in summation from 100% suggests non-rangeland spectral contaminants in
the pixel, or one or more inaccurate component predictions, which render the pixel less desirable for
training. Hence, only pixels that had summation values that ranged from 90% to 110% were retained
for potential training, with over 90% of the training data pool in each region meeting this criterion.
Errors that exist in the HRS predictions can be propagated into the regional predictions but are critical
to increasing the sample size and to scale plot observations up to Landsat scale. Additionally, HRS
predictions form most of our training data pool (Figure 1). From the potential training pool for each
region, 120,000 points were randomly selected as training for each component. Several, non-rangeland
dominant ecoregions including the Arizona/New Mexico Mountains, Southern California, San Juan
and Sangre de Cristo Mountains, Yellowstone, and Idaho regions were trained using a combination of
Landsat-scale observations within the region and HRS predictions, Landsat-scale observations, and
AIM data from a ~100 km buffer into the surrounding regions.

Training data for each region were stratified into three roughly equal bins of low, medium, and
high values defined by the average and standard deviation (SD) of the pool. Values less than the
average minus 1 SD were grouped into a low bin, values greater than the average plus 1 SD were
grouped into a high bin, and the remaining values were considered in the middle bin. The final
component training pool represented an approximately equal ratio of training data from each bin.
Binning values helps regression tree models better represent high and low component cover values,
spreading the prediction histogram [36,46]. Supplemental Landsat-scale training data collected outside
HRS footprints were then added to the final pool of training for each component.

Landsat imagery was the key independent input for our fractional component models. We used
U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center Moderate
Resolution Imaging Spectroradiometer (eMODIS) weekly Normalized Difference Vegetation Index
(NDVI) data [47] to select the ideal dates of Landsat imagery for each region based on periods of
best phenological separation among our primary components. For each region, we selected three
image dates corresponding to green-up (spring), peak greenness (summer), and leaf off/post-peak (fall).
While there is spatial variation in phenology within regions, we 1) strove to reduce this variation by
delineating mapping regions based on common ecology, and 2) chose seasonal dates that represent
the average phenology of regions. Though 8 day repeat Landsat datasets are available, we chose to
maintain our methods as consistently as practical to those developed in 2013 prior to widespread
adoption of automated image compositing methods such as Google Earth Engine (GEE). For the
Great Basin and southwestern regions, nominal year 2013 and 2014 Landsat 8 images were used
following the Multi-Resolution Land Characteristics (MRLC) image protocol [48] (Figure 1 inset).
For the Wyoming/Montana region, nominal year 2015 Landsat 8 images were used following the
EROS Science Processing Architecture (ESPA) image protocol [49]. For the Colorado and Columbia
Plateaus, Blue Mountains, and Three Forks regions, nominal year 2016 Landsat 8 Analysis Ready Data
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products generated with version 3.1.2 of the Landsat Ecosystem Disturbance Adaptive Processing
System (LEDAPS) were used [50]. Nominal year 2017 LEDAPS imagery was used for the Central
California, Northeast California, Grand Canyon, Middle Rockies, and Southwest Tablelands regions.
In the Wasatch Mountains, Arizona/New Mexico Mountains, Southern California, San Juan and Sangre
de Cristo Mountains, Yellowstone, and Idaho regions, we used GEE to produce composite seasonal
images from 2016–2018. All four protocols standardize Landsat imagery to at-satellite reflectance with
Albers Equal Area projection. We created seasonal seamless imagery mosaics across Landsat path/rows
in each region [39]. All seven Landsat 8 spectral bands (1–7) from each of three seasonal images were
applied for the 2013–2015 mapping regions, with six Landsat 8 spectral bands (2–7) applied for the
2016–2017 regions. Band 1 was excluded in the 2016–2017 regions as we found that it provided little
additional information relative to our mapping, and occasionally introduced noise. We also generated
three spectral indices from each image: Normalized Difference Water Index (NDWI), Normalized
Built-up Index (NBDI), and Soil Adjusted Vegetation Index (SAVI).

In addition to Landsat 8 imagery, other ancillary and image data were also key to the regression
tree modeling. Ancillary data included slope and aspect products derived from a digital elevation
model (DEM) to help stratify the model to appropriate topographical features. We also used the
Landsat 8 thermal band (band 10, from the summer date), which functioned in our model as a
DEM surrogate sensitive to summer topographic differences, which helped better stratify component
elevation responses. Using a DEM product directly in our models produced model artifacts in
preliminary predictions, but using the thermal band avoided these artifacts. We also used 30 m rescaled
eMODIS data [47] when necessary to complement Landsat data seasonality, especially in regions with
more dynamic phenology. Specifically, if regional analysis deemed the Landsat seasonal mosaics
insufficiently captured important phenological stages, we created a 30 m Landsat 8 surrogate for the
necessary seasonal date using downscaled eMODIS data. For this process, two methods were used
based on regional applicability, either a regression tree [45] process [51] or the Spatial and Temporal
Adaptive Reflectance Fusion Model (STARFM) algorithm [52]. Both created “Landsat-like” images
in temporally missing portions of the seasonal Landsat record to better discriminate components.
Analysis showed that inclusion of these images analogous to Landsat improved regional predictions,
especially for herbaceous and annual herbaceous components, as evidenced by more robust regional
independent and cross-validation statistics.

In the eastern and northern portions of the Montana region, where abundant herbaceous cover was
commonly interspersed with low to moderate shrub cover (Figure 3, [53]), Landsat spectral data often
produced insufficient component accuracies. To improve component discrimination, we developed a
shrub/herbaceous index to improve regression tree modeling of the shrub and herbaceous components.
This index was calculated as:

(shrub− herbaceous cover)
(shrub + herbaceous cover)

. (1)

The index was applied to our 30 m scale training data, then modeled across the Montana region
using Cubist regression trees for subsequent use as an independent variable in shrub and herbaceous
component modeling. We found that inclusion of the shrub/herbaceous index in the independent
variable stack resulted in a ~5% improvement in the accuracy assessment of the shrub and herbaceous
cover components in the Montana region.

We mapped components individually with regression models produced by Cubist version 2.08 [45]
for each of the nine components using all imagery, spectral indices, and ancillary data layers. Shrub and
herbaceous secondary components (sagebrush, big sagebrush, and annual herbaceous components)
were restricted to occur only in pixels with predicted values >0% of their respective primary component
(i.e., parent component; Table S1). Shrub and sagebrush height were also restricted to occur in pixels
with predicted values >0% in their respective parent component. To mitigate relatively rare cloudy
areas in the Landsat 8 mosaics, a supplementary model that identified and ignored cloudy areas
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was completed. This model predicted components from the remaining cloud-free seasons to make
component cover estimates in cloudy areas or mosaic artifacts in the original prediction.Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 26 
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litter in the western U.S.

To ensure recently burned areas were properly modeled, burned areas were identified using
Geospatial Multi-Agency Coordination [54] fire perimeters. Fire events in the mapping year, and
previous 4 years, were filled using a prediction generated with the season of imagery corresponding to
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post-burn conditions. In the Montana and Black Hills regions, data from the Monitoring Trends in
Burn Severity fire perimeters after 2009 were also used to recode shrub, sagebrush, and big sagebrush
to 0% within burn areas exhibiting high or moderate fire severity. We assumed after a severe fire that
remaining live shrubs in the sagebrush ecosystem are rare [55,56], and since using the remote sensing
prediction alone to identify remaining live shrubs created unacceptable commission error, setting the
prediction to 0 in the year of the fire created less overall error.

Regional fractional cover maps were mosaicked to form a study area-wide component product.
Each mapping region shared an overlap boundary with the adjacent region, and a cutline was used
within a masked area or along a terrain feature to stitch regional predictions together.

2.2.4. Component Masking

We used two types of component masking to ensure we mapped only on relevant areas;
non-rangeland and extent. Non-rangeland component masking removed non-rangeland portions of
our study area, such as agricultural, urban, water bodies, and forest. Extent masking was designed
to restrict component distribution to areas where the component occurs, which is only necessary for
annual herbaceous, sagebrush, and big sagebrush. Extent masking was typically based on thresholds
defined by a combination of elevation, aspect, and latitude. Specifically, these maps restricted the
distribution of annual herbaceous at high elevation >~2300 m and sagebrush and big sagebrush at high
elevation >~2700 m. In the Montana, Black Hills, and Wyoming regions, decision tree classifications
were used to separate the mapping regions into occurrence and non-occurrence areas for sagebrush,
big sagebrush, and annual herbaceous. Decision tree models were trained on occurrence from field
plots and included seasonal Landsat 8 composites and ancillary data (slope and aspect). Final masks
derived from the decision tree output were hand edited to ensure occurrence and non-occurrence areas
were appropriate. Regions outside the occurrence area for a given component were re-coded to 0%.

For the non-rangeland mask, we identified forest areas using a combination of the NLCD 2016
fractional tree canopy cover product [43] with a threshold greater than 40% and NDVI or Modified
Soil-Adjusted Vegetation Index (MSAVI) greenness thresholds. The MSAVI threshold remained
relatively constant by mapping region season of imagery. In order to be masked as forest, all three
seasons of Landsat image needed to be greater than the MSAVI threshold. Next, urban areas, major
roads, snow, and ice were masked according to NLCD 2011 land cover classes [32]. Third, cultivated
crop and pasture/hay fields were masked using a combination of the 2013 Cropland Data Layer for
the U.S. from the U.S. Department of Agriculture, National Agricultural Statistics Service [57] and the
NLCD 2011 agricultural classes, supplemented in certain regions with a combination of NDVI and
MSAVI greenness thresholds. Fourth, open water areas in the Landsat mosaics were masked using the
Normalized Difference Water Index (NDWI), defined as:

(green− SWIR)
(green + SWIR)

(2)

where SWIR is the shortwave infrared. A NDWI threshold (held constant among mapping region and
season) was used to isolate water pixels, which was combined with the water class from NLCD 2011.
Available HRS imagery was also used when available to help calibrate these masking models [39]. The
final non-rangeland mask was validated by comparison to Landsat imagery and random samples from
high-resolution images on Google Earth. Supplemental hand edits were then applied where issues
needed correction.

2.3. Component Validation

We validated component predictions using three approaches: independent and cross-validation
across the entire study area, and error maps within each mapping area. Independent validation was our
primary validation approach, consisting of field measurements of component cover at stratified-random
locations. Independent validation data were collected by the same field crews that collected field
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training samples to minimize human sample bias between training and validation measurements.
Cross-validation data were obtained randomly from portions of HRS 30 m training sites withheld from
model predictions.

Independent validation point placement used a stratified random design, with two levels of
stratified restrictions to simplify logistics of field sampling. The first level of stratification randomly
selected 15, 8 km in diameter, sites across each mapping region. First level sites excluded areas less
than 30 km away from HRS training sites and other validation sites. The second level stratification
randomly placed 6–10 points within each 8 km validation site (total n = 1860 points at n = 227 sites).
Only sites on public land, between 100 and 1000 m from the nearest road, and in rangeland vegetation
cover within each site were considered. The random points within a site were evenly allocated to
three NDVI thresholds from a leaf-on Landsat image (low, medium, and high). Sites with relatively
high spatial variance within a 90 m by 90 m patch (3 × 3 Landsat pixels) were excluded to minimize
plot-pixel locational error. Using NDVI as a stratum ensured plot locations were distributed across the
range of validation site productivity. At each validation point, we measured component cover in a
1 m2 quadrat every 5 m along a 30 m transect, averaging the seven observations for single plot values.

The secondary validation, cross-validation compared predicted component values to the values
of 30 m training data at HRS sites withheld from model development. From each region, we selected
40,000 random pixels for evaluation. Results were proportionally weighted by the mapped area of
each region to produce spatially balanced statistics for the entire study area. Validation parameters in
both the independent and cross-validation included the coefficient of determination (R2), slope, root
mean squared error (RMSE), and normalized RMSE (nRMSE). For the independent validation, we
also calculated the 95% confidence limits of linear least-square regression models of field-measured
versus predicted component cover, and the distance (in cover percent) between the upper and lower
confidence limits.

A third validation approach used regression tree error maps generated in model development to
characterize each component’s spatial error. This product was designed to assist users in understanding
how model uncertainty is distributed spatially across the landscape and provide additional information
to help determine the appropriate scale and confidence at which to apply the predictions. Component
error maps from the Cubist regression modeling represented the mean absolute error between prediction
and field-based estimates, based on rules, and were in the same unit as the prediction (either component
percent error or centimeter height error). Error maps were not analyzed in the current study because we
used them chiefly as internal reference, but they can be provided with each corresponding component
prediction on a region-by-region basis.

2.4. Component Analysis

We analyzed the spatial distribution of components using multiple metrics. First, we evaluated the
histograms of components across the study area to derive the area (km2) covered by each component,
calculating by summing the fractional cover across pixels. We calculated the portion of the mapped
area with predictions greater than zero cover/height and the average value by component. Next, we
calculated the quartile statistics (1st quartile, mediation, 3rd quartile, maximum) for each component to
generate box plots, with whiskers set to minimum and maximum values. Second, we determined EPA
level III ecoregion average fractional component cover. For each level III ecoregion in the study area
(n = 32), we calculated the 1981–2015 average water year (October–September) precipitation, maximum
temperature, and minimum temperature using Daymet climate data [58]. Third, key component
proportions were derived, including (1) shrub cover proportion of total rangeland vegetation (shrub
plus herbaceous) cover, (2) annual herbaceous proportion of herbaceous cover, (3) big sagebrush
proportion of sagebrush cover, and (4) other sagebrush (sagebrush minus big sagebrush) proportion of
sagebrush cover.
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3. Results

3.1. Component Predictions

A total geography of 2,993,655 km2 was assessed—of which, 863,836 km2 was in an exclusion
mask, leaving 2,129,819 km2 (71% of total study area) with the presence of at least one of the seven
canopy components (i.e., mapped). When fractional predictions are converted to total area covered,
bare ground occupies 968,792 km2, herbaceous 490,517 km2, litter 335,688 km2, shrub 324,247 km2,
sagebrush 90,949 km2, annual herbaceous 89,165 km2, and big sagebrush 63,838 km2 of the study area
(Table 1). The balance of the mapped area, 10,575 km2, consists of tree canopy cover in a rangeland
environment. Of the four primary components, shrub is present on 95.1% of the pixels, herbaceous on
99.5%, litter on 99.7% and bare ground on 99.9% of pixels. Sagebrush occurs on 41.5% of study area
pixels. Annual herbaceous is present on the lowest proportion of pixels (30.1%) (Table 1).

Table 1. Component distribution statistics. Components are mapped as fractional proportions of each
30 m pixel, with area estimates converted to square kilometers to generate the total area covered by
each fractional component. Shrub and sagebrush height area is reflective of their respective parent
components of shrub and sagebrush cover. Mapped area reflects the total geography with component
predictions. Pixels with component present is the percentage of the mapped area in which component
cover is greater than 0% or 0 cm by component.

Component Area (km2) Pixels with Component Present (%)

Shrub * 324,247 95.1
Shrub Height 324,247 95.1
Sagebrush 90,949 41.5
Sagebrush Height 90,949 41.5
Big Sagebrush 63,838 35.7
Herbaceous * 490,517 99.5
Annual Herb. 89,165 30.1
Litter * 335,688 99.7
Bare Ground * 968,792 99.9

Non-Rangeland 833,836
Mapped Area 2,129,819
Total Area 2,993,655

* Indicates a primary component, which represents 100% of the mapped area when added together with tree cover.

3.2. Spatial Patterns

Training from 331 HRS sites was integrated into mapping the entire study area (Figure 1). Four
commercial satellite sensors were tasked to collect imagery over HRS sites including 5 images from
QuickBird, 96 from WorldView-2, 191 from WorldView-3, and 39 from Pleaides. For modeling
components at the HRS level, 31,321 field training plots were collected across all HRS sites, averaging
95 plots per site. For the Landsat-scale models, an additional 3226 plots from BLM AIM data and 5382
Landsat field plots complemented HRS predictions (Figure 1).

Primary (Figure 3) and secondary (Figure 4) component maps follow expected ecological and
biophysical patterns (e.g., shrub cover declines from west to east [19], sagebrush extent matches
previous maps [59]). Shrub cover for example, is positively correlated with average water year
precipitation (R2 = 0.14, p < 0.05), while bare ground is negatively correlated (R2 = 0.26, p < 0.05).
Patterns related to disturbance history, land use, and topography are also evident. Fractional cover
relationships among pixels are as expected. The fractional cover of herbaceous, for example, is strongly
negatively related to bare ground (R2 = 0.57, p < 0.05) and shrub height is positively associated with
shrub cover (R2 = 0.76, p < 0.05). All components, except bare ground and litter, have a distribution
that is skewed to the right (Figure 5). Bare ground has a near normal distribution of fractional cover
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values, and litter cover is skewed slightly to the left. The median value of sagebrush, big sagebrush
and annual herbaceous is 0% (Figures 4 and 5).Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 26 
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Figure 5. Box plots of component cover (%)/height (cm). Left box corresponds with the 1st quartile
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3.3. Ecoregion Averages

Fractional component composition varies widely when summarized by EPA level III ecoregion
(Figure 6, Figure S1). Herbaceous cover is highest in the grassland ecoregions: Central California
Valley (64.3%) Northwestern Glaciated Plains (48.1%), Central California Foothills, Coastal Mountains
(44.0%), and High Plains (41.9%). Annual herbaceous cover is greatest in the northwest and western
ecoregions, especially the Central California Valley (54.0%), Central California Foothills and Coastal
Mountains (38.1%), Coast Range (24.5%), and Columbia Plateau (19.2%). The Mojave Basin and
Range has the highest bare ground (76.4%), while the Coast Range has the lowest (8.6%). Shrub cover
tends to be greatest in the mountain ecoregions and in chaparral dominant ecoregions; Coast Range
(39.7%), Southern California Mountains (35.1%), Southern California/Northern Baja Coast (33.7%), and
Wasatch and Uinta Mountains (31.4%). Conversely, shrub cover averages ~10% in eastern grassland
ecoregions. Sagebrush cover patterns are more complex than shrub overall, and weakly related to
precipitation. Instead sagebrush cover patterns are primarily driven by temperature, with a strong,
negative, relationship with yearly averaged minimum temperature (R2 = 0.40, p < 0.05). Bare ground
has the greatest fractional cover among primary components in 17, herbaceous in 11, and shrub in four
of the 32 EPA level III ecoregions (Figure 6).
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mapped portion of the ecoregion, indicated by black points. See Figure S1 for locations of level III 
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California chaparral. Annual herbaceous vegetation is present in 30.1% of the study area, with an 
average cover of 4.2%, comprising 18.1% of total herbaceous cover (Figure 7B). Annual herbaceous 
proportion of total herbaceous cover is greatest west of the Sierras in California. Portions of the 
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Figure 6. U.S. Environmental Protection Agency (EPA) level III ecoregion average component
cover. Color corresponds to the primary components of shrub, herbaceous, litter, and bare ground.
Sagebrush and annual herbaceous cover are nested (i.e., secondary) to shrub cover and herbaceous
cover, respectively, shown as boxes within their primary component. Big sagebrush is nested within
sagebrush and is shown as the hatched box within the secondary sagebrush box. Primary components
plus tree cover are designed to sum to 100% Ecoregions are listed in order of decreasing mapped
area from left to right. Secondary y-axis shows average water year precipitation (WYPRCP) within
the mapped portion of the ecoregion, indicated by black points. See Figure S1 for locations of level
III ecoregions.

3.4. Component Proportions

Spatial patterns of the secondary components annual herbaceous and big sagebrush are more
readily interpreted when viewed as a proportion of their primary component (Figure 7). Shrub cover
comprises an average of 40% of total rangeland vegetation cover (shrub plus herbaceous cover) across
the study area (Figure 7A). Shrub cover proportion tends to be greatest in the more arid parts of the
study area, especially in the Mojave and Sonoran Deserts and Central Basin and Range, and in the
California chaparral. Annual herbaceous vegetation is present in 30.1% of the study area, with an
average cover of 4.2%, comprising 18.1% of total herbaceous cover (Figure 7B). Annual herbaceous
proportion of total herbaceous cover is greatest west of the Sierras in California. Portions of the Mojave
and Sonoran Deserts, Snake River Plain, Wasatch Mountains, and Central Basin and Range also have
high annual herbaceous proportions.
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Figure 7. Fractional cover proportions. (a) shrub cover proportion of total vegetation (shrub +

herbaceous) cover, (b) annual herbaceous proportion of herbaceous cover, (c) big sagebrush proportion
of sagebrush cover, and (d) other sagebrush (sagebrush – big sagebrush) proportion of sagebrush cover.

Sagebrush cover over the study area averages 4.3%, big sagebrush 2.9%, and other sagebrush 1.4%
In terms of spatial extent, sagebrush, big sagebrush, and other sagebrush occurs on 41.5%, 35.7%, and
28.8% of the study area, respectively. Within their respective ranges, average sagebrush, big sagebrush,
and other sagebrush cover is 10.3%, 8.4%, and 4.4%, respectively. Of pixels with sagebrush present, big
sagebrush and other sagebrush co-exist on 55.9% of pixels. Big sagebrush is the predominate sagebrush
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type in most of the study area (Figure 7C). Other sagebrush is most abundant in the margins of the
sagebrush range, especially in the Northwestern Great Plains and Southwest Tablelands ecoregions
(Figure 7D).

3.5. Component Accuracy

We conducted accuracy assessments of each component prediction using both independent and
cross-validation approaches. Table 2a and Figure 8 demonstrate the independent validation results,
pooling across regions. Across the cover components, R2 values averaged 0.46, while the average
RMSE was 10.37 and the nRMSE was 0.12. Since the range and skewness vary among components
(Figure 5), R2 and RMSE need to be considered together in interpreting model performance. Slope
is another critical metric; in our case a slope near 1 is preferred as it demonstrates a more unbiased
model. Considering all metrics, herbaceous cover and bare ground tended to be the best performers
(R2 = 0.67 and 0.70; slope = 0.61 and 0.73, respectively) while shrub height and sagebrush height
results had lower accuracies (R2 = 0.19 and 0.24; slope = 0.29 and 0.31, respectively). The width of
95% regression confidence intervals is somewhat related to component histograms, as inferred by box
plots (Figure 5), where proximity to the mean component value is related to tighter confidence limits
(Figure 8f). Conversely, less common values tend to have broader confidence limits. From a broad scale,
however, regression confidence limits do not meaningfully vary across the range of component values.

Table 2. Validation results of component predictions compared to (a) independent field-measured
observations (n = 1860) and (b) cross-validation 30 m training data (n = 840,000) used in model
development. Cross-validation statistics were area-weighted by mapping region. Units for average,
max and range are in percent, except for shrub and sagebrush height (ht), which are in centimeters.

(a) Independent Validation

Shrub Sage
Big

Sage Herb
Annual

Herb Litter
Bare

Ground
Shrub

Ht Sage Ht

Average 11.8 5.7 2.9 24.0 6.7 16.8 47.3 44.5 17.7
Max 82 69 69 97 97 83 100 400 150

Range 82 69 69 97 97 83 100 400 150
R2 0.37 0.40 0.16 0.67 0.58 0.35 0.70 0.19 0.24

Slope 0.50 0.52 0.34 0.61 0.55 0.42 0.73 0.29 0.31
RMSE 10.6 7.5 7.8 13.1 9.8 8.9 14.6 39.5 25.6

nRMSE 0.13 0.11 0.11 0.14 0.10 0.11 0.15 0.10 0.19

(b) Cross-Validation

Shrub Sage
Big

Sage Herb
Annual

Herb Litter
Bare

Ground
Shrub

Ht Sage Ht

Average 15.7 5.6 4.1 22.6 6.0 16.3 44.4 40.8 13.3
Max 87 59 59 100 92 74 100 865 239

Range 87 59 59 100 92 74 100 865 239
R2 0.73 0.63 0.63 0.79 0.66 0.75 0.85 0.62 0.59

Slope 0.70 0.63 0.62 0.74 0.64 0.71 0.78 0.62 0.59
RMSE 6.0 3.4 4.1 6.3 4.1 3.8 8.0 17.8 7.8

nRMSE 0.07 0.06 0.07 0.06 0.04 0.05 0.08 0.02 0.03
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(d) litter, and (e) sagebrush cover. (f) Width of 95% regression confidence limits (upper limits minus.

For the cross-validation assessment (Table 2b), we area-weighted 840,000 data points across all
21 regions according to the proportional contribution of each region to the total mapped area. Patterns
were like those of independent validation in terms of relative performance of components and regions,
though the accuracies were substantially greater than the independent validation. Like the independent
validation, herbaceous cover and bare ground tended to be the best performers in cross-validation
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(R2 = 0.79 and 0.85; RMSE = 6.3 and 8.0, respectively) while shrub height and sagebrush height results
had lower accuracies (R2 = 0.62 and 0.59; RMSE = 17.8 and 7.8 respectively). Across cover components,
the average R2 value was 0.69, and the RMSE was 6.8.

4. Discussion

4.1. Component Accuracy

Our mapping approach focused on combining extensive field data (Figure 1), HRS imagery, robust
modeling, Landsat imagery from critical phenological periods, and relevant ancillary data into a
fractional product designed to retain as much local relevancy as possible, while still being regionally
consistent. Validation accuracy results were generally equal to or greater than our previous mapping
work [36,39], despite covering much larger geographies. For example, similar fractional component
mapping in Wyoming [36] across the five main components (shrub, sagebrush, herbaceous, bare
ground, and litter) averaged an R2 of 0.29. Our independent validation results for the same components
have an average R2 of 0.54 for Wyoming and R2 of 0.50 across the entire study area (Table 2a). Similarly,
Xian et al. [39] demonstrated an average independent validation accuracy of R2 of 0.38 across the
same five components, again less robust than found in the present study. However, Xian et al., [39]
reported lower RMSE results with an average of 7.49 versus the 10.6 reported here (Table 2a), likely
attributed to a larger dynamic range of values in our study area. Relative to independent validation
results of fractional component maps developed across the western U.S. by Jones et al. [40] our results
show higher accuracy. Of the four components (shrub, bare ground, perennial herbaceous, and annual
herbaceous) with independent accuracy reported by Jones et al. [40] the mean R2 was 0.22, verus
0.58 for our equivalent products. Predicted values near the mean of each component tend to be
more accurate, but variation in accuracy is minimal across the range of each component (Figure 8).
Cross-validation accuracies of our components were substantially better than independent validation
results, averaging an R2 of 0.69 and an RMSE of 6.8 across the seven cover components (Table 2b).
Our cross-validation results also represent a substantial improvement over the same five components
reported in Xian et al. [39].

In judging the product, users should consider both independent and cross-validation accuracy
together, since the combination of both provides a more realistic understanding of the performance
the user can expect. Cross-validation statistics approximately represent the “best-case” component
accuracy, while independent statistics reflect more typical accuracy. One must consider the spatial rate
of decay in mapping accuracy between training sites and independent validation sites in interpreting
overall accuracy. In other words, consider that the spectral and ecological similarity of a pixel decreases,
on average, with distance from training pixels, which /’is related to decreasing environmental similarity
with distance [60] in factors such as climate, land use, geology, and species assemblies. We strived
to limit spatial decay in accuracy by broadly distributing training data in ecologically and spectrally
diverse locations, and by placing Landsat-scale training points in critical locations (Figure 1). The
spatial rate of decay tends to be proportionally greatest on shrub, big sagebrush, shrub height, and
sagebrush height, which are the most difficult targets to map. Errors do exist in our fractional
components as rangelands pose numerous difficulties to mapping, resulting from their high degree of
spatial and temporal variation, high amount of bare soil and senescent vegetation [34], and variation in
the physical and chemical properties of soils. Errors related to modeling are also present, chief among
these is the tendency of component predictions to have a flattened histogram relative to training data.

Height components tend to be the most prone to error (Table 2, [39]), and so users should proceed
with caution. Because multispectral data often contain insufficient information to predict canopy
height, many researchers have augmented spectral data with light detection and ranging (lidar) data to
increase accuracy (e.g., [61]). Lidar data are not yet available at the scale of our study area: even so, we
retain our shrub and sagebrush height predictions as they are critical in many rangeland applications
such as fire fuel modeling and determining and modeling sage grouse habitat [28,62].
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Our mapping region approach was important to localize the prediction and allow customization
of each regional model to local conditions. Edge matching of adjacent mapping region was typically
quite seamless, suggesting robust modeling that was independently replicating the same component
cover in adjacent regions with different models. Methodological improvements did occur as regions
were completed. We completed western regions first and then made additional methodological
improvements as new issues were encountered in eastern regions. Our advancements relative to
Xian et al. [39] included (1) the use of improved handheld tablets in the field to display high-resolution
imagery for better plot location and interpretation, (2) sub-meter accuracy GPS units to increase
field locational positioning, (3) collecting more plot data on HRS imagery, (4) increasing ground plot
supplementation of Landsat-scale training data, and (5) increased experience and consistency of field
collection and modeling staff. Regional independent and cross-validation statistics revealed that
these improvements yielded higher accuracy numbers even though these regions were generally a
more difficult mapping environment primarily because of the higher herbaceous cover which often
confounded the spectral signature of shrubs.

4.2. Component Distributions

Component prediction abundance in general follows latitude, longitude, precipitation, and
elevation trends (Figures 3 and 4). Northern, eastern and high elevation ecoregions of our study area
generally represent the more mesic portions of the landscape (Figure 6). As moisture availability
increases in these mesic areas, higher proportions of shrub, herbaceous and litter and lower proportions
of bare ground result (Figure 3, Figure 6). Herbaceous vegetation comprises 60% of total rangeland
vegetation cover in the study area, with 18.1% of that being annual herbaceous vegetation. The highest
proportions of annual herbaceous occur in the western portion of the region, especially in California
where invasive annual grasses have supplanted native perennial bunch grasses [9,63]. Significant
concentrations of annual herbaceous cover also occur in the Central and Northern Basin and Range,
Blue Mountains and Columbia Plateau ecoregions (Figures 4 and 7), where a positive feedback between
cheatgrass and fire has altered sagebrush steppe [24,25].

Shrub vegetation comprises 40% of total vegetation cover in the study area, averaging 15.2% cover
(Figures 3 and 5). Shrub cover is greatest in the mountain ecoregions, where it is mainly composed
of non-sagebrush shrubs such as manzanita (Arctostaphylos spp,), mountain mahogany (Cercocarpus
spp.), shrub maples (e.g., Acer grandidentatum), and shrub oaks (e.g., Quercus gambelii). Sagebrush
occurs on 41.5% of pixels, mostly across the north central two-thirds of the study area (Figure 4).
Big sagebrush habitats, critical to many species including sage grouse [26], though reduced from its
historical range [15,29,59] is still widespread (Figure 7C). Other sagebrush cover, particularly silver
sagebrush, is also regionally important sage grouse habitat [64]. The concentration of other sagebrush
in the Northwestern Great Plains ecoregion is composed mainly of silver sage, while the concentration
in the Southwest Tablelands ecoregion is predominately sand sagebrush (Artemisia filifolia) (Figure 7D).
Our near range-wide distribution map of sagebrush is similar to that of previously published maps
(e.g., [27,65,66]). The additional information presented on our fractional sagebrush cover map versus
presence/absence distribution is invaluable to resource managers [29,30].

Litter covers 15.8% of the study area and is most abundant in more mesic areas as a result if th
occurrence of more dead plant material in general (Figure 3). More explicitly, litter cover is strongly
related to herbaceous cover (R2 = 0.24, p< 0.05). Bare ground occupies the greatest amount of the
study area, with an average of 45.5% cover (Figure 5) with the highest proportions in the southern
xeric parts of our study area, especially in the Mojave and Sonoran Basin and Range (Figures 3 and 6).
Bare ground is the component with the highest mapping accuracy (Table 2a,b); this feature combined
with its usefulness as an important indicator of vegetative abundance and rangeland health make it
especially useful [67,68]. Relative to an analysis completed by Karl et al. [69] on rangelands managed
by the BLM, our study indicated higher amounts of bare ground (Figures 3 and 5). This difference may
be attributed to a variety of factors such as different methods of field data collection, different ground
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targets included as bare ground, and relatively lower sample size in Karl et al. [69]. Additionally, our
models tend to over-predict bare ground at the low end of its distribution.

4.3. Next-Generation Work

Accurate characterization of the rangeland landscape is essential to successful understanding of
how to manage, monitor and study rangeland processes. Our fractional components provide flexible
and accurate remote-sensing-derived products that offer flexible application utility and further enable
rangeland monitoring [36]. With this characterization baseline now established, next-generation work
is quantifying component change back in time to 1984 using the Landsat archive and analyzing change
trends across time [70,71]. Further work is developing site potential and accompanying departure
scores to understand where current component predictions have deviated from the expected component
amounts based on site condition [72]. Finally, future annual monitoring is underway to quantify how
these components are changing. Understanding changing trend rates on the landscape and associated
change drivers of those trends will ultimately allow prediction of future change events showing where
the landscape is most vulnerable. We also strive to improve fractional component mapping accuracy
of all components, particularly shrub and sagebrush height and big sagebrush cover. We are currently
testing the usage of 20 m Sentinel imagery with several red edge bands to improve mapping accuracy.
Integrating training data from lidar sources could improve the accuracy of height components [61].

5. Conclusions

Our approach for inventorying and quantifying western U.S. rangeland ecosystems as fractional
components with remote sensing provides a new way to characterize and monitor these changing
regions. Nine rangeland ecosystem components, including percent shrub, sagebrush, big sagebrush,
herbaceous, annual herbaceous, litter, and bare ground cover, along with sagebrush and shrub heights
in centimeters, were quantified at 30 m resolution across most of the western U.S. using independent
mapping regions. Component prediction abundance in general followed latitude, longitude and
elevation trends, with the more mesic northern, eastern and high elevation regions of our study area
having significantly more shrub, herbaceous and litter amounts, and much less bare ground. Validation
accuracy results were generally equal to and in some cases greater than our previous mapping work
despite covering much larger geographies. Component composition strongly varies by EPA level III
ecoregions, where most ecoregions are bare ground dominant, a minority are herbaceous dominant,
and only one is shrub dominant. Sagebrush physically covers 90,950 km2, or 4.3%, of our study area,
but is present in 883,449 km2, or 41.5%, of the non-masked area of our study area, underscoring its
widespread distribution. Our near range-wide distribution map of sagebrush is like that of previously
published maps. Component products detailed in this paper can be downloaded from www.mrlc.gov.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/3/412/s1,
Figure S1. Level III ecoregions boundaries across the study area and Table S1. Description of the fractional cover
and height components used to characterize western U.S. rangelands.
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