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Abstract: Hydrological models are usually calibrated against observed streamflow (Qobs), which is not
applicable for ungauged river basins. A few studies have exploited remotely sensed evapotranspiration
(ETRS) for model calibration but their effectiveness on streamflow simulation remains uncertain.
This paper investigates the use of ETRS in the hydrological calibration of a widely used land surface
model coupled with a source–sink routing scheme and global optimization algorithm for 28 natural
river basins. A baseline simulation is a setup based on the latest model developments and inputs.
Sensitive parameters are determined for Qobs and ETRS-based model calibrations, respectively, through
comprehensive sensitivity tests. The ETRS-based model calibration results in a mean Kling–Gupta
Efficiency (KGE) value of 0.54 for streamflow simulation; 61% of the river basins have KGE > 0.5
in the validation period, which is consistent with the calibration period and provides a significant
improvement over the baseline. Compared to Qobs, the ETRS calibration produces better or similar
streamflow simulations in 29% of the basins, while further significant improvements are achieved
when either better ET or precipitation observations are used. Furthermore, the model results show
better or similar performance in 68% of the basins and outperform the baseline simulations in 90% of
the river basins using model parameters from the best ETRS calibration runs. This study confirms that
with reasonable precipitation input, the ETRS-based spatially distributed calibration can efficiently
tune parameters for better ET and streamflow simulations. The application of ETRS for global scale
hydrological model calibration promises even better streamflow accuracy as the satellite-based ETRS

observations continue to improve.

Keywords: hydrological model; calibration; remote sensing; evapotranspiration; ungauged
river basins

1. Introduction

Physically-based hydrological models are an essential tool for water resources planning, drought,
and flood prediction, climate change assessment, and many other precipitation-runoff related
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applications. To achieve optimized performance, hydrological models are often calibrated against
streamflow observations (hereafter termed Qobs), which measure integrated runoff fluxes [1–3].
However, Qobs may not always be the best applicable option for hydrological model calibration in
various circumstances. Firstly, streamflow prediction in ungauged basins often uses the regionalization
approach which transfers hydrological parameters from Qobs-based calibrations developed from donor
gauged basins. Such regionalization methods tend to lose efficiency during the transfer process
because the assumptions of spatial proximity and physical similarity are not always valid [4–6]
Secondly, Qobs-based calibration has long been criticized for its equifinality problem, i.e., different
parameter sets can satisfy the objective functions during the calibration period, while the model
performance deteriorates significantly in the validation period [7,8]. Thirdly, Qobs calibration models
tend to derive spatially homogeneous parameters across the river basin which neglects characteristic
landscape heterogeneity [9]. Furthermore, to accomplish the “goodness-of-fit” between simulated and
observed streamflow, Qobs calibration models are computationally time-consuming in routing spatially
distributed runoff through complex drainage networks to produce estimated streamflow at the river
basin outlet for each model time step [10].

Research has been conducted to calibrate hydrological models using observations of other water
balance variables, such as soil moisture and evapotranspiration (ET) with or without observed
streamflow [2]. Satellite-based estimations of these water balance variables have demonstrated value in
providing spatially distributed observations with large geographical coverage at regular time intervals
and with sufficient record length. For example, several remotely sensed ET records (hereafter referred to
as ETRS) have been developed in recent years which differ in their governing equations, forcing data, and
spatial and temporal scales of operation [11–15]. Many studies on the use of ETRS for hydrological model
calibration have also been conducted ([16–34], see Table 1). As one of the pioneering studies in this field,
Immerzeel and Droogers [16] optimized the parameters of the Soil and Water Assessment Tool (SWAT)
model by tuning the modeled ET against ETRS for a human-regulated catchment in India. Their results
showed close correspondence between the calibrated model ET and ETRS, although they were not
able to provide direct validation of the model streamflow simulations due to heavy human-regulation
of the study area. Subsequent studies modified the calibration approach by taking Qobs or ETRS

as the calibration target independently using a single objective function or calibrating against both
“Qobs + ETRS” simultaneously using a multi-objective function. Most of these studies concluded
that, compared to the Qobs calibration scheme, the “Qobs + ETRS” calibration was able to improve
the ET simulation while maintaining suitable model streamflow performance [18–21,24–26,28–31].
However, compared to the Qobs calibration model, some recent ETRS calibration models seem to result
in a significant reduction in streamflow simulation accuracy [19,20,24,25], while the improvement of
streamflow prediction skill is very low [21,22,26].
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Table 1. Literature reviews on integrating ETRS in hydrological model calibration. In the “ETRS*”
column, either available ETRS products or user calculated ET using a specific equation with remote
sensing data input are shown. In the “Model Configuration” column, the number of parameters
involved in the calibration process is also included in the bracket for each study. The study of
Nijzink et al. [27] employed five different conceptual models with multiple parameters; readers are
recommended to investigate the original literature if interested; we used (*) to represent this complex
case in the “Model Configuration” column.

Reference River Basin ETRS* Model Configuration Precipitation Input

Immerzeel and Droogers [16] One regulated basin, India
(45,678 km2) SEBAL(MODIS) Distributed SWAT model (6 to 53) Field measurements

Winsemius et al. [17] One regulated basin, Zambia
(15,000 km2) SEBAL(MODIS) Distributed HBV model (7) Satellite estimations

Zhang et al. [18] 120 basins, Australia
(50 to 2000 km2) P–M (MODIS) Lumped SIMHYD model (7) Field measurements

Rientjes et al. [19] Seven basins, Iran
(1286 to 9873 km2) SEBS(MODIS) Lumped HBV model (7) Field measurements

Vervoort et al. [20] Four basins, Australia
(147 to 2183 km2) MOD16 ET Lumped SMA model (8) Field measurements

Kunnath-Poovakka et al. [21] 11 basins, Australia
(62 to 1028 km2) CMRSET Distributed AWRA-L model (5) Field measurements

López et al. [22] One basin, Morocco
(38,025 km2) GLEAM ET Distributed PCR-GLOBWB model (6) Multi-Source data

Tobin and Bennett [23] One basin, the United States
(610 km2) GLEAM ET Distributed SWAT model (16) Multi-Source data

Demirel et al. [24] One basin, Denmark
(2500 km2) TSEB(MODIS) Distributed mHM model (26) Field measurements

Herman et al. [25] One basin, the United States
(1110 km2)

ALEXI (GOES),
SSEBop(MODIS) Distributed SWAT model (3 to 15) Field measurements

Kunnath-Poovakka et al. [26] 28 basins, Australia
(55 to 193 km2) CMRSET Distributed AWRA-L model (5) Field measurements

Nijzink et al. [27] 27 basins, Europe
(144 to 1587 km2)

LSA-SAF ET,
MOD16 ET Lumped (*) models (*) Multi-Source data

Pan et al. [28] One basin, China
(5996 km2) SEBAL(MODIS) Distributed DHSVM model (8) Field measurements

Poméon et al. [29] 36 basins, Africa
(473,718 km2 in total )

GLEAM ET,
MOD16 ET Distributed mHM model (29) Multi-Source data

Rajib et al. [30] One basin, the United States
(1670 km2) MOD16 ET Distributed SWAT model (21 to 31) Field measurements

Wambura et al. [31] One basin, Tanzania
(41,170 km2) MOD16 ET Distributed SWAT model (19) Field measurements

Becker et al. [32] One basin, Pakistan
(15,000 km2) SEBAL(MODIS) Distributed SWAT model (44) Field measurements

Odusanya et al. [33] One basin, Nigeria
(20,292 km2)

GLEAM ET,
MOD16 ET Distributed SWAT model (11) Field measurements

Tobin and Bennett [34] One basin, the United States
(3356 km2) GLEAM ET Distributed SWAT model (23) Field measurements

This study 28 basins, the United States
(326 to 14,332 km2) MOD16 ET Distributed VIC model

(4 to 6) Field measurements

As a critical hydrological component, ET represents moisture lost to the atmosphere from
plants and soil, and thus significantly impacts the precipitation partitioning into different water
balance components, particularly for runoff estimation. Hence, hydrological model performance
should benefit from better ET accuracy by calibrating model parameters against high-quality ET
observations. Previous studies using the ETRS calibration method have generally not demonstrated
corresponding improvements in streamflow prediction performance. The lack of progress in this area
reflects the need for a systematic investigation of the effectiveness of ETRS calibration and greater
attention to the uncertainties in model inputs and model structure. The uncertainties in the ETRS

estimations over space and time will directly influence the efficiency of the ETRS calibration method.
Error in the input data, limitation of the algorithm in representing biophysical processes, and the
uncertainty of biophysical and environmental parameters will together contribute to the biases in the
ETRS estimations. When precipitation uncertainty is unknown or significant for hydrological model
calibration [17,22,23,27,29,35], the optimization algorithm will be forced to adjust ET to compensate
for errors in the precipitation inputs, rather than reducing parametric uncertainty. The lumped or
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oversimplified representation of hydrological processes and storages may be the main reason for poor
streamflow performance [18–20,27]. The model structure limitation can cause serious difficulties in
the attribution of the model performance to the ETRS calibration method, particularly in study areas
with significant anthropogenic activities [16,17]. Furthermore, most prior studies have focused on only
one small catchment, with the representativeness and transferability of the ETRS calibration results
remaining unknown [23–25,30].

Given the significant improvement in ETRS estimation accuracy [36,37] and foreseeably
higher-quality global ET products to be available in the near future, the ETRS calibration method may
provide a viable approach for large scale or global hydrological modeling. For example, the need for
better calibration is one of the major challenges of large scale hydrological modeling for global flood
and drought prediction [38–41]. Therefore, the purpose of this study is to investigate the utility of
remote sensing-based ET estimation in hydrological model calibration, emphasizing the evaluation of
ETRS calibration impacts on streamflow simulation.

The following sections describe the methodology for this study, including the detailed calibration
experimental design and a brief introduction of the hydrological model (Section 2); a description of the
study area and datasets used (Section 3); a presentation of the major results (Section 4); followed by the
conclusions of the implications of this work (Section 5).

2. Methodology

Previous studies involving ETRS calibration for hydrological modeling have largely adopted
a lumped calibration method, whereby the modeled basin average ET is tuned toward spatially
averaged ETRS observations. Relatively few studies have used the spatially distributed ETRS calibration
method with all grid cells or sub-basins being treated individually [30,32,33]. The lumped ETRS

calibration method relies heavily on the seasonal pattern of ETRS observations. The ETRS based
spatially distributed calibration takes a further step than the lumped calibration by deriving an
optimized spatially distributed model parameter set that accounts for the ETRS spatial patterns [9].
It is technically convenient to implement parallel computing for spatially distributed ETRS calibration
on a per grid cell basis to reduce the computational load. For global applications and ungauged basins,
this study tests the efficiency and effectiveness of the spatial ETRS calibration method based on the
large-scale, semi-distributed, Variable Infiltration Capacity (VIC) model [42], coupled with a dominant
river-tracing-based source-sink hydrologic routing scheme [43]. A total of 28 natural river basins (with
negligible human interference) across a diversity of hydroclimate in the Pacific Northwest region are
selected. The model simulations start on 1 January 1999, and end on 31 December 2013. The years
2004–2008 are used as the calibration period, while the 2009–2013 period is used for validation.

2.1. Hydrological Model

The VIC is a semi-distributed, physically-based hydrological model, and has been extensively
used in studies involving water resources management, land-atmosphere interactions, and climate
change [3,35,40,44–50]. A key challenge in the application of the VIC model in many large-scale
applications has involved the need for automated calibration. Therefore, the VIC model has been tested,
improved, and optimized for many regional river basins, resulting in relatively less uncertainty in
various model inputs and predictions. Wu et al. [3] developed dominant river-tracing-based streamflow
and temperature model, integrated with the VIC model, and successfully produced streamflow and
temperature predictions at 1/16 degree resolution for the Pacific Northwest (PNW) domain. Here, we
implement a similar modeling framework as Wu et al. [3], including the same VIC model components
for ET and runoff simulations, the runoff-routing model, and calibration algorithms. The VIC model
balances both the water and energy fluxes at the grid cell scale at each time step. While a sub-daily
time step water-and-energy balance simulation is crucial in land-atmosphere studies, satisfying surface
energy budgets requires substantial computational time, but has little influence on streamflow or ET
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simulations [51]. Therefore, we chose the VIC model running in the water balance mode at a daily
time step for this study, similar to Wu et al. [3].

Based on Wu et al. [3], we set the VIC model run at 1/16-degree spatial resolution with subgrid
spatial variability in vegetation and soil [48]. Vegetation parameters profoundly affect all components
of the water cycle in the VIC model. The predefined subgrid vegetation parameters (e.g., land cover
types, root depths) are set generally identical to those in previous studies [3,48,52], which were
derived from the 1-km-resolution University of Maryland land cover database [53]. The subgrid soil
parameters (e.g., bulk density, field capacity) are obtained from previous studies [3,48,52], which
were derived from the 1-km-resolution Pennsylvania State University database [54]. The VIC model
calibration processes for the streamflow simulation involves six parameters (Table 2). A primary effort
of calibrating the VIC model for the major river basins over the Continental United States at the 1/8
degree resolution was made by Maurer et al. [48] by matching the simulated streamflow to available
observations. The resulting parameters were used in the study of Wu et al. [3] for the Columbia River
Basin. Livneh et al. [52] further refined the parameters B, Dsmax, and D3 at the 1/16-degree resolution
using a similar method as Troy et al. [1] from which the resulting parameter set is taken as the baseline
soil information input for this study.

Table 2. The six soil parameters calibrated for the Variable Infiltration Capacity (VIC) model simulations
in this study.

Parameters Unit Description Range

B N/A The variable infiltration curve parameter 0.0–0.4
Dsmax mm/day maximum baseflow that can occur in the third soil layer 0.0–30.0

Ds fraction The fraction of Dsmax where non-linear baseflow begins 0.0–1.0
Ws fraction The fraction of maximum soil moisture where non-linear baseflow occurs 0.0–1.0
D2 M Depth of second soil layer 0.1–1.5
D3 M Depth of third soil layer 1.0–3.0

Note: All six parameters (B, Dsmax, Ds, Ws, D2, and D3) will be used in Qobs calibration model, and four parameters (Dsmax,
Ds, Ws, and D3) will be used in ETRS calibration model.

2.2. Model Calibration Experiments

A four-step workflow (Figure 1) was developed to perform the ETRS based spatially distributed
calibration in this study and evaluate the impact of the ETRS calibration on the VIC model streamflow
simulations. Major uncertainties for the model streamflow simulations are contributed from the model
inputs (e.g., vegetation, soil, and precipitation inputs) and the simplified model structure that generally
underrepresents the complexity of human-regulated river basins. Only upstream or headwater river
basins without dams are selected for this study to emphasize natural flow conditions while minimizing
model uncertainty impacts from river regulation.

2.2.1. Updating Model Vegetation Inputs

We first evaluate and update the VIC model vegetation inputs using a satellite observation-based
updated Leaf Area Index (LAI) dataset to define variations in canopy cover influencing the model
ET calculations. Two widely used LAI climatology datasets are evaluated by comparing their
corresponding streamflow prediction skills. The first LAI product is monthly averaged from a
quarter-degree resolution monthly global LAI database [55] based on Advanced Very High-Resolution
Radiometer (AVHRR) observations extending from 1981 to 1994. The AVHRR LAI record has been
used for delineating vegetation cover in the VIC model in many prior studies [48,52] and is still
widely used in VIC and other hydrological modeling applications [56–62]. The AVHRR LAI dataset is
therefore referred to as the Default LAI record for this study. However, recent studies have found that
temporally updated LAI inputs, rather than an outdated LAI monthly climatology, can improve VIC
model performance [51,63–65]. Therefore, we adopted the 8-day, 1-km resolution GLASS/MODIS LAI
record [66] as an additional model LAI input in this study, which extends over the 2004 to 2013 period
and is monthly averaged as the Updated LAI record. The VIC model was then configured with the
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up-to-date vegetation information-based on the comparison of the streamflow simulations using the
Default LAI and Updated LAI datasets.
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Figure 1. The four-step scheme used to improve VIC model performance. In Step-One, reference
and baseline simulations are performed to quantitatively evaluate the impact of different LAI inputs
(Default LAI and Updated LAI) on modeled streamflow. In Step-Two, parameter sensitivity analysis
tests for streamflow and ET are conducted to identify the most significant parameters in the calibration
process. In Step-Three, the VIC model is calibrated against Qobs and the spatial ETRS target separately.
In Step-Four, streamflow predictability skill is validated using baseline soil information (BL_VAL), soil
information from Qobs (Q_VAL), and the spatial ET calibration model (ET_VAL). The uncertainties of
precipitation and ETRS are considered in Step-Three and Step-Four, as listed in the Scenario column.

2.2.2. Identifying Sensitive Parameters for Model Calibration

In the second step, we identified key model parameters influencing the resulting streamflow
and spatial ET simulations. Given the up-to-date vegetation information used in the model, spatially
distributed soil parameters are of critical importance. The model sensitivity tests are performed both at
the river basin level and on a per grid cell basis, by separately varying each parameter equally over 100
intervals throughout the predefined parameter space (Table 2). This setting is useful for conducting a
local sensitivity analysis, providing diagnostic insights on the model’s behavior around a point [67].

The Nash–Sutcliffe coefficient (NSC) [68] is used to evaluate the monthly streamflow simulation.
The absolute Percent Bias (PBIAS) [69] is adopted to measure the 8-day spatial ET simulation and
abbreviated as APBIAS hereafter.

NSC(stream f low) = 1−

∑n
i=1(Qsim −Qobs)

2∑n
i=1

(
Qsim − µQobs

)2 , (1)

APBIAS(spatial ET) =

∣∣∣∣∣∣
∑n

i=1(ETsim − ETRS)∑n
i=1(ETRS)

∣∣∣∣∣∣ ∗ 100, (2)

where Qobs and Qsim are the monthly time series of streamflow observations and simulations respectively,
and µQobs is the mean streamflow observation. ETRS and ETsim are the 8-day time series for the spatial
ETRS observations and model ET simulations, respectively. The sensitivity index is then defined as
the ratio between the difference and the sum of the maximum and minimum NSC (streamflow) per
catchment or APBIAS (spatial ET) per grid cell among each parameter space setting (Equation (3)).
A parameter is considered as more sensitive if the sensitivity index is closer to 1 than other parameters.

Sensitivity Index(stream f low or spatial ET) =
∣∣∣∣∣ MaxNSC or APBIAS −MinNSC or APBIAS
MaxNSC or APBIAS + MinNSC or APBIAS

∣∣∣∣∣. (3)
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2.2.3. Calibration Model

In the third step, the spatial ETRS observations and Qobs calibration model are executed respectively
using the Shuffled Complex Evolution (SCE-UA) global optimization method [70], which follows
the modeling framework developed by Wu et al. [3]. The SCE-UA parameters (e.g., the number
of complexes, the number of points in each complex) are recommended by [70] and 500 minimum
iterations are set unless the parameters or objective function reach convergence prior to this threshold,
within a ±1% level of further performance improvement. The objective functions of the Qobs and
spatial ETRS calibration schemes are NSC (streamflow) and APBIAS (spatial ET), respectively.

The uncertainties in the ETRS and precipitation inputs were investigated; whereby, a synthetic ET
calculation was derived from the simulation using the Qobs calibration optimized model parameters.
A similar approach was used by [21] with favorable results. The synthetic ET results were then used for
the spatially distributed model calibration, providing a reference to evaluate uncertainty contributed
by the ETRS observations. A high-quality precipitation dataset is used in this study [52], and a simple
correction approach is applied to further refine the precipitation product according to [35]. Specifically,
annual reference precipitation at the basin scale is defined as the sum of the observed streamflow
and ETRS for each hydrological year, assuming negligible annual soil water storage change for a
water-budget closed river basin between hydrological years. The raw daily precipitation used in this
study is then bias corrected by the annual reference precipitation. Such annual bias correction for
precipitation input is proven to have positive impacts on streamflow simulations [35]. The further
bias-corrected precipitation is then used to drive the model simulations for the comparison, and help
understand the uncertainty contributed from the precipitation inputs.

2.2.4. Model Validation and Evaluation

In the fourth step, the effectiveness of the ETRS calibration on the streamflow simulation is evaluated
by comparing the model results against independent observations, and through inter-comparison of
outputs from different model experiments. Three model validation runs were performed for evaluating
the Qobs calibration model (Q_VAL); spatial ETRS calibration model (ET_VAL); the baseline simulation
model with the latest community efforts optimized soil information (BL_VAL).

The Kling–Gupta Efficiency (KGE) metric [71] was used to measure the agreement between
observed and simulated monthly streamflow time series. The value of KGE ranges from negative
infinity (no agreement) to one (perfect agreement).

KGE(stream f low) = 1−
√
(α−1)2 + (β−1)2 + (γ−1)2

α =
δQsim
δQobs

, β =
µQsim
µQobs

,γ = 1
n

n∑
i=1

(Qobs−µQObs)∗(Qsim−µQSim)
δQSim∗δQObs

,
(4)

where µQobs and δQsim are the mean and standard deviation of the streamflow observations; µQsim and
δQsim are the mean and standard deviation of the streamflow simulations. We defined three general
performance categories for the ET_VAL results, as improved (KGE improvement for streamflow >

+10%) comparable (KGE improvement for streamflow within ± 10%), or degraded (KGE improvement
for streamflow < −10% ) of their counterparts, respectively.

3. The Test Area and Datasets

The Columbia River Basin (CRB) encompasses approximately 668,000 km2 of the Pacific Northwest
region of North America including portions of the Rocky Mountains in British Columbia, Canada.
The CRB encompasses a wide range of physical and ecological environments ranging from semiarid
and desert areas of the central plateaus to relatively wet forests in the Cascade Mountains [72].
The Columbia River drains the CRB and represents the fourth largest river in the continental United
States. The water resources in the CRB have been extensively exploited in the past 70 years to meet
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various needs such as hydropower production, flood control, agricultural withdrawals, instream flow
requirements for fish, and recreational needs [73].

River gauges in the CRB domain maintained by the U.S. Geological Survey (USGS) are selected
for this study and used for model calibration and validation. Three general criteria were used for
stream gauge selection, including (1) having continuous monthly discharge records from January 2004
to December 2013; (2) being identified as “reference gauges” (least-disturbed by human activities) in
the Geospatial Attributes of Gages for Evaluating Streamflow (GAGES-II) database [74,75]; and (3)
having dimensional consistency with the dominant river tracing (DRT) hydrography dataset defined at
1/16-degree spatial resolution [76]. The DRT river network upscaling algorithm, utilized 1-km-resolution
HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales)
baseline hydrography inputs, and successfully preserves critical sub-grid scale basin attributes affecting
runoff and river flows [77,78]. To meet the requirements for criteria (3) above, the absolute relative
difference between drainage areas derived from the DRT datasets and reported by the USGS has to
be less than 20%, while visual inspection is also used to ensure geolocation accuracy. As a result, a
total of 28 sub-basins in the CRB were selected for this study with sizes ranging from 325.70 km2 to
14,331.70 km2 (Figure 2). Detailed characteristics of the 28 basins can be found in Table 3.
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Figure 2. The Columbia River Basin in the Pacific Northwest (PNW) of North America, which
encompasses the 28 natural catchments examined in this study (numbered below). The DRT stream
networks (1/16 degree spatial resolution) and the 28 DRT-registered unregulated catchments are overlaid
on the HydroSHEDS DEM. River basin No.16 and No.28 plotted at the bottom of the figure are examples
of the excellent co-geolocation between the DRT-registered upstream area and the USGS reference. The
locations of major dams (yellow triangles) are obtained from the USGS National Hydrography Dataset.
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Table 3. Gauge information and basin characteristics of the 28 natural catchments examined in this
study. Gauge information is retrieved from the USGS database, while basin characteristics are obtained
from the GAGE-II database.

No.

Gauge Information Basin Characteristics

ID
(USGS)

Latitude
(degree)

Longitude
(degree)

Drainage
area (km2)

Streamflow
(mm/year)

Precipitation
(mm/year)

Temperature
(◦C)

Elevation
(m)

1 12413875 47.06 −115.35 325.7 946.1 1383.8 5.0 1640.3
2 14222500 45.84 −122.47 333.1 1785.2 2455.4 9.4 573.3
3 14236200 46.60 −122.46 385.8 1791.7 1772.6 8.6 672.9
4 13334450 46.27 −117.29 395.0 115.1 561.8 7.8 1271.8
5 14159200 44.05 −122.22 435.7 1336.5 1782.8 7.6 1280.8
6 14185000 44.39 −122.50 449.4 1573.7 1998.6 9.0 889.5
7 12458000 47.54 −120.72 532.9 973.2 1655.0 4.7 1547.5
8 14154500 43.74 −122.87 539.7 927.0 1561.4 9.9 857.5
9 12452800 47.82 −120.42 553.0 559.1 962.4 5.7 1519.8
10 12451000 48.33 −120.69 878.2 1419.1 1494.8 4.9 1534.0
11 13046995 44.06 −111.15 939.2 806.7 1175.2 2.8 2349.5
12 13161500 41.93 −115.68 994.2 96.0 450.4 6.0 2045.0
13 12447383 48.57 −120.39 1065.9 401.4 984.8 3.7 1685.7
14 12411000 47.71 −115.98 1078.6 536.3 1254.2 6.4 1202.5
15 13235000 44.09 −115.62 1187.7 570.8 936.6 4.9 2079.0
16 13010065 44.10 −110.67 1304.6 571.9 981.4 2.0 2508.5
17 14231000 46.53 −121.96 1492.9 1715.3 1804.6 6.5 1128.6
18 12448000 48.48 −120.19 1784.1 206.1 617.4 4.4 1613.0
19 13185000 43.67 −115.73 2144.7 455.1 883.8 5.9 1955.1
20 13296500 44.27 −114.73 2168.3 358.0 753.8 3.1 2375.2
21 12414500 47.27 −116.19 2656.6 724.4 1231.0 6.3 1381.3
22 13309220 44.72 −115.01 2666.8 455.6 897.8 3.8 2192.4
23 12413000 47.57 −116.25 2712.7 587.1 1207.0 6.7 1167.8
24 13338500 46.09 −115.98 3077.4 227.4 863.8 6.1 1384.6
25 12358500 48.50 −114.01 3239.1 771.9 1166.6 3.8 1723.7
26 13340600 46.84 −115.62 3354.2 846.4 1426.0 5.9 1442.7
27 13337000 46.15 −115.59 3962.2 579.0 1245.0 5.3 1584.1
28 13340000 46.48 −116.26 14,331.7 493.5 1021.2 6.0 1443.6

A recently updated gridded meteorological dataset for the Continental United States by
Livneh et al. [52] is adopted for this study, which is an extended work of Maurer et al. [48] but has longer
temporal coverage (1950 to 2013) and finer spatial resolution (1/16-degree). The quality-controlled
dataset contains gridded precipitation, daily maximum and minimum temperature aggregated
from point observations at National Weather Service Cooperative Observer (NWS COOP) stations,
and surface winds from the National Centers for Environmental Prediction (NCEP)/ National
Centers for Atmospheric Research (NCAR) reanalysis products. The gridded precipitation data
are interpolated using the synergraphic mapping system (SYMAP) [79] and are scaled to match the
Parameter-Elevation Regressions on Independent Slopes Model (PRISM) 1981–2010 precipitation
climatology for topographic correction.

The widely used 8-day, 1-km resolution MODIS (MODerate resolution imaging spectroradiometer)
MOD16 ETRS operational product [12] was used in this study. The MOD16 ET algorithm uses a
modified Penman–Monteith algorithm driven by daily meteorological inputs from the NASA Global
Modeling and Assimilation Office (GMAO) reanalysis, along with MODIS derived land cover, albedo,
LAI, and enhanced vegetation index observations for global ET mapping and monitoring. The quality
of the MOD16 ET record has been validated using tower eddy covariance-based daily ET measurements
over North America [12,80–82]. Like other ETRS estimations, validation results of MOD16 products
showed positive and negative bias in different places. Several studies have also used the MOD16 ET
record for hydrological model calibration [20,27,30,31] and data assimilation [83]. For this investigation,
the MOD16 ET record was geo-referenced and spatially aggregated to the 1/16-degree resolution PNW
model grid.

4. Results

4.1. The Baseline Simulation

The hydrological model produced generally improved streamflow simulations in 68% (19 out
of 28) of the test river basins when using the Updated LAI (mean KGE: 0.52) rather than the Default
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LAI (mean KGE: 0.45) as model inputs (Figure 3a). The differences in numerical streamflow modeling
between the Default LAI and Updated LAI derived results can be large for some river basins. For river
basin No.28, for example, Evergreen Needleleaf forest presents the highest LAI (Figure 3b,c), followed
by Mixed Cover and Woodland vegetation types from both Default LAI and Updated LAI records.
Significant discrepancies exist between the two LAI products, especially for the Evergreen Needleleaf
class. The Default LAI fails to capture monthly variations in Evergreen Needleleaf forest, but generally
captures similar monthly variations as the Updated LAI record for other land cover types, but with
significant value differences, particularly for Mixed Cover. The LAI values are smaller and more
spatially variable in the Updated LAI record than in the Default LAI for all the three major land
cover classes, which is consistent with previous studies [84,85]. Lower LAI reduces transpiration from
vegetation and evaporative losses from canopy interception, which promotes wetter soil conditions
and greater surface and sub-surface runoff in the model [85].
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Figure 3. Results of the reference and baseline simulations (Step-One). (a) Comparisons of streamflow
simulation performances between Default and Updated LAI monthly climatology in the 28 catchments.
(b) Land cover patterns for selected Basin No. 28; (c) monthly climatology between Default and
Updated LAI for ten randomly selected locations within the basin (numbered in (b)) and representing
different vegetation types distinguished by the same color scheme as (b).

Using a more temporally updated LAI record and more heterogeneous LAI data results in a
marked improvement in the model streamflow predictions, as the seasonal LAI record is significant in
the role of partitioning rainfall to runoff and ET in the VIC module. All of the following sections are
based on model simulations using the Updated LAI record as a key input, allowing this study to build
on recent advances in landscape parameterization.

4.2. Sensitivity Analysis of Soil Parameters

Model sensitivity tests were performed to identify the important parameters affecting both
streamflow and the spatial ET simulations. Figure 4a suggests that all six of the soil parameters
examined (Table 2) are essential for accurate streamflow simulations across all 28 study catchments,
though the relative importance of the parameters varies across basins. However, the Ws and Ds
parameters show the most significant individual influence on ET at the river basin scale (Figure 4b).
The Dsmax and D3 parameters tend to have lower model sensitivity but are more effective than
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parameter D2. The model ET seems to show little sensitivity to parameter B in most of the test
river basins.
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Figure 4. Results of model sensitivity tests for streamflow and ET (Step-Two). (a) Sensitivity indices
(Z-axis) of the six model soil parameters (Y-axis) adjusted for the streamflow simulation in each
catchment (X-axis). (b) Sensitivity indices (Z-axis) of the six parameters (Y-axis) for the lumped ET
simulation in each catchment (X-axis). (c) Sensitivity indices of the six parameters for the ET simulation
of each grid cell classified by different land cover types.

Plots showing the sensitivity of the six model parameters at each individual grid cell in the four
landscape groups are presented in Figure 4c; these results show the relative model sensitivity to the six
parameters, which is consistent with the river basin scale results (Figure 4b). Most of the grid cell points
are at the top of the Ws and Ds plots, indicating that the model ET calculations are highly sensitive to
both parameters for all land cover classes (Figure 4c). The model is also sensitive to the other four
parameters, but the sensitivity is more geolocation dependent. However, there were no significant
differences in the model ET sensitivities to the model parameters among the four main landcover
classes. However, the D2 parameter showed relatively less impact on the model ET calculation in
woodlands due to the relatively thinner soil layer represented by this land cover class. Therefore,
we allowed all six model parameters to vary in the Qobs calibration consistent with the majority of
previous studies, while assuming B and D2 have no substantial impact on spatial ETRS calibration.
Further research is warranted to investigate the validity of this assumption for other areas.

4.3. Uncertainty in the Calibrated Model Parameters

The model parameter ensembles paired with the NSC (streamflow) values from Qobs calibration
are shown in Figure 5, six significant basins are selected to show the uncertainties in the calibrated
model parameters against Qobs. For each of the six selected river basins, grey points denote all 500
evolutions in the Qobs calibration runtime; the 25 black points in each plot refer to equifinal simulations
with NSC values very close to each other (within 1% difference), while the red point denotes the best
streamflow prediction. The distribution of black points in the figure plots shows that Qobs calibration
can yield very good streamflow predictions in most cases, with generally narrow ranges in the model
parameter values. However, a lack of convergence in the calibrated parameters can be found in some
river basins, indicating that “seemingly right” answers could be produced for the wrong reasons [30].
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For example, at river basin No.16, all six model parameters except Ds, show large variations, indicating
the low quality of model inputs (precipitation in particular), which may give the optimization algorithm
more freedom to fit the objective function.
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Keeping water balance closure can help ensure that a model with parameters constrained by
reliable ETRS observations yields favorable runoff and streamflow predictions [17]. As shown in
Figure 6, a number of river basins (e.g., No.2, 5, 7, 9, 10, 15, 16) show that improved ET prediction
propagates to more accurate streamflow simulations. The model parameter set resulting in the best
streamflow prediction (green star) is not (even close to) the one with the best ET simulation in many
cases (except No. 15). This reflects both the limitations in the ETRS observations used for model ET
calibration and the precipitation inputs. Effective spatial calibration of the parameter fields will be
constrained as long as the errors in ETRS and the precipitation inputs remain larger than the variability
in the calibrating parameters [32]. However, in all river basins, the model streamflow performance
(i.e., KGE metrics) increases or decreases consistently with the gradient in ET bias. The calibration
scheme steadily modulates the interplay of the errors in precipitation and ETRS, resulting in progressive
changes of KGE values for streamflow simulation. For instance, if precipitation is biased high and ETRS

biased low, a larger positive bias in ET would lead to a high KGE value for the streamflow simulation,
while a successful ET calibration based on a relatively low biased ETRS would not necessarily produce
a favorable streamflow simulation KGE result.

As shown in Figure 6, when the ET and streamflow simulations simultaneously achieve good
calibration performance (i.e., KGE for streamflow greater than 0.7), APBIAS for ET is less than 10%
and the KGE value is very close to the best run (green star) result, which would also indicate good
quality ETRS and precipitation inputs (e.g., the No. 15 river basin). On the other hand, if both the
best run (green star) and corresponding streamflow simulation using the optimized model ET have a
negative KGE value, the precipitation input may be considered as very low quality (see No.9 and 13).
All of the rest (90%) of the test river basins in Figure 6 achieve positive KGE values with a mean of 0.50
for the model streamflow simulations after the ET calibration, indicating that the ETRS observations
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and precipitation inputs are of reasonable quality for most of the study basins. However, the distance
between the actual (red point) and best run (green star) KGE results indicates potential room for further
model improvements using better quality precipitation and/or ETRS records.
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It is worth noting that incorporating the spatial distribution of the estimated parameters in the
model calibration is a distinct advantage of the spatial ETRS calibration, which is considered a major
challenge for large-domain hydrological modeling [9]. As shown in Figure 7, taking river basin No.28
as an example, the spatial ETRS optimized parameters show large spatial variability, while the Dsmax
and Ds spatial distributions are similar and generally congruent with the pattern of soil texture (bulk
density) across the catchment.Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 24 
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15 13235000 0.69 0.89 0.82 0.73 0.85 0.54 0.54 0.90 
16 13010065 0.85 0.91 0.91 0.55 0.86 0.88 0.90 0.90 
17 14231000 0.63 0.70 0.76 0.74 0.78 0.51 0.68 0.68 
18 12448000 0.28 –0.02 0.31 0.47 0.48 0.32 0.46 0.79 
19 13185000 0.66 0.95 0.91 0.68 0.83 0.77 0.79 0.92 
20 13296500 0.46 0.44 0.52 0.68 0.58 0.67 0.78 0.76 
21 12414500 0.83 0.72 0.80 0.73 0.77 0.77 0.72 0.85 
22 13309220 0.74 0.76 0.84 0.51 0.85 0.59 0.87 0.80 

Figure 7. The distributed soil parameters obtained from the spatial ETRS calibration model for selected
Basin No.28 (in Step-Three) are depicted in (a–e) The “bulk density” from the defined soil information
is used to represent soil texture.
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4.4. Validation and Evaluation

As shown in Table 4, in the “Raw Precipitation” setup, KGE metrics from the validation simulations
derived using model parameters from the ETRS calibration range from −0.11 to 0.95 (mean: 0.54).
Approximately 61% of the study basins have KGE > 0.5, which is consistent with the calibration period
results. Compared to the baseline validation, BL_VAL, in which the KGE values are between −0.12
and 0.85 (mean: 0.53).

Table 4. The KGE metrics of streamflow predictability in BL_VAL, ET_VAL, and Q_VAL setups over
the 28 study basins (involved in Step-Four). The basins No. 16, 20, 22, 25, 26, and 28 are illustrated in
Figure 9 and highlighted below (in bold). The “MOD16 ET*” represents the optimum parameter set
retrieved offline when observed and simulated streamflow fit best (green star in Figure 6).

ID Raw Precipitation Adjusted Precipitation

NO. (USGS) BL_VAL ET_VAL
(MOD16 ET)

ET_VAL
(MOD16 ET*)

ET_VAL
(Synthetic ET) Q_VAL BL_VAL ET_VAL

(MOD16 ET) Q_VAL

1 12413875 0.53 0.63 0.55 0.69 0.56 0.71 0.74 0.62
2 14222500 0.48 0.47 0.51 0.47 0.49 0.57 0.57 0.55
3 14236200 0.68 0.66 0.78 0.93 0.86 0.84 0.77 0.87
4 13334450 0.49 0.31 0.50 0.63 0.13 0.16 0.54 0.57
5 14159200 −0.12 0.23 0.35 0.20 0.52 0.06 0.36 0.48
6 14185000 0.52 0.56 0.66 0.56 0.69 0.48 0.54 0.66
7 12458000 0.73 0.85 0.83 0.90 0.92 0.78 0.89 0.91
8 14154500 0.56 0.60 0.76 0.57 0.72 0.57 0.62 0.58
9 12452800 0.04 −0.11 −0.02 0.03 0.29 0.56 0.43 0.66

10 12451000 0.74 0.80 0.86 0.85 0.90 0.58 0.66 0.86
11 13046995 0.36 0.43 0.90 0.73 0.91 0.17 0.25 0.95
12 13161500 0.37 0.26 0.57 0.34 0.74 0.26 0.81 0.72
13 12447383 0.42 0.26 0.37 0.43 0.45 0.49 0.59 0.83
14 12411000 0.56 0.60 0.83 0.62 0.82 0.38 0.54 0.89
15 13235000 0.69 0.89 0.82 0.73 0.85 0.54 0.54 0.90
16 13010065 0.85 0.91 0.91 0.55 0.86 0.88 0.90 0.90
17 14231000 0.63 0.70 0.76 0.74 0.78 0.51 0.68 0.68
18 12448000 0.28 −0.02 0.31 0.47 0.48 0.32 0.46 0.79
19 13185000 0.66 0.95 0.91 0.68 0.83 0.77 0.79 0.92
20 13296500 0.46 0.44 0.52 0.68 0.58 0.67 0.78 0.76
21 12414500 0.83 0.72 0.80 0.73 0.77 0.77 0.72 0.85
22 13309220 0.74 0.76 0.84 0.51 0.85 0.59 0.87 0.80
23 12413000 0.32 0.40 0.68 0.45 0.82 0.26 0.38 0.81
24 13338500 0.49 0.48 0.79 0.48 0.78 0.27 0.41 0.88
25 12358500 0.66 0.61 0.77 0.88 0.92 0.62 0.61 0.88
26 13340600 0.71 0.62 0.85 0.61 0.86 0.67 0.73 0.80
27 13337000 0.62 0.56 0.70 0.51 0.82 0.60 0.56 0.87
28 13340000 0.62 0.59 0.81 0.52 0.89 0.69 0.63 0.83

Average 0.53 0.54 0.68 0.59 0.72 0.53 0.62 0.78

The ET_VAL results show significant improvements in streamflow simulation, with 50% and 25%
of the river basins showing improved and comparable performance, respectively. When compared to
the Q_VAL, the ET_VAL results show improved and comparable performance for 18% and 11% of
river basins, respectively, while 71% of the river basins show degraded performance (Figure 8a).

Using synthetic ET data for the model calibration causes significant improvements in model
performance, with improved or comparable performance to BL_VAL for 64% and 11% of the study
basins, respectively (Figure 8b). Thus, relatively closer model performance to Q_VAL is achieved
using synthetic ET for the calibration, with a total of 43% of the river basins showing improved
(14%) or comparable (29%) performance to Q_VAL. Using simply corrected precipitation in the ETRS

calibration and validation, the streamflow simulations are also improved significantly over the ET_VAL
results, with 39% of the study basins showing improved (21%) or comparable (18%) KGE metrics
against Q_VAL (Figure 8c). Surprisingly, the simply corrected precipitation causes further marked
improvement in the model performance, with 96% of the total river basins showing improved (71%)
and comparable (25%) performance than the BL_VAL results. Further improvements in the model
performance for both ET and streamflow simulations are also expected with better quality ET or
precipitation inputs as shown in Figure 8b,c.
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No.16 and No.26 with comparable performances of streamflow prediction, the ET_VAL results for 
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that the adjusted precipitation input here is insufficient to reflect discharge magnitudes. 

Figure 8. Frequency histograms (cumulative percentage distributions over the 28 study basins) of
ET_VAL efficiency in the categories of improved, comparable, and degraded) (in Step-Four). (a): Raw
precipitation input is used to drive the calibration and validation schemes, and the ET_VAL uses the
parameter set obtained when MOD16 ET and simulated ET fit to the global optimum (red points in
Figure 6). (b) same as (a) but MOD16 ET is replaced by synthetic ET. (c) same as (a) but adjusted
precipitation is used as the meteorological forcings of the model. (d) same as (a) but the optimum
parameter set is retrieved offline when observed and simulated streamflow fit best (green star in
Figure 6).

Furthermore, almost all the best model performances (in terms of streamflow) are achieved
by using the parameter sets from the best KGE runs (i.e., green stars in Figure 6) using the ETRS

calibration without involving streamflow observations. The best model runs represent 89% and
4% of the total study basins with improved and comparable performance to BL_VAL, respectively,
and only 7% of the river basins with degraded metrics (Figure 8d). Interestingly, the ET_VAL results
appear to be even better than the Q_VAL results, with 29% and 39% of the study basins showing
improved and comparable KGE values, respectively. These results promote additional questions
regarding how the best model runs can perform better than Q_VAL given the same maximum time
of optimizing evolutions for the calibrations, and why the ETRS calibration approach can achieve
very good streamflow simulations more efficiently than the Qobs calibration. Such improvements
are likely due to the spatial distribution of ETRS, which may help the calibration scheme efficiently
tune the model ET calculations at each grid cell toward optimal magnitudes, thereby improving the
spatial distribution of runoff relative to the Qobs based model calibration. Understanding the internal
processing structure to identify the best model run and optimal outputs under a diversity of climate
and landscape conditions remains challenging and is warranted in future studies.

As shown in Figure 9, six river basins were selected to illustrate the ET_VAL simulated monthly
hydrograph comparisons with Q_VAL, including two improved (No.20 and No.22), two comparable
(No.16 and No.26), and two degraded (No.25 and No.28) basins from the adjusted precipitation
setup (see Figure 8c). In the CRB domain, the snow melts in spring and accumulates in winter;
thus, seasonal variations of modeled hydrograph are all well captured without consideration of
parameter optimization method. For Basin No.20 and No.22 with improved performances of streamflow
prediction, the ET_VAL results generally capture more flows than the Q_VAL results. For Basin No.16
and No.26 with comparable performances of streamflow prediction, the ET_VAL results for Basin
No.16 overestimate flows in general and capture high flows well but fail in simulating low flow for
Basin No.26. For both Basin No.25 and No.28 with degraded performances of streamflow prediction,
ET_VAL underestimates high flows but overestimates low flows. All streamflow simulations do not
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capture the peak flows in the wet seasons of 2010 of all six basins. It is probable that the adjusted
precipitation input here is insufficient to reflect discharge magnitudes.Remote Sens. 2019, 11, x FOR PEER REVIEW 17 of 24 
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Figure 9. Selected examples of simulated monthly streamflow derived from BL_VAL, ET_VAL, Q_VAL
setups against monthly observed streamflow (involved in Step-Four). Of the six selected basins, two
are improved (basin No.20 and No.22), two are comparable (basin No.16 and No.26), and two are
degraded (basin No.25 and No.28) from the results obtained from the ET_VAL setup compared to the
Q_VAL setup (see Figure 8c where adjusted precipitation setup is used). The X-axis is the monthly time
series from 2009 to 2013; the Y-axis is the monthly observed and simulated streamflow.

5. Conclusions

In this study, we hypothesized that hydrological models calibrated against improved ETRS

observations would lead to better streamflow predictions. A modeling framework developed by
Wu et al. [3], including the widely used Variable Infiltration Capacity (VIC) model [42], the dominant
river-tracing-based source-sink hydrologic routing model [43] and the SCE-UA global optimization
algorithm [70] was adopted for model calibration, validation, and evaluation for 28 natural river
basins in the Pacific Northwest region of the continental United States. The widely used MODIS
MOD16 operational ET product [12] provided a spatially and temporally dynamic ET observational
record (ETRS) for this study. A four-step workflow was designed to evaluate the impacts of the ETRS

based spatially distributed model calibration for the streamflow simulations, and to clarify how the
model parameters determine reasonable ET estimates coherent with other water budget components
including precipitation, soil moisture, and runoff.

The baseline model simulations for this study used the latest VIC model inputs including
precipitation, vegetation, and soil datasets. The resulting model simulations showed significant
improvement in ET and streamflow simulations using a recently updated Leaf Area Index (LAI)
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climatology [66] as a critical input. Comprehensive model sensitivity tests were performed indicating
a set of six critical model parameters for calibrating against Qobs, and four parameters for calibrating
against ETRS (Table 2). Qobs based lumped calibration and ETRS based spatially distributed calibration
were designed for this study, while uncertainties of precipitation and ET were considered to improve
model performances (Figure 1). The validation results show that the model using the optimized
parameters from the ETRS calibration results in a mean KGE value of 0.54, while 61% of the 28 natural
river basins tested had KGE values exceeding 0.5. Importantly, the ETRS calibration scheme not
only resulted in significant improvements over the baseline model, with 75% of the basins showing
improved or comparable KGE metrics, but also resulted in consistent performance between model
calibration and validation periods. Our results also indicate that either improved ET observations
(indicated from a synthetic ET calibration experiment) or better precipitation inputs (through further
bias correction) can provide further improvements to the effectiveness of the ET based calibration
for better streamflow simulation. Compared to the Qobs calibration-based results, the synthetic ET
based calibration produces better or comparable performance in 43% of the study basins, while the
ETRS calibration using further annual bias-corrected precipitation produced better or comparable
performance in 39% of the basins.

Interestingly, using the parameter sets from the best model calibration runs also produced the
best overall model performance, with 93% and 68% of the study basins showing improved or close
performance compared to the baseline simulations and the Qobs calibration-based results, respectively.
Given reasonably accurate precipitation and ETRS records, the spatially distributed calibration scheme
can be efficient in parameter optimization and effective in tuning the model for accurate streamflow
calculations. However, if the precipitation inputs have a significant bias, the model calibration may
still provide accurate streamflow simulations, but at the expense of degraded ET performance as the
model ET parameters may be adversely adjusted to compensate for the bias in precipitation.

Our validation and evaluation results show that the ETRS calibration can efficiently tune the
relevant model parameters for better ET and streamflow simulations within their physically meaningful
ranges and with reasonable spatial distribution (e.g., consistent with soil texture patterns), which is
likely due to the positive contribution from the spatial distribution information of ETRS. In gauged
river basins with reliable Qobs data, the utility of ETRS in hydrological model calibration can further
improve model performance by providing additional observational information to constrain the
calibration. Moreover, our results demonstrate efficient and effective model calibrations using ET
observations from global satellite records. These results are expected to be particularly beneficial for
global-scale applications and natural basins lacking river gauge networks. The relative effectiveness of
the model calibrations is expected to improve further as the quality of the ETRS observations continue
to improve. A similar model calibration framework may apply to other satellite-based hydrological
observations including soil moisture, surface inundation, snow cover, and river discharge. Further
studies are needed to test the value of these observations for enabling further model calibration and
performance enhancements.
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