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Abstract: Airborne hyper-spectral imaging has been proven to be an efficient means to provide
new insights for the retrieval of biophysical variables. However, quantitative estimates of
unbiased information derived from airborne hyperspectral measurements primarily require a
correction of the anisotropic scattering properties of the land surface depicted by the bidirectional
reflectance distribution function (BRDF). Hitherto, angular BRDF correction methods rarely
combined viewing-illumination geometry and topographic information to achieve a comprehensive
understanding and quantification of the BRDF effects. This is in particular the case for forested areas,
frequently underlaid by rugged topography. This paper describes a method to correct the BRDF
effects of airborne hyperspectral imagery over forested areas overlying rugged topography, referred
in the reminder of the paper as rugged topography-BRDF (RT-BRDF) correction. The local viewing
and illumination geometry are calculated for each pixel based on the characteristics of the airborne
scanner and the local topography, and these two variables are used to adapt the Ross-Thick-Maignan
and Li-Transit-Reciprocal kernels in the case of rugged topography. The new BRDF model is fitted
to the anisotropy of multi-line airborne hyperspectral data. The number of pixels is set at 35,000
in this study, based on a stratified random sampling method to ensure a comprehensive coverage
of the viewing and illumination angles and to minimize the fitting error of the BRDF model for
all bands. Based on multi-line airborne hyperspectral data acquired with the Chinese Academy of
Forestry’s LiDAR, CCD, and Hyperspectral system (CAF-LiCHy) in the Pu’er region (China), the
results applying the RT-BRDF correction are compared with results from current empirical (C, and
sun-canopy-sensor (SCS) adds C (SCS+C)) and semi-physical (SCS) topographic correction methods.
Both quantitative assessment and visual inspection indicate that RT-BRDF, C, and SCS+C correction
methods all reduce the topographic effects. However, the RT-BRDF method appears more efficient in
reducing the variability in reflectance of overlapping areas in multiple flight-lines, with the advantage
of reducing the BRDF effects caused by the combination of wide field of view (FOV) airborne scanner,
rugged topography, and varying solar illumination angle over long flight time. Specifically, the
average decrease in coefficient of variation (CV) is 3% and 3.5% for coniferous forest and broadleaved
forest, respectively. This improvement is particularly marked in the near infrared (NIR) region (i.e.,
>750 nm). This finding opens new possible applications of airborne hyperspectral surveys over
large areas.
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1. Introduction

Airborne hyperspectral remote sensing technology improved significantly during the past decades,
permitting a wide range and increasing number of applications such as land-cover type classification,
forest biodiversity assessment, and quantitative estimation of land surface parameters [1–5]. Airborne
scanners equipped with a wide field of view (FOV) provide a sampling of the bidirectional reflectance
distribution function (BRDF) for very high spatial resolution (VHR) imagery [6,7]. Multiple angular
scans associated with various solar irradiance for the same survey, together with the rugged topography
of the area, results in strong anisotropic scattering effects for the studied area even for the same land-cover
type, which is represented by the BRDF [8–14]. BRDF features can either be treated as perturbing
effects or as additional information, this depending on the targeted objectives and applications [15–18].
BRDF correction is advised when mosaicking multiple hyperspectral scenes of a region, resulting
in a spectrally homogeneous analysis-ready mosaic [19,20]. It is worth mentioning that an angular
normalization procedure is mandatory to reduce the confounding non-biophysical signals and to
sustain the interpretation of the airborne imagery in respect to land surface properties. VHR airborne
hyperspectral images acquired over a rugged topography requires disentanglement of soil, vegetation
canopy, and relief BRDFs, which remains challenging [21–23]. The problem is even more complex with
airborne data due to the strong influence of the local slope and aspect.

A correct understanding of the BRDF effects is crucial for reflectance-based quantitative remote
sensing inversion models [24,25]. Previous studies developed various statistical correction methods
to remove the BRDF effects from satellite and airborne images (e.g., [20,26–29]). However, since
these methods are not based on physical mechanisms of reflected light, they cannot be universally
applied. Physical-based BRDF corrections usually require more detailed surface characteristics like the
canopy structure and the ratio of direct and diffuse radiation for each pixel in order to simulate the
radiative transfer mechanisms. This can be a time consuming procedure, which clearly limits its large
scale use [30–33], while it remains still a challenging approach for even VHR airborne hyperspectral
imagery. In this paper, the BRDF-RT model presented is based on a semi-empirical kernel-driven BRDF
approach (e.g., [34]) utilizing the Ross-Li-Reciprocal model employed for Moderate Resolution Imaging
Spectroradiometer (MODIS) BRDF/Albedo product suite (e.g., [35–38]) to normalize the off-nadir
viewing directional reflectance to nadir BRDF adjusted reflectance. The MODIS BRDF algorithm and
its physical basis have demonstrated to be a robust method and it has been widely used for BRDF
correction of satellite images, for example to map land-cover types at the global scale [39–41].

The kernel-driven BRDF approach offers a synthetic vision of the complex scattering mechanisms
of land surfaces via the linear combination of an isotropic kernel, a geometric-optical kernel, and a
volumetric kernel. Various geometric-optical kernels (e.g., Li-Sparse-Reciprocal, Li-Dense-Reciprocal,
Li-Transit-Reciprocal) and volumetric kernels (e.g., Ross-Thick, Ross-Thin, Ross-Thick-Maignan)
having different mathematical expressions were proposed to optimally correct the observed scene.
The prevalent combination of kernels in the literature is Ross-Thick and Li-Sparse-Reciprocal which
describes the scene with a thick vegetation layer for the canopy and a sparse horizontal distribution of
the stems. Numerous studies have attempted to extend the applicability of the MODIS satellite-specific
BRDF algorithm to airborne hyperspectral images (e.g., [7,31,42]). Found issues were that different
spatial scales of the image result in different BRDF effects, which limits the general applicability of the
MODIS BRDF algorithm [43,44]. Hyperspectral images acquired using wide FOV airborne scanners
typically have high spatial and spectral resolution. At the opposite to moderate resolution satellite
images, pixels of a VHR image composed of less heterogeneous thematically different land-cover types
is not common [45,46] but more physically as the limited number of vegetation attributes [15] infers
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strong structure-induced mutual shadowing effects, with, in the case of forests, traditionally a high
level of clumping [2]. This affects the geometric-optical canopy model initially assumed, as well as
the volume scattering component depending on the scenes, i.e., the forest stand scale. Therefore, an
approach similar to the MODIS BRDF algorithm could still be considered but the higher level of details
of an aerial hyperspectral image requires attention to be paid towards which scale of the scene is
observed for further interpretation kernel-driven BRDF parameters.

Another critical aspect to be taken into account is that most BRDF models for airborne imagery
assume flat topography [19,22,25] and disregard the forest covered areas over rugged topography.
Variations in topography, especially in forested areas, could significantly affect the reliability of the
soil-vegetation BRDF retrieval [14,47]. In order to mitigate the effects due to changing viewing and
illumination geometry, previous research [14,48,49] used the slope and aspect information derived from
a digital elevation model (DEM) to develop kernel-driven BRDF correction methods for Landsat images
over rugged topography. Other methods for topographic correction typically use semi-empirical
approaches to correct for the incidence BRDF effects mostly in a land cover-independent way [50–53].
However, exclusively based on anisotropic datasets premeasured in a laboratory environment [54,55],
limited research has attempted to correct the BRDF effects of VHR airborne hyperspectral images with
rugged topography for both viewing-illumination geometry and topography effects. Previous studies
confirmed the need for a high resolution DEM or a forest canopy surface model in order to quantitatively
map spatial phenomena in the rugged terrain areas. Current airborne integrated sensor systems are
capable of measuring both spectral and terrain information of a pixel simultaneously. Examples include
the Carnegie Airborne Observatory system (CAO; [56]), the Airborne Observation Platform (AOP) of
the National Ecological Observatory Network (NEON; [57]), NASA Goddard’s LiDAR, Hyperspectral
and Thermal (G-LiHT; [58]), and the Chinese Academy of Forestry’s LiDAR, CCD and Hyperspectral
system (CAF-LiCHy; [59]). In addition, recent studies explored the potential of integrated airborne
LiDAR and hyperspectral data for vegetation classification and ecological applications integrating data
from different platforms (e.g., [60–64]). Ultimately, the increasing accessibility to high resolution data
sets provides the unique opportunity to improve our understanding of BRDF correction algorithms for
airborne hyperspectral imagery.

This paper describes an improved kernel-driven algorithm for the correction of the BRDF effects
in VHR airborne hyperspectral images acquired using a push-broom wide FOV airborne scanner over
rugged topography, i.e., rugged topography-BRDF (RT-BRDF) algorithm. To do so, we calculate the
local viewing and illumination geometry for each pixel based on the scanner FOV information and
LiDAR-derived DEM data. We then propose a stratified random sampling method for single-band
BRDF modeling, ultimately extended to all spectral bands. Finally, local viewing and illumination
angles are introduced to the kernel functions, resulting in an improved kernel-driven BRDF correction
method for the studied forested areas with rugged topography. To assess the performance of the
proposed RT-BRDF method, multiple flight-lines hyperspectral imagery and LiDAR-derived DEM
were obtained using the CAF-LiCHy system, with both visual inspection and quantitative assessment
performed by comparison with the results obtained using other methods (i.e., C, sun-canopy-sensor
(SCS), and SCS+C). In this paper, another objective is to analyze and physically explain the scattering
component (i.e., isotropic, geometric and volume scattering components) variations with the different
observing scales through the quantitative BRDF parameters issued by the airborne VHR hyperspectral
image and MODIS.

2. Study Area and Materials

2.1. Study Area

The study area (approximate coordinates: 22◦27′–23◦06′N; 100◦19′–101◦27′E) is located near
the city of Pu’er in the Yunnan province of China. This region is among the south subtropical
monsoon climate zone, with an annual average temperature of 17.9 ◦C and approximately 1350 mm of
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precipitation per year. The vegetation in the region is dominated by Pinus kesiya var. langbianensis and
Monsoon evergreen broadleaved tree species (e.g., Castanopsis echidnocarpa, Castanopsis hystrix, Schima
wallichii, Betula alnoides Buch.-Ham. ex D. Don) [65]. The area surveyed for this study is characterized
by mountainous topography, with altitude varying between 500 and 2200 m above sea level and an
average slope of 27◦.

2.2. Remote Sensing Data

The hyperspectral data were acquired, respectively, under cloud-free conditions on 04 April and
06 April 2014 using the CAF-LiCHy system [59] at a nominal flight altitude approximately of 1500 m
above mean ground elevation. Figure 1 shows the position of the 10 flight-lines of 04 April 2014 flight
(yellow) and the four flight-lines of 06 April 2014 flight (green). Each designed flight-line had an
average overlap rate of 20% with the adjacent hyperspectral image tracks. Table 1 summarizes the
operational parameters of the CAF-LiCHy system. In the 04 April 2014 flight, the acquisition time was
between 9:41 and 12:16 local time (i.e., from 1:41 to 4:16 UTC, 24-hour clock). The solar zenith and
azimuth angles for the time of the flight was in the (24.0◦–53.6◦) and (100.4◦–133.1◦) ranges, respectively.
In the 06 April 2014 flight, the acquisition time was between 9:48 and 10:35 local time (i.e., from 1:48 to
2:35 UTC, 24-hour clock). The solar zenith and azimuth angles for the time of the flight was in the
(42.0◦–50.5◦) and (100.8◦–106.5◦) ranges, respectively. In this paper, the data of 06 April 2014 flight
were utilized to construct the RT-BRDF algorithm in Section 3 and the results analyzed in Section 4.
Then we applied the approach to a larger area (04 April 2014 flight) to assess the repeatability of the
RT-BRDF algorithm, with results shown in Section 4.6.

The CAF-LiCHy system comprises an Airborne Imaging Spectrometer for Applications (AISA)
Eagle II hyperspectral sensor (SPECIM Spectral Imaging Ltd., Oulu, Finland), an IGI DigiCAM-60
digital camera (Integrated Geospatial Innovations, Kreuztal, Germany), and a RIEGL LMS-Q680i
Light Detection And Ranging (LiDAR) scanner (Riegl GmbH, Horn, Austria), providing hyperspectral
images simultaneously with high resolution CCD images and LiDAR point cloud data [59]. The CCD
images are orthorectified with 0.18 m spatial resolution.

The AISA Eagle II is a push broom imaging system with FOV of 37.7◦. The hyperspectral images
were obtained in 125/64 bands covering a spectral range spanning from 400 to 990 nm, with a spectral
resolution of 4.6/9.2 nm. First, radiometric and geometric corrections of raw AISA Eagle II hyperspectral
images were performed using CaligeoPRO v2.2.4 (SPECIM Limited, Oulu, Finland) which result
in the radiance images with a ground sampling distance (GSD) of 1 m. Next, the hyperspectral
images were atmospherically corrected using the ATCOR4 (ATmospheric CORrection 4) software
(ReSe Applications LLC, Wil, Switzerland), to transform radiance into Bottom-Of-Atmosphere (BOA)
apparent directional reflectance [7,66]. ATCOR4 calculates the database of atmospheric look-up table
based on the MODTRAN5 (MODerate resolution atmospheric TRANsmission 5) code [67].

The LiDAR point cloud obtained has an average footprint density of 3 pts/m2. The LiDAR point
cloud was separated into ground and non-ground return points data using the TerraScan software
(Terrasolid, Helsinki, Finland) in order to generate a DEM and a digital surface model (DSM) with the
resolution of 1 m. The DEM-derived slope and aspect were both calculated using a window size of
5 × 5 pixels in ENVI v5.3 (Exelis Visual Information Solutions, Boulder, CO, USA). The same GNSS
and Inertial Navigation System (INS) module of the CAF-LiCHy leads to a high degree of geometric
accuracy between the hyperspectral imagery and LiDAR-derived products.
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Figure 1. (a) Location of the study area and schematic map of the 04 April 2014 (yellow) and 06 April 
2014 (green) flight-lines overlying the 14 April 2014 false-color Landsat 8 OLI image (path/row = 
130/044, bands 5, 4, 3) and airborne LiDAR-derived digital elevation model (DEM). (b) The CAF-
LiCHy airborne system flown on the (c) Harbin Y-12E aircraft. 

Figure 1. (a) Location of the study area and schematic map of the 04 April 2014 (yellow) and 06 April
2014 (green) flight-lines overlying the 14 April 2014 false-color Landsat 8 OLI image (path/row = 130/044,
bands 5, 4, 3) and airborne LiDAR-derived digital elevation model (DEM). (b) The CAF-LiCHy airborne
system flown on the (c) Harbin Y-12E aircraft.
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Table 1. Parameters of the hyperspectral and LiDAR sensor of the CAF-LiCHy system.

AISA Eagle II Riegl LMS-Q680i

Spectral range 400–970 nm Wavelength 1550 nm
Focal length 18.1 mm Laser pulse length 3 ns
FOV 37.7◦ Cross-track FOV ± 30◦

Spectral resolution 9.2/4.6 nm Vertical resolution 0.15 m
Bands 64/125 Laser beam divergence 0.5 mrad
Ground resolution (cross-track) at 1500 m altitude, nadir view ≈1 m Point density at 1500 m altitude 3 pts/m2

To assess the performance of the RT-BRDF model for the VHR airborne hyperspectral images
(AISA Eagle II hyperspectral data in this paper), the MODIS BRDF/Albedo Model Parameters and
Nadir BRDF-Adjusted reflectance product (MCD43A1 and MCD43A4 Collection 6), corresponding to
the flight date and location, were chosen for further comparison.

2.3. Field Data

A field survey was conducted from November 2013 to January 2014 in the study area to collect
61 circular sample plots with a radius of 15 m. A total of 30 plots were located in Pinus kesiya var.
langbianensis dominated stands, and the remaining 31 plots in broadleaved forest stands. Within each
plot, tree species, tree height, under-branch height, diameter at breast high (DBH), and crown diameter
were measured for all the individual trees with DBH greater than 5 cm. Plot center location was
recorded using a Trimble R4 Global Navigation Satellite Systems (GNSS) receiver (Trimble Navigation
Limited, Sunnyvale, USA), with final post-differential processing position error resulting within 1 m.

3. Methodology

The procedure comprises the following three main steps: (i) calculate the rugged topography
kernel functions based on local viewing and illumination geometry; (ii) calculate the kernel coefficients
of the RT-BRDF model for each spectral band and each forest type; and (iii) apply the RT-BRDF model
to correct for the anisotropy effects of airborne hyperspectral data. The detailed processing chain is
described in Figure 2.
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3.1. Land-Cover Stratification (Pre-Classification)

Different land-cover types present a priori different anisotropic properties. Therefore, a priori
knowledge of the type is needed first to extract the BRDF characteristics pre land-cover type. Moreover,
different canopy structure can impact the anisotropic properties even for forested areas. Studies in
the literature (e.g., [68–70]) indicate that the texture information of VHR airborne optical images can
represent a proxy to describe forest structure variables (e.g., crown diameter, tree height, tree density
or spacing). For these reasons we applied a Support Vector Machine (SVM) classification method [71]
to our hyperspectral images, using as input the BRDF cover index [7], the three most prominent
components of the hyperspectral reflectance images obtained with the Principal Components Analysis
method [72], and the Gray Level Co-occurrence Matrix (GLCM) texture features [73]. The GLCM
texture features (i.e., mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment,
and correlation; [74]) are extracted based on the first principal component data with a window size of
9 × 9 pixels. In this study, coniferous forest, broadleaved forest, bare soil, urban, and unclassified were
classified, with most unclassified pixels in our dataset represented by the cast-shaded areas in the deep
gullies and canopy gaps [71].

3.2. Local Viewing and Illumination Geometry

In aerial hyperspectral imaging, each pixel has a different viewing and illumination geometry due
to different scanning angles, imaging time, and topographic features. The relative sun-surface-sensor
geometry is fundamental for the RT-BRDF method. In order to obtain this information, we developed
a two-step process to calculate the local viewing and illumination geometry for each pixel of the
airborne hyperspectral images, based on the characteristics of the wide FOV scanner utilized and
the topographic features of the area surveyed, i.e., (i) calculate viewing and illumination geometry
based on flat topography assumption; and (ii) transfer the viewing and illumination geometry to local
viewing and illumination geometry based on a realistic topography issued from a high resolution DEM.

In the first step, the viewing and illumination geometries are calculated under the assumption of a
flat topography. Since each flight-line is acquired in a relatively short period of time (i.e., approximately
10 min), the solar position within this time period is assumed to be constant here. Thus, both solar
zenith and azimuth angles are calculated based on date, average latitude and longitude, and median
acquisition time in each flight-line. For each pixel, the image space coordinates are converted into
object space coordinates using the co-linearity equations in Equations (1) and (2) [75]:

u
v
w

 = R


x− x0

y− y0

− f

 (1)

R =


cos(ϕ) 0 −sin(ϕ)

0 1 0
sin(ϕ) 0 cos(ϕ)




1 0 0
0 cos(ω) −sin(ω)
0 sin(ω) cos(ω)




cos(k) −sin(k) 0
sin(k) cos(k) 0

0 0 1

 (2)

where [u v w]T and [x y]T represent the pixel vector in the object space coordinates and image space
coordinates, respectively; R is the rotation matrix calculated from the exterior orientation element
ϕ, ω, and k ; f is the focal length of the optical camera; and [x0 y0]

T is the principal point in image
space coordinates.

View zenith and azimuth angles are calculated for each pixel using Equations (3) and (4):

θv = tan−1

 √u2 + v2
√

w2

 (3)
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 ϕv = π+ cos−1
(

v
√

u2+v2

)
, u ≥ 0

ϕv = π− cos−1
(

v
√

u2+v2

)
, u < 0

(4)

where θv and ϕv are the view zenith and azimuth angle, respectively.
Due to the fact that the majority of the species in our study area grows vertically independently

of the slope of the terrain, and in order to apply the Li-Strahler geometric-optical model to sloping
terrain, the ellipsoidal tree crown is replaced by spheres casting the same shadow area. The slope α
is converted to the forest-adjusted slope α′ (Equation (5)). In the second step, the global coordinates
obtained as described in Equation (1) are transformed into local coordinates based on converted slope
and aspect angle of each pixel (Equation (6); [76]):

α′ = tan−1
( r

b
tan(α)

)
(5)


x′

y′

z′

= Rtopo


u
v
w

 =


cos (α′)cos(π/2− β) cos (α′) ∗ sin(π/2− β) −sin (α′)
−sin(π/2− β) cos(π/2− β) 0

sin (α′)cos(π/2− β) sin (α′)sin(π/2− β) cos (α′)




u
v
w

 (6)

where r/b represents the ratio of horizontal crown radius to vertical crown radius; [x′ y′ z′]T is the pixel
vector in local coordinates; and Rtopo is the rotation matrix based on topographic features calculated
from the converted slope α′ and aspect β angle of each pixel.

Then, real local view angles are calculated for each pixel using Equations (7) and (8). Similarly,
real local solar zenith angle θ′s and solar azimuth angle ϕs

′ can be calculated according to each pixel
using Equation (6):

tan (θv
′) =

√
x′2 + y′2
√

z′2
(7)

tan (ϕv
′) =

y′

x′
(8)

where θv
′ and ϕv

′ are the local view zenith and azimuth angle for each pixel, respectively.
Finally, the cosine of the local solar zenith angle can be referred as illumination conditions, and it

is calculated as in Equation (9):

cos(θ′s) = cos(θs)cos (α′) + sin(θs)sin (α′)cos(∆∅) (9)

where θs and ∆∅ are the solar zenith angle and relative azimuth angle between the aspect and sun
azimuth based on flat topography, respectively.

3.3. Rugged Topography BRDF Model and Kernel Selection

We assume that each land-cover type in the images presents a homogeneous structure and
does not vary with the slope and aspect of the underlying topography (i.e., relatively uniform
anisotropic properties). The local viewing and illumination geometry result in a multi-angular data
set for each land-cover type [77]. A kernel-driven BRDF approach (e.g., [34]), used in literature
from the canopy to the satellite scale (e.g., [24,78,79]), was adopted in this study. Specifically, this
model is based on the linear combination of volumetric, geometric, and isotropic scattering effects.
However, despite having similar fitting capability to the Li-Sparse kernel, the Li-Transit kernel has
demonstrated to perform better in the case of high solar and/or view zenith angles [80]. Therefore, in
this study the Li-Transit-Reciprocal (LTR) kernel [81,82] was used as geometric scattering kernel, and
the hotspot-revised Ross-Thick-Maignan (RTM) kernel [83] as volumetric scattering kernel. Using the



Remote Sens. 2020, 12, 432 9 of 33

local viewing and illumination angles in the RTM and LTR kernel functions, the RT-BRDF model can
be expressed as in Equation (10):

ρ(θ′v,θ′s, ∆∅′, c,λ) = fiso(c,λ) + fvol(c,λ)kvol(θ
′
v,θ′s, ∆∅′) + fgeo(c,λ)kgeo(θ

′
v,θ′s, ∆∅′) (10)

where:

kvol =

(
π
2 − ξ

)
cos(ξ) + sin(ξ)

cos(θ′s) + cos(θ′v)

1 +
(
1 +

ξ
ξ0

)−1− π4 (11)

cos(ξ) = cos(θ′s)cos(θ′v) + sin(θ′s)sin(θ′v)cos(∆∅′) (12)

kgeo =

kLiSparse, B ≤ 2

kLiDense = 2
B kLiSparse, B>2

(13)

kLispace = O− sec(θ′′s ) − sec(θ′′v ) +
1
2
(1 + cos(ξ′′ ))sec(θ′′v )sec(θ′′s ) (14)

B = sec(θ′′s ) + sec(θ′′v ) −O (15)

O =
1
π
(t− sin(t)cos(t))(sec(θ′′s ) + sec(θ′′v )) (16)

cos(t) =
h
b

√
D′2 + (tan(θ′′s )tan(θ′′v )sin(∆∅′))2

sec(θ′′s ) + sec(θ′′v )
(17)

D′ =
√

tan2(θ′′s ) + tan2(θ′′v ) − 2 tan(θ′′s ) tan(θ′′v )cos(∆∅′) (18)

cos(ξ′′ ) = cos(θ′′s )cos(θ′′v ) + sin(θ′′s )sin(θ′′v )cos(∆∅′) (19)

θ′′v = tan−1
(

b
r

tan(θ′v)
)

(20)

θ′′s = tan−1
(

b
r

tan(θ′s)
)

(21)

where θ′v, θ′s, ∆∅′, c, and λ are the local view zenith angle, local solar zenith angle, and local relative
azimuth angle between the sun and the observer, land-cover type, and wavelength respectively;
fiso, fvol, and fgeo are coefficients of isotropic scattering, volume scattering and geometric scattering,
respectively; kvol is the volume scattering kernel; and kgeo is the geometric scattering kernel. A constant
value of ξ0 = 1.5◦ is used to indicate the half-width of the hotspot for most of the targets [83]. The
Li-Transit kernel requires to set the parameters for the tree crown geometry. In accordance with the
field measurements, in this study we used h/b = 2 and b/r = 1 for coniferous forest; and h/b = 1.5 and
b/r = 1 for broadleaved forest.

3.4. Determination of BRDF Model Coefficients

VHR airborne hyperspectral images generally contain a large number of pixels. For the purpose of
an efficient processing and in order to obtain a comprehensive coverage of the viewing and illumination
angles, a stratified random sampling method [84,85] was used to select a subset of pixels for the BRDF
model fitting. For instance, under the assumption that the data set used in this study included a high
number of pixels (N) in coniferous forest covered areas, a subset of n pixels were chosen from the N
pixels (with n << N, with N ≈ 18,500,000 in this case) to build the BRDF model for coniferous forest in
our study according to the following sampling rules (Figure 3):

1. n takes any values between 100 and 50,000, with step length of 100 pixels (i.e., 100, 200, 300, . . . ,
49,900, 50,000);



Remote Sens. 2020, 12, 432 10 of 33

2. aspect values between 0◦ and 360◦ are divided into twenty 18◦ classes (i.e., 0◦–18◦, 18◦–36◦, . . . ,
342◦–360◦);

3. for each 18◦ class, n/20 coniferous pixels are chosen randomly;
4. the root mean square errors (RMSE) between the observed band reflectance and the model fitted

band reflectance is used to determine the optimal n (i.e., we define the optimal n here as the
minimum n pixels with a relatively stable and minimum RMSE for the BRDF model fitting).

Remote Sens. 2020, 12, 432 10 of 33 

 

 
Figure 3. Flowchart of the stratified random sampling method for coniferous forest pixel selection. 

Once the optimal number of pixels n is determined for each class type, the kernel coefficients for 
each band can be determined using the least square method, which solution is shown in Equation 
(23): 

⎩⎪⎨
⎪⎧𝑓 + 𝑓  𝑘 + 𝑓  𝑘 = 𝜌𝑓 + 𝑓  𝑘 + 𝑓  𝑘 = 𝜌𝑓 + 𝑓  𝑘 + 𝑓  𝑘 = 𝜌…𝑓 + 𝑓  𝑘 + 𝑓  𝑘 = 𝜌  (23) 

 
⎣⎢⎢
⎢⎢⎡
1 𝑘 𝑘1 𝑘 𝑘1 𝑘 𝑘. . .. . .. . .1 𝑘 𝑘 ⎦⎥⎥

⎥⎥⎤ 𝑓𝑓𝑓 = ⎣⎢⎢⎢
⎡𝜌𝜌𝜌...𝜌 ⎦⎥⎥⎥

⎤  (24) 

 𝐾𝐹 = 𝑅  (25) 

in Equation (23), the 𝑘 , 𝑘 ,…, 𝑘  and 𝑘 , 𝑘 ,…, 𝑘  represent the volumetric and 
geometric scattering kernel for the 1st, 2nd,…,nth pixel, respectively; and 𝜌 , 𝜌 ,.., 𝜌  is the observed 
band reflectance for the 1st, 2nd,…, nth pixel. The Equation (23) can be written as a matrix form in 
Equation (24) and can be further expressed as a simplified form in Equation (25). Then the kernel 
coefficients can be calculated as 𝑓 𝑓 𝑓 = 𝐹 = 𝐾 𝐾 𝐾 𝑅. 

3.5. BRDF Effects Correction for Image 

The anisotropy factor (ANIF) is a ratio describing the relationship between directional 
reflectance and reference reflectance, and it is introduced to the BRDF correction model of the 
hyperspectral image. We followed the approach described in [31], and defined the ANIF with respect 
to the nadir reflectance as in Equation (26); therefore, the RT-BRDF corrected reflectance (𝜌 ) 
can be calculated using Equation (27): ANIF =  𝜌(𝜃 , 𝜃 , ∆∅, 𝑐, 𝜆)𝜌 𝜃 = 0°, 𝜃 = 𝜃 _ , ∆∅ = ∆∅ , 𝑐, 𝜆  (26) 

 𝜌 = 𝜌𝐴𝑁𝐼𝐹  (27) 

where 𝜌 𝜃 = 0°, 𝜃 = 𝜃 _ , ∆∅ = ∆∅ , 𝑐, 𝜆  is the simulated BOA apparent reflectance at 
nadir; 𝜃 _  and ∆∅  represent the fixed solar position; and 𝜌  is the ATCOR-corrected 
apparent directional reflectance as mentioned in Section 2.2. 

Figure 3. Flowchart of the stratified random sampling method for coniferous forest pixel selection.

In order to obtain the optimal number of pixels for each spectral band (i.e., 125 bands, 400–990 nm),
we developed an independent band normalized RMSE (Equation (22)) for each band:

Independent band normalized RMSE =
RMSE−RMSEmin

RMSEmax −RMSEmin
(22)

where RMSEmin and RMSEmax indicate the minimum and maximum RMSE for the different set n pixels
(i.e., from 100 to 50,000 in this study), respectively.

Once the optimal number of pixels n is determined for each class type, the kernel coefficients for
each band can be determined using the least square method, which solution is shown in Equation (23):
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(24)

KF = R (25)

in Equation (23), the k1
vol, k2

vol, . . . , kn
vol and k1

geo, k2
geo, . . . , kn

geo represent the volumetric and geometric
scattering kernel for the 1st, 2nd, . . . ,nth pixel, respectively; and ρ1, ρ2,.., ρn is the observed band
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reflectance for the 1st, 2nd, . . . , nth pixel. The Equation (23) can be written as a matrix form in
Equation (24) and can be further expressed as a simplified form in Equation (25). Then the kernel

coefficients can be calculated as
[

fiso fvol fgeo
]T

= F =
[

KT K
]−1

KTR.

3.5. BRDF Effects Correction for Image

The anisotropy factor (ANIF) is a ratio describing the relationship between directional reflectance
and reference reflectance, and it is introduced to the BRDF correction model of the hyperspectral image.
We followed the approach described in [31], and defined the ANIF with respect to the nadir reflectance
as in Equation (26); therefore, the RT-BRDF corrected reflectance (ρRT−BRDF) can be calculated using
Equation (27):

ANIF =
ρ(θ′v,θ′s, ∆∅, c,λ)

ρ
(
θ′v = 0◦ ,θ′s = θs_ f ixed, ∆∅′ = ∆∅ f ixed, c,λ

) (26)

ρRT−BRDF =
ρBOA

ANIF
(27)

where ρ
(
θ′v = 0

◦

,θ′s = θs_ f ixed, ∆∅′ = ∆∅ f ixed, c,λ
)

is the simulated BOA apparent reflectance at
nadir; θs_ f ixed and ∆∅ f ixed represent the fixed solar position; and ρBOA is the ATCOR-corrected apparent
directional reflectance as mentioned in Section 2.2.

3.6. RT-BRDF Performance Assessment

In order to evaluate the performance of the RT-BRDF method, three assessment strategies were
used qualitatively and quantitatively [7,53,86,87], which included (a) comparisons of the results with
other topographic correction approaches; (b) comparisons with the MODIS products; (c) utilizing the
fitted RT-BRDF correction coefficient to another larger area for the robustness verification. The specific
operations are as follows.

(a) The results of three commonly used topographic correction approaches (i.e., C, SCS, and SCS+C,
see Table 2) were compared to RT-BRDF. Specifically, we implemented the following goals:

• First, since an effective correction method can produce a highly homogeneous mosaic
imagery without topographic and BRDF (solar-viewing geometry) effects, a visual inspection
was performed focusing on the topographic correction results and the variability of the
overlapped area of adjacent flight-line images.

• Previous studies [49,66,88] observed a positive linear relationship between surface reflectance
and illumination conditions. An effective BRDF correction method can remove this
relationship and result in the R2 and slope value of the linear function approaching zero.

Table 2. Topographic correction methods for RT-BRDF performance assessment.

Term Equation 2 Description

C correction 1 ρC = ρBOA
cos( θs)+C
cos( θ′s)+C [50]

SCS correction ρSCS = ρBOA
cos( θs)cos(α)

cos( θ′s)
[89]

SCS+C correction ρSCS+C = ρBOA
cos( θs)cos(α)+C

cos( θ′s)+C [90]

Notes: 1 C is the ratio of p to q, and the it can be obtained from ρBOA ≈pcos( θs) + q. 2 In these topographic correction
methods, cos( θ′s) is calculated with the real slope α as input.

• The terrain-induced canopy BRDF can lead to reflectance variations with slope and aspect
(i.e., topographic conditions). Practically, sun-facing pixels would potentially have higher
reflectance than pixels lying on shaded slopes. An effective BRDF correction method can
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weaken the influence of topographic conditions, resulting in a more homogeneous spectral
balance between sunlit and shaded areas.

• Based on the assumption of homogeneous structure for each forest type, we followed the
approach described in [87] focusing on the reflectance over the aspect of pixels perpendicular
to the solar direction. An effective correction method can obtain a nearly perfect fit between
uncorrected and corrected reflectance of these pixels.

• Finally, this mitigation effect can be further confirmed by the analysis of the RMSE of the
reflectance variation in the forested pixels (i.e., coniferous and broadleaved forest) from
overlapping pixels of two adjacent hyperspectral images. In fact, a further effect of the BRDF
correction is to decrease the standard deviation of the reflectance spectra for each land-cover
type [53]. The coefficient of variation (CV) defined in Equation (28) is utilized to evaluate the
results obtained with the RT-BRDF method:

CV =
100σ
mean

(28)

where σ and mean are the standard deviation and mean reflectance values of the land-cover
type, respectively.

(b) The weighting parameters of the MODIS BRDF/Albedo Model Parameters product were identified
from the relatively pure forest pixels. Then we performed the comparison of the VHR pixel-based
three BRDF model weighting parameters ( fiso, fvol, and fgeo) of AISA Eagle II bands (400–990 nm)
with the coarse scale (500 m) weighting parameters of MODIS band1–4, respectively. Further,
500 × 500 AISA Eagle II pixels (500 × 500 m) were aggregated to match the MODIS pixel and to
assess the difference of the nadir BRDF-adjusted forest reflectance between the aggregated AISA
Eagle II data and MODIS data. Specifically, the AISA Eagle II band reflectance corresponding to
the reflectance of MODIS band’s central wavelength (i.e., AISA Eagle II band54, 644.8 nm for
MODIS band1, 620–670 nm; AISA Eagle II band98, 856.6 nm for MODIS band2, 841–876 nm;
AISA Eagle II band16, 467.9 nm for MODIS band3, 459–479 nm; AISA Eagle II band35, 555.4 nm
for MODIS band4, 545–565 nm).

(c) In order to assess the repeatability of the algorithm, we applied the RT-BRDF method to a larger
area (04 April 2014 flight campaign) to verify whether the BRDF effects of airborne hyperspectral
imagery over forested areas with rugged topography can be corrected.

4. Results

4.1. Preprocessing Results

The training and test data for the forest type classification were obtained from field work
(Section 2.3) and visual interpretation of high resolution CCD images. The overall classification
accuracy and kappa coefficient of the airborne hyperspectral data are 94.9% and 0.93, respectively.
Theoretical (i.e., flat topography hypothesis) and calculated viewing and illumination geometry from a
selected region of the hyperspectral images are shown in Figures 4a–d and 4e–h, respectively. When
compared to the hypothetical case, the slope and aspect of the surveyed topography lead to a wider
range of local viewing and illumination geometry and consequently a multi-angular observation data
set for the same land-cover type.
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Figure 4. Local viewing and illumination geometry for a hyperspectral sample extracted from the first
(i.e., easternmost) flight-line (06/04/2014). (a)–(d) respectively show the theoretical view zenith angle
(VZA), view azimuth angle (VAA), solar zenith angle (SZA), and solar azimuth angle (SAA) under the
assumption of flat topography; (e)–(h) instead, respectively, show local VZA, local VAA, local SZA,
and local SAA for the surveyed area.

4.2. Optimal Pixel Numbers for BRDF Modeling

In this study, the optimal number of pixels for the BRDF modeling is defined as the minimum
number of pixels, and was selected using a stratified random sampling method, which is necessary to
achieve minimum RMSE between observed and model simulated reflectance. The calculated RMSE for
a reference near infrared (NIR) band (i.e., band 94, 837.19 nm) is shown in Figure 5a,b for coniferous and
broadleaved forest, respectively. The results in Figure 5a,b show that the RMSE declines dramatically
with the number of pixels increasing from 100 to 10,000, and especially below 1000. In contrast, the
RMSE remains low with increasing number of pixels from 10,000 to 50,000, and especially greater than
35,000. For both coniferous and broadleaved forest, for each band, the independent band normalized
RMSE with number of pixels from 100 to 50,000 is shown in Figure 5c,d. For band 94, the trend of
RMSE (Figure 5a,b) can therefore be represented as a consistent trend of independent band normalized
RMSE (Figure 5c,d). The independent band normalized RMSE show similar overall trends for the
majority of bands and forest types: (i) a rapid decline of RMSE with number of pixels increasing from
100 to 10,000; (ii) stabilization with number of pixels greater around 10,000; and (iii) consistently low
RMSE value (i.e., <0.001) with number of pixels greater than 35,000. Ultimately, in this study the
number of pixels n is set at 35,000 to ensure a comprehensive coverage of the viewing and illumination
angles and higher fitting accuracy of the BRDF model for all bands.
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respectively) close-up of the pre- (i.e., no terrain induced atmospheric effects corrected) and post-
correction hyperspectral images. The overlaps between adjacent hyperspectral images and the final 
mosaic outline is displayed in Figure 6a. At a first visual inspection, it can be observed that the 
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(e.g., shaded pixels darker than illuminated pixels). However, it can be noticed that the RT-BRDF, C, 
and SCS+C correction method effectively reduce these topographic effects as shown in Figure 6c, 

Figure 5. Optimal number of selected pixels for BRDF model building of band 94 (837.19 nm). (a) and
(b) show the root mean square error (RMSE) between observed and model simulated reflectance of
coniferous and broadleaved forest, respectively; (c) and (d) respectively indicate the independent band
normalized RMSE (corresponding to selected number of pixels n) for all the bands of coniferous and
broadleaved forest, with independent band 94 normalized RMSE plotted in black.

4.3. BRDF Correction of Topographic Effect

Figure 6 shows a false-color composite (i.e., 837.19, 694.91, and 543.72 nm band for R, G, and
B, respectively) close-up of the pre- (i.e., no terrain induced atmospheric effects corrected) and
post-correction hyperspectral images. The overlaps between adjacent hyperspectral images and the
final mosaic outline is displayed in Figure 6a. At a first visual inspection, it can be observed that the
reflectance in the BRDF uncorrected mosaic (Figure 6b) is significantly affected by topographic effects
(e.g., shaded pixels darker than illuminated pixels). However, it can be noticed that the RT-BRDF,
C, and SCS+C correction method effectively reduce these topographic effects as shown in Figure 6c,
Figure 6d,f, whereas the SCS correction in Figure 6e led to an obvious overcorrection in the weakly
illuminated areas. Figure 6d,f also shows that both C and SCS+C corrected images still present a
slight overcorrection in the backscattering regions (i.e., same observing direction and solar incidence
direction [91] for each flight-line image). The full-sized RT-BRDF corrected and uncorrected images are
displayed in the next with selected areas magnified to show significant differences (cfr. Figure 14).

To quantitatively analyze the topographic correction effects under varying illumination conditions,
the relationship between reflectance of a selected NIR band (i.e., 837.19 nm) and the cosine of the local
solar incidence angle (i.e., illumination condition) is shown in Figure 7, where 500 non- shadowed
pixels were randomly selected from the hyperspectral mosaic for both coniferous and broadleaved
forest. Figure 7a,f show the relationship between illumination conditions and uncorrected reflectance
at 837.19 nm for coniferous (R2 = 0.26) and broadleaved forest (R2 = 0.30). This moderate correlation is
almost entirely removed by the RT-BRDF (R2 = 0.0014 and 0.000002, respectively; Figure 7b,g), the C
correction (R2 = 0.0072 and 0.0014, respectively; Figure 7c,h), and the SCS+C correction (R2 = 0.0096 and
0.0038, respectively; Figure 7e,j). However, the SCS correction results in a stronger linear relationship
between surface reflectance and illumination conditions for both coniferous and broadleaved forest
(R2 = 0.34 and 0.54, respectively; Figure 7d,i), consistently with the visually overcorrected mosaic in
Figure 6e. Similarly, compared to the RT-BRDF corrected mosaic, occurrences of slight overcorrection
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can also be noticed in both the C and SCS+C corrected mosaics (Figure 6d,f) for low illumination
conditions (i.e., <0.2).

Remote Sens. 2020, 12, 432 14 of 33 

 

Figure 6d,f, whereas the SCS correction in Figure 6e led to an obvious overcorrection in the weakly 
illuminated areas. Figure 6d,f also shows that both C and SCS+C corrected images still present a slight 
overcorrection in the backscattering regions (i.e., same observing direction and solar incidence 
direction [91] for each flight-line image). The full-sized RT-BRDF corrected and uncorrected images 
are displayed in the next with selected areas magnified to show significant differences (cfr. Figure 
14). 

 
Figure 6. Comparison between the pre-and post-corrected hyperspectral mosaics displayed as false-
color composites (i.e., 837.19, 694.91, 543.72 nm band for the R, G, and B channels, respectively): (a) 
outline of hyperspectral flight-lines and mosaic; (b) pre-corrected (no terrain induced atmospheric 
effects corrected) mosaic; (c) RT-BRDF corrected mosaic; (d) C corrected mosaic; (e) Sun-canopy-
sensor (SCS) corrected mosaic; (f) SCS+C corrected mosaic. 

Figure 6. Comparison between the pre-and post-corrected hyperspectral mosaics displayed as
false-color composites (i.e., 837.19, 694.91, 543.72 nm band for the R, G, and B channels, respectively):
(a) outline of hyperspectral flight-lines and mosaic; (b) pre-corrected (no terrain induced atmospheric
effects corrected) mosaic; (c) RT-BRDF corrected mosaic; (d) C corrected mosaic; (e) Sun-canopy-sensor
(SCS) corrected mosaic; (f) SCS+C corrected mosaic.
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Figure 7. Density scatterplots of the relationship between illumination conditions and reflectance at
837.19 nm for coniferous (a–e) and broadleaved (f–j) forest. (a) Uncorrected, (b) RT-BRDF, (c) C, (d) SCS,
and (e) SCS+C corrected reflectance values of coniferous forest pixels; (f) uncorrected, (g) RT-BRDF,
(h) C, (i) SCS, and (j) SCS+C corrected reflectance values of broadleaved forest pixels.
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Figure 8. Bottom-Of-Atmosphere (BOA) apparent reflectance of coniferous (a–e) and broadleaved (f–
j) forest pixels at 837.19 nm as function of slope and aspect. Slope and aspect are shown in polar 
coordinates, with color coded reflectance values at 837.19 nm. The sun pattern denotes the solar 
azimuth of approximately 100.8°, with the sketch showing solar principle plane and its perpendicular. 
Blanks in the polar coordinate maps indicate missing reflectance values at the specific slope and 
aspect or invalid corrected reflectance values. 

Figure 8. Bottom-Of-Atmosphere (BOA) apparent reflectance of coniferous (a–e) and broadleaved
(f–j) forest pixels at 837.19 nm as function of slope and aspect. Slope and aspect are shown in polar
coordinates, with color coded reflectance values at 837.19 nm. The sun pattern denotes the solar
azimuth of approximately 100.8◦, with the sketch showing solar principle plane and its perpendicular.
Blanks in the polar coordinate maps indicate missing reflectance values at the specific slope and aspect
or invalid corrected reflectance values.
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Figure 8 shows the variation of reflectance at 837.19 nm with slope and aspect (i.e., topographic
conditions). Figure 8a,f show an overall higher uncorrected reflectance of the broadleaved forest
pixels in a great majority of topographic conditions compared to the uncorrected reflectance of
coniferous forest pixels. Consistently with the results in Figure 8a,f, sun-facing aspect classes (i.e., high
illumination conditions) display higher uncorrected reflectance values for both forest types. Conversely,
the RT-BRDF, C, and SCS+C corrected reflectance of both coniferous and broadleaved forest pixels
show a significant reduction of this positive relationship with topographic conditions. However, the
SCS correction resulted in higher reflectance values for the shaded aspect classes (i.e., overcorrection;
Figure 8d,i).

To assess the physical soundness of the results in Figure 8, we analyzed the relationship between
uncorrected and corrected pixel reflectance at 837.19 nm and aspect perpendicular to the solar principle
plane (i.e., approximately 10.8◦ and 190.8◦ for the first flight-line (06 April 2014)). Figure 9 confirms how
pixels classified as broadleaved forest (Figure 9e–h) are generally characterized by higher reflectance
than coniferous forest (Figure 9a–d). In addition, Figure 9 shows how the patterns of the relationships
between corrected and uncorrected reflectance are similar in both forest types. The R2, RMSE, bias,
and linear fitting function were analyzed to evaluate the physical soundness of correction methods.
For the coniferous forest, RT-BRDF shows the highest R2 (0.97), lowest RMSE (0.013), and best linear
fit with a bias of 0.002 (Figure 9a). Similarly, C (Figure 9b) and SCS+C (Figure 9d) show very similar
distributions with observations clustered along the 1:1 line (R2 = 0.91, RMSE = 0.0023) but also a higher
number of outliers. In contrast, SCS (Figure 9c) trends to overcorrect for low reflectance values (i.e.,
less than 0.2), consequently showing a lower R2 (0.64) and a higher RMSE (0.064).
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4.4. BRDF Correction Assessment for Multiple-Flights

Although the C and SCS+C BRDF correction methods demonstrated to be able to effectively
remove the topographic effects (Figure 9), RT-BRDF achieves a better correction of the BRDF effects
between multiple flight-lines. For example, Figure 10a,b shows the difference between RT-BRDF
corrected and C corrected reflectance at 837.19 nm for the third and second flight-line (06 April 2014),
respectively. The RT-BRDF correction significantly reduced the back-scattering effects (i.e., west of
the flight-line), whereas forward-scattering (i.e., east of the flight-line) reflectance is increased or
maintained. In addition, differences in reflectance values are noticeable in the mosaicked difference
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image (Figure 10c) for regions overlapping adjacent flight-lines. Figure 10 provides an example of
false color composite close ups of the results obtained with the different correction methods. Although
SCS shows a tendency to overcorrect (i.e., bright pixels), all other correction methods are capable of
removing the terrain-induced canopy BRDF distortions with varying degrees of success. However, the
edge of a hyperspectral image is clearly noticeable in the uncorrected, C and SCS+C corrected mosaics,
indicating a less than optimal compensation for the BRDF effects in overlapping regions. In contrast,
the RT-BRDF corrected mosaic image shows a higher spectral homogeneity.Remote Sens. 2020, 12, 432 19 of 33 
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Figure 10. Reflectance difference between RT-BRDF and C correction methods at 837.19 nm for (a) the
third and (b) the second flight-lines (red line, with black arrows showing flight direction); (c) difference
of mosaicked second and third flight-line and example close up (dotted blue box). Non-forested areas
are in white. At the bottom, false-color composite close ups of the region delineated by the dotted blue
box are shown.
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This mitigation effect is further confirmed by the analysis of the RMSE of the variation in
reflectance in the forested pixels (i.e., coniferous and broadleaved forest) from the overlap of two
adjacent hyperspectral images. It clearly appears that the RMSE decreased post-RT-BRDF (Figure 11a,b),
especially in the NIR region (i.e., >750 nm), implying that the selected forested areas shows more
similar spectral values in the overlapped area of two images, and therefore an improvement in spectral
homogeneity. The average decrease in RMSE of the spectra is 0.004 and 0.016 for coniferous forest and
broadleaved forest, respectively.
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A post-RT-BRDF reduction of the CV can also be observed for both coniferous (Figure 11c) and
broadleaved forest (Figure 11d) at every wavelength. Specifically, the average decrease in CV is 3%
and 3.5% for coniferous forest and broadleaved forest, respectively. In addition, it can be noticed that
this reduction is more marked at longer wavelengths (i.e., NIR), and in particular in correspondence
and after the characteristic green reflectance peak of vegetation (i.e., from ≈490 nm), with the exception
of the maximum chlorophyll absorption wavelength (i.e., ≈680 nm; [7]).

4.5. MODIS BRDF Product Comparison

Figure 12a,b show the different sampling strategies of a multi-angle dataset for retrieving the
kernel-based weighting parameters of AISA Eagle II and MODIS data, respectively. Then Figure 12c–e
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shows the comparison of the VHR pixel-based three BRDF model weighting parameters ( fiso, fvol
and fgeo) of AISA Eagle II bands (400–990 nm) with the coarse scale (500 m) weighting parameters
of MODIS bands 1–4, respectively. According to the strategies described in Section 3, the BRDF
model weighting parameters of AISA Eagle II data are plotted for broadleaved forest and coniferous,
respectively. Notably, all the BRDF model weighting parameters of broadleaved are slightly higher
than those of coniferous in the visible (VIS) region but show much difference in the NIR region. The
numerical ordering of the three weighting parameters is fiso > fgeo > fvol in each AISA Eagle II band for
broadleaved forest and coniferous, respectively. A set of BRDF model weighting parameters for the
corresponding MODIS bands 1–4 are generated, respectively, based on the relatively pure pixels with
forest in the study area. The numerical ordering of the three weighting parameters is fiso > fvol > fgeo in
each MODIS band. Generally, the fiso of AISA Eagle II band is higher than the fiso of MODIS band.
Compared with the fgeo of AISA Eagle II band, the corresponding fgeo of MODIS band is slightly lower
in the VIS region and significantly drops in the NIR region to be close to zero. Meanwhile, fvol of AISA
Eagle II band is nearly close to zero and much lower than the corresponding fvol of MODIS band. The
three weighting parameters present significant bias between AISA Eagle II and MODIS data in the NIR
region but these are interestingly corrected.
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Figure 12. Different sampling strategies of a multi-angle dataset for retrieval the kernel-based weighting
parameters of Airborne Imaging Spectrometer for Applications (AISA) Eagle II (a) and Moderate
Resolution Imaging Spectroradiometer (MODIS) (b) data. The comparison of the three BRDF model
weighting parameters fiso (c), fvol (d), and fgeo (e) between AISA Eagle II and MODIS, respectively.

As illustrated in Figure 13a,c,d, both uncorrected and RT-BRDF corrected AISA Eagle II aggregated
reflectance show similar correlations with the MODIS nadir BRDF-adjusted reflectance. In addition,
these figures show both the uncorrected and RT-BRDF corrected AISA Eagle II aggregated reflectance
are generally higher or lower than the MODIS reflectance. This may be caused by the lower
signal-to-noise ratio of airborne hyperspectral images in the blue band or other upscaling issues which
make reconstructing the BRDF accurately more challenging. Notably, the AISA Eagle II RT-BRDF
corrected aggregated reflectance (Figure 13b) are more consistent with the MODIS nadir BRDF-adjusted
reflectance in the NIR (MODIS band2; R2 = 0.83, RMSE = 0.007) showing a slightly higher consistency
than the uncorrected scenario (R2 = 0.69, RMSE = 0.007).
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Figure 13. Comparison between AISA Eagle II aggregated reflectance and MODIS nadir BRDF-adjusted
reflectance corresponding band1-4 (a–d), respectively. The best linear fit is in solid red/black, and the
1:1 line is in dashed black.

4.6. Repeatability of the RT-BRDF Approach

Figure 14 shows the comparison of uncorrected and RT-BRDF corrected hyperspectral images
of the 06 April 2014 flight campaign. Based on the full-sized observation of the image and the
magnification of the selected areas, the RT-BRDF approach has the capability to reduce the BRDF
effects caused by the combination of wide FOV airborne scanner and rugged topography in most forest
covered areas. In addition, the RT-BRDF approach was utilized in another larger area hyperspectral
images of the 04 April 2014 flight to verify the repeatability of the method. A cross-track brightness
gradient is clearly discernible in the uncorrected data (Figure 15a) but it is almost entirely absent in
the RT-BRDF corrected data (Figure 15b). The close-up areas (site A, B, and C) in Figure 15 show the
goodness of the correction in greater detail.
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Figure 14. The comparison of uncorrected and RT-BRDF corrected hyperspectral images of the
06/04/2014 flight mission displayed as false-color composites (i.e., 837.19, 694.91, 543.72 nm bands
for the R, G, and B channels, respectively). (a) Uncorrected hyperspectral image; (b) post-RT-BRDF
corrected hyperspectral image. The uncorrected and post-RT-BRDF corrected close-in images are
shown for three selected sites (sites A, B, and C).
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Figure 15. The comparison of uncorrected and RT-BRDF corrected hyperspectral images of the
04/04/2014 flight mission displayed as false-color composites. (a) Uncorrected hyperspectral image;
(b) post-RT-BRDF corrected hyperspectral image. The uncorrected and post-RT-BRDF corrected close-in
images are shown for three selected sites (sites A, B, and C).
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5. Discussion

The past two decades have seen significant advances in the use of airborne remote sensing data in
the field of Earth system science and for ecosystem process modeling, from the canopy/stand level
to more recently larger regions, increasing the demand for hyperspectral and LiDAR measurements.
However, only few studies explored the applicability of BRDF correction methods to airborne
hyperspectral imagery [6,7,92–94], especially for the forested areas with rugged topography. A better
understanding of the BRDF effects on airborne hyperspectral imagery will provide clearer insights
into their influence on remote sensing-based quantitative inversion products (e.g., LAI, PRI, canopy
biochemistry parameters). In this study, we proposed an improved correction method for airborne
hyperspectral imagery over rugged terrain with forest.

5.1. Inter-Comparison of BRDF Correction Methods

Several studies demonstrated how airborne imagery with high spatial resolution (i.e., 0.6–4.5 m)
are significantly affected by BRDF effects and can only partly follow the standardized BRDF processing
methods of satellite images (e.g., [7,15,42,95]). The results of our study further confirmed that
slope-based volumetric and geometric kernels, which correct for both incident-angle-dependent
and observation-angle-dependent BRDF effects, can be suitable for BRDF correction [47,48,76,77,96].
Especially, the improved RTM kernels (see Equation (11)) and LTR (see Equation (13)) demonstrated
to be successful in BRDF correction for high resolution airborne imagery of forested areas with both
flat [7] and rugged topography. With the exception of SCS, the topographic effects are effectively
removed by RT-BRDF, C, and SCS+C (see Figures 6–8). In fact, the SCS, which is a semi-physical
method, failed in topographic correction under diffuse light conditions with an overcorrection of
the reflectance [48,87,97]. Although the empirical, parameter-based C and SCS+C methods proved
their effectiveness for topographic correction of satellite image, it remains challenging to utilize a
universal empirical parameter C to correct images with varying topography and viewing-illumination
geometries [48,87,98–100]. Both a visual inspection (Figure 6) and quantitative analysis (Figure 10)
confirm that the empirical parameter-based methods are less than optimal for the BRDF correction of
airborne images, especially for multiple flight-lines. In contrast, our results show that the physics-based
RT-BRDF correction method can not only consistently compensate for terrain-induced but also
for the viewing-illumination induced BRDF effects (Figure 11), which is supported by physical
explanations (Figures 7 and 9). Moreover, despite previous research based on the flat terrain hypothesis
(e.g., [20,101,102]), it is demonstrated here the potential to correct the BRDF effects between multiple
flight-lines images. The RT-BRDF approach opens the possibility of failures due to insufficient
observations and/or poor angular sampling capability (e.g., [95]). Accounting for topography in the
BRDF correction method still remains a largely unexplored task [7,19,42], but by design the limitations
above do not affect the RT-BRDF method (Figures 4 and 5).

5.2. Kernel-Driven BRDF Model Applied in Different Spatial Scales

Despite the spatial scaling assumptions underlying the semi-empirical kernel-driven BRDF
approach for low spatial resolution [103], many studies demonstrated that it can be successful for
reducing the BRDF effects of VHR airborne imagery [7,15,22,31,42]. However, only a few of these
studies (i.e., [15]) give reasonable physical explanations for the applicability of the kernel-driven BRDF
model with high spatial resolution imagery, which still needs further exploration. Results of Figure 12
show that for a coarse spatial resolution pixel such as 500 m of MODIS is dominated by the isotropic
and volumetric scattering components. Likely, the geometric scattering component is inappropriate
for the relief with a misrepresentation of shadowing effects in the observed scenes. It is reasonable that
a MODIS pixel at this coarse-scale might contain many dense and continuous canopies in this study.
Furthermore, a MODIS pixel contains both terrain-induced sunlit and shaded slope effects affecting
the geometrical optics kernel in the kernel-driven BRDF modeling process (Figure 12b). Meanwhile,



Remote Sens. 2020, 12, 432 26 of 33

Figure 12 also reveals that a high spatial resolution pixel, such as for the VHR airborne imagery in this
study (spatial resolution of 1 m), is more impacted by the isotropic and geometric components and
less by the volumetric scattering component. A pixel of airborne image with ≈1 m resolution likely
contains individual leaves and branches, and these physical attributes within the VHR pixels will lead
to structure-induced mutual shadows within the canopy [15]. Moreover, topographic information, that
differs from MODIS, was added to our RT-BRDF model which contributes to more geometric scattering
effects of airborne imagery. It should be noticed that the cast-shaded pixels (deep gullies and canopy
gaps) were ignored for the BRDF model reconstruction of airborne imagery in this study which could
be the reason why fiso of AISA Eagle II band has a higher value than fiso of MODIS band. Ultimately,
our results are consistent with other studies [43,104,105] suggesting that different scales can lead to
different spatial and structural patterns containing different shadowing and clumping effects affecting
the corresponding scattering component in the kernel-driven BRDF model.

Airborne hyperspectral images after RT-BRDF correction can reduce the reflectance in the
back-scattering regions (or sunlit slope, if there is a mountain) and raise the reflectance in the
forward-scattering regions (or shaded slope, if there is a mountain). While the RT-BRDF corrected
airborne imagery performs better than the uncorrected images, there is no clear difference in Figure 13a,b.
These results may be caused by the pixel aggregation process (500 m × 500 m) which averages the
sunlit and shaded slope effects (swath width with ≈1000 m for one AISA Eagle II flight-line in this
study). We therefore indicate that the airborne hyperspectral images under the acquisition conditions
of this study have limited BRDF effects at course spatial resolutions (e.g., 500 m).

5.3. The Role of a Priori Knowledge on the BRDF Correction

Previous studies demonstrated that different land-cover types have different anisotropic properties
and therefore different intrinsic BRDF characteristics [22,31,38,43]. Furthermore, the BRDF effects
can vary with tree structure even within the same forest type [31,91]. While numerous studies use
classification maps as a priori knowledge in the BRDF correction, this is by no means the only possible
input [6,7,22]. A broader definition of a priori knowledge should contain external ancillary resources,
such as field data, classification map, structure information, BRDF shapes from other products,
topographic information, and ecological phenological season [38,86,106,107]. For example, for VHR
airborne images, the structural information can be represented as texture based in algorithms such as
GLCM, Sum Difference Histogram (SADH), and FOurier-based Textural Ordination (FOTO) [108,109].
Furthermore, the forest vertical and spatial structure can be derived from LiDAR data, such as canopy
height, crown shape, as well as point cloud distribution of individual trees [110]. In this work, the
general structure of the forest stand was investigated in the field, the classification map was produced
using the SVM classification algorithm, and the high resolution DEM was derived directly from
airborne LiDAR. Our results show that forest-type based reflectance is significantly different even for
similar topographic conditions (Figure 8a,f), and as a consequence the BRDF models must be built
separately. Due to the different structure of the coniferous and broadleaved forests in this study, it
is possible to build accurate forest type-based BRDF models (Figure 5), leading to improved forest
type-based correction results (Figures 7 and 9). This further reinforces the fundamental role of a priori
knowledge to describe the surface anisotropy based on multidimensional and temporal information in
the BRDF correction.

5.4. Future Developments

Despite the RT-BRDF correction method for airborne hyperspectral imagery of forested areas with
rugged topography was demonstrated to be successful across two study areas (Figures 14 and 15),
more investigations are needed to analyze how each factor affects the performance. Furthermore,
additional research is needed to evaluate for sparse canopies and other land-cover types for different
ecosystems. Although a combination of the RTM and LTR fixed kernels was chosen in our study,
recent studies demonstrate that an adaptive kernels selection approach can improve the accuracy of
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BRDF models for different land-cover/structural types compared to fixed kernels [23,31]. In addition,
the fitting method for BRDF modeling might also affect the correction result as mentioned in [22],
especially for non-forest cover types such as wetlands and snow covered surfaces.

A typical hyperspectral flight has duration of 4-5 h and is influenced by varying sky conditions (i.e.,
the ratio of direct and diffuse radiation). However, because of the challenge to accurately describe the
contribution of direct and diffuse irradiance to total irradiance in the actual operating process [32,33],
in the RT-BRDF model we simplified this contribution by neglecting the influence of diffuse and
adjacent surrounding radiance in the correction process. Another critical aspect of our study is that the
CAF-LiCHy system was simultaneously acquired for both the airborne hyperspectral imagery and the
LiDAR data, enabling the creation of an accurate high resolution LiDAR-derived DEM to describe
the canopy and the underlying topography. In addition, the sensitivity analysis of the topographic
correction with the DEM at different spatial scales highlighted the need for highly detailed DEMs to
describe the physically based BRDF mechanism over rugged terrain [49,54]. This can be achieved using
airborne systems integrating hyperspectral and LiDAR sensors. However, although the extremely
high detail level of the DEM can trigger the characterization of fine scale topographic elements such as
deep gullies and crags, it remains challenging to physically remove the shadow/cast-shadow effects
due to varying irradiance.

Quantitative research on the correction of remotely sensed reflectance over rugged terrain
has recently gained increasing attention, with the creation of new models such as the Kernel-Driven
reflectance model for Sloping Terrain (KDST; [47]) and the Geometric-Optical model for Sloping Terrains
(GOST; [111–113]). In addition, recent studies have worked towards a more accurate description of
direct and diffuse irradiance components at the pixel level by considering a physically based approach
with the combination of fine resolution DEM/DSM and the Discrete Anisotropic Radiative Transfer
(DART) model [33,114].

6. Conclusions

In this study, we presented an improved kernel based BRDF correction operational framework for
airborne hyperspectral images of forested areas with rugged topography (RT-BRDF). The RT-BRDF
method is based on the multi-angular nature of aerial hyperspectral observations, caused by the
combination of sensor scanning angles and topographic effects. In particular, the RT-BRDF method
takes into account both the BRDF effects derived from topographic conditions and observation/solar
incident angles, with the advantage of providing a physical meaning for the observed BRDF effects,
differently from empirical and semi-physical topographic correction models. Additionally, a stratified
random sampling method for the VHR airborne image with a large number of pixels can be an efficient
way to ensure good representative of viewing and illumination angles through the minimum fitting
error of the BRDF model for all bands (35,000 in this study). We demonstrated that, compared to other
correction methods, RT-BRDF reduced the BRDF effects from multi-line aerial hyperspectral images
of forested areas with rugged topography, and we believe that land-cover based models obtained
using RT-BRDF have the potential to be applicable to large areas comprising numerous flight-lines.
Results of this study can be used for reference in follow-up research and would contribute to reduce
the limitation of large-scale applications of airborne hyperspectral data.
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