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Abstract: Cloud detection is a significant preprocessing step for increasing the exploitability of
remote sensing imagery that faces various levels of difficulty due to the complexity of underlying
surfaces, insufficient training data, and redundant information in high-dimensional data. To solve
these problems, we propose an unsupervised network for cloud detection (UNCD) on multispectral
(MS) and hyperspectral (HS) remote sensing images. The UNCD method enforces discriminative
feature learning to obtain the residual error between the original input and the background in
deep latent space, which is based on the observation that clouds are sparse and modeled as sparse
outliers in remote sensing imagery. The UNCD enforces discriminative feature learning to obtain the
residual error between the original input and the background in deep latent space, which is based
on the observation that clouds are sparse and modeled as sparse outliers in remote sensing imagery.
First, a compact representation of the original imagery is obtained by a latent adversarial learning
constrained encoder. Meanwhile, the majority class with sufficient samples (i.e., background pixels)
is more accurately reconstructed than the clouds with limited samples by the decoder. An image
discriminator is used to prevent the generalization of out-of-class features caused by latent adversarial
learning. To further highlight the background information in the deep latent space, a multivariate
Gaussian distribution is introduced. In particular, the residual error with clouds highlighted and
background samples suppressed is applied in the cloud detection in deep latent space. To evaluate
the performance of the proposed UNCD method, experiments were conducted on both MS and HS
datasets that were captured by various sensors over various scenes, and the results demonstrate its
state-of-the-art performance. The sensors that captured the datasets include Landsat 8, GaoFen-1
(GF-1), and GaoFen-5 (GF-5). Landsat 8 was launched at Vandenberg Air Force Base in California
on 11 February 2013, in a mission that was initially known as the Landsat Data Continuity Mission
(LDCM). China launched the GF-1 satellite. The GF-5 satellite captures hyperspectral observations in
the Chinese Key Projects of High-Resolution Earth Observation System. The overall accuracy (OA)
values for Images I and II from the Landsat 8 dataset were 0.9526 and 0.9536, respectively, and the
OA values for Images III and IV from the GF-1 wide field of view (WFV) dataset were 0.9957 and
0.9934, respectively. Hence, the proposed method outperformed the other considered methods.

Keywords: cloud detection; unsupervised network; adversarial learning; residual error; multivariate
Gaussian distribution; remote sensing

1. Introduction

Remote sensing imaging technology such as multispectral (MS) imaging and hyperspectral (HS)
imaging can perceive targets or natural phenomena remotely [1–3]. Depending on the wide-scale
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monitoring capability, remote sensing images have been successfully applied to target detection [4],
anomaly detection [5], and classification [6]. In [4], the current scenario and challenges of hyperspectral
target detection are reviewed. Yuan et al. [5] introduced a method of hyperspectral anomaly detection that
uses image pixel selection. Based on deep learning, the method in [6] increases the classification accuracy.

However, due to the significant impact of the atmospheric density and the cloud layer on the
image acquisition process, most remote sensing images are inevitably polluted by clouds to different
degrees [7], thereby resulting in inaccurate spectral characteristics of targets or natural phenomena,
which reduces the exploitability of the image [8]. Consequently, cloud detection is an important
preprocessing step for the promotion of the subsequent application and the improvement of the
utilization rate of such cloud-contaminated remote sensing images.

Single-image cloud detection methods include threshold-based, machine-learning-based, and
deep-neural-network-based methods. Threshold-based methods in traditional modeling are widely
used because they are efficient and straightforward. Many cloud detection methods of this type have
been proposed. Fisher [9] integrated the morphological features with the threshold-based method
to realize cloud and cloud shadow detection in SPOT5 high-resolution geometric (HRG) imagery.
A progressive refinement scheme (PRS) was introduced for the detection of cloud regions [10], which
firstly utilized a threshold to obtain a coarse cloud detection map. An automatic multi-feature combined
(MFC) method [11] was introduced for cloud and cloud shadow detection in GaoFen-1 (GF-1) wide
field of view (WFV) imagery, which first implemented threshold segmentation to produce a preliminary
cloud mask. Recently, Zhong et al. [12] proposed an improved threshold method that used strict
and loose thresholds to produce a cloud detection map. The determination of a suitable threshold for
complex surface areas of various cloud types remains challenging.

Most machine learning methods are supervised, such as support vector machine (SVM) [13]
and scene learning (SL) [14]. These methods typically require hand-crafted features such as texture
features [15] and morphological features [9] as the input of classifiers. It is difficult to capture the
characteristics of clouds in complex scenes accurately. While these methods and techniques have made
substantial advances [9,13–15], they are still far from being automatic and practical. The K-means
method is a typical unsupervised cloud detection method [16]—the cloud detection performance of
which should be further improved.

More recently, deep neural networks (DNNs) have exhibited strong performances in modeling and
generalization from complex datasets [17–20], which can more accurately capture the characteristics of
cloud-contaminated data than traditional methods. Shi et al. [21] and Goff et al. [22] exploited the
convolutional neural network (CNN) to define clouds in the super-pixels regions. Ozkan et al. [23]
used deep pyramid networks to realize cloud detection from RGB color remote sensing images. On MS
images with nine bands from Landsat 8, Zi et al. [24] combined a double-branch principal component
analysis network (PCANet) with SVM to achieve accurate cloud detection based on the coarse result
that was obtained using a spectral threshold function. Shao et al. [25] extracted multiscale features
via a method that was based on CNN for cloud detection. Yang et al. [26] proposed a cloud detection
neural network (CDnet) based on CNN by simultaneously exploiting multiscale and global contextual
information, preserving score map resolution, and refining object boundaries. Li et al. [27] introduced a
multiscale convolutional feature fusion (MSCFF) method for remote sensing images that were captured
by various sensors. Most methods using CNN are intended to extract deep characteristics. Experimental
results have demonstrated that CNN-based methods can outperform traditional methods in cloud
detection. However, these supervised methods depend on manually generated large datasets. It is
challenging to produce a reliable training dataset for wide-scale monitoring with millions of pixels.
Moreover, these recent CNN-based cloud detection methods were applied on datasets with few spectral
bands. When they are applied to HS images with hundreds of bands, they are impractical due to the
heavy computational burden and the large memory requirement. Therefore, the development of an
unsupervised cloud detection method that can overcome the problem of insufficient training data with
strong generalization performance is significant.
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In view of this, we propose a discriminative feature learning constrained unsupervised network for
cloud detection (UNCD) in MS and HS images. The proposed UNCD method depends on an important
observation that clouds are sparse and modeled as sparse outliers [28–30]. Adversarial feature learning
is conducted on an unsupervised neural network, namely, an autoencoder (AE) [31,32], to extract a
compact representation of the original input image in the deep latent space. An image discriminator is
introduced to correct image features in order to avoid the generalization of out-of-class features that
is caused by the adversarial feature learning. With sufficient training samples, the background can
be more distinctively reconstructed than the clouds. Besides, a multivariate Gaussian distribution is
adopted to extract a discriminative feature matrix of the background in the latent space; hence, if the
dataset contains clouds, the encoder will encourage the learning of the background distribution of the
dataset. As a consequence, the residual error between these two lower-dimensional representations is
beneficial to cloud detection. We conducted experiments on both MS and HS images and evaluated the
performance of the proposed UNCD framework in terms of detection accuracy and generalization.

The contributions of this paper are fourfold:

1. A novel UNCD method is proposed to address the issue of insufficient training data in remote
sensing images, especially hyperspectral data, in the field of cloud detection. To the best of our
knowledge, in this paper, such an unsupervised adversarial feature learning model is utilized for
the first time for MS and HS cloud detection.

2. Latent adversarial learning is introduced such that the AE focuses on extracting a compact
representation of the input image in the latent space.

3. An image discriminator is used to prevent the generalization of out-of-class features.
4. A multivariate Gaussian distribution is adopted to extract a discriminative feature matrix

of the background in the latent space, and the residual error between the low-dimensional
representations of the original and background pixels is beneficial to cloud detection.

The remainder of this paper is organized as follows. In Section 2, AE and adversarial learning
models are briefly described. Section 3 introduces the proposed UNCD framework. The experimental
results and discussion are presented in Section 4. The discussion of the experimental results is
introduced in Section 5. Finally, Section 6 presents the conclusions of this study.

2. Related Work

2.1. Generative Adversarial Network

A generative adversarial network (GAN) is a highly efficient generation model proposed by
Goodfellow et al. [33] in 2014. GANs consist of a generator G and a discriminator D, which are trained
against each other. The generator G inputs a random data z whose probability distribution is pz (z) and
outputs a data x f ake = G(z). The discriminator D receives two inputs, real data x with a probability
distribution pdata (x) and generated data G(z). The discriminator is trained to identify the real data.
Via successive adversarial learning, G generates increasingly many real data. The objective of this
adversarial learning process can be expressed as [33]:

min
G

max
D

Ex∼pdata(x) [log D (x)] +Ez∼pz(z) [log (1− D (G (z)))]. (1)

Due to its advantages in terms of generation and adversarial learning performance, we
constructed a GAN model that is based on an encoder and a decoder for the improved production of
discriminative features.

2.2. Variational Autoencoders

An AE updates the parameters by minimizing the distance between the input data and the
reconstructed data, which is an unsupervised neural network. Many extensions that are based on
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AEs have been proposed and broadly used, one of which is the variational AE (VAE) [32]. The VAE
conducts variational inference to match the distribution of the hidden code vector of the AE with a
predefined prior distribution. From the perspective of the probabilistic graph model, the encoder and
decoder of the VAE can be interpreted as a probabilistic encoder and a probabilistic decoder, which are
denoted as pθ(x|z) and qφ(z|x), respectively [32]. To match the distribution of the hidden code vector
z with a predefined prior distribution, variational inference is performed to optimize the variational
lower bound on the marginal log-likelihood of each observation. Thus, the objective function of VAE
can be expressed as:

`vae = − KL
(

qφ

(
z
∣∣∣xi
)
‖pθ (z)

)
+Eqφ(z|xi )

[
log pθ

(
xi |z

)]
, (2)

where xi refers to a sample from the training dataset. The first term is the KL-divergence term, which
represents the difference between the distribution of the extracted latent feature samples and the
Gaussian distribution. The smaller the difference, the closer the distribution of the extracted latent
features is to the Gaussian distribution. The second term is the AE’s reconstruction error, which
represents the expectation of the reconstruction error, namely, the gap between the input and the
output. The smaller the expected value of the reconstruction error, the closer the output can be to
the input. The hidden code vector z is sampled from zi,l = µi + σi � εl , where εl ∼ N (0, I). Both the
encoder and the decoder originally leverage the sigmoid function as the nonlinear activation function.
Recently, the rectified linear unit (ReLU) [34] has been widely used as the nonlinear activation function.

3. Proposed Method

Figure 1 illustrates the overall framework of our proposed UNCD method. Let Y=
{

yi}M×N
i=1 , yi ∈

RL×1 denote an input remote sensing image with M× N spectral vectors, and each spectral vector
contains L dimensions. Firstly, the underlying characteristics are extracted by an encoder E and
a decoder De trained via an adversarial approach, thereby yielding a compact representation
Z=

{
zi}M×N

i=1 , zi ∈ Rl×1, l < L of the redundant remote sensing images. Based on the observation
that clouds are sparse and modeled as sparse outliers, some powerful constraints are imposed on the
unsupervised neural network for the extraction of a discriminative feature matrix E (De (Z)) of the
background, which has the same dimension as Z. Due to the reconstruction ability of AEs and the
generation capability of GANs, it is possible to obtain features of the full image and the background in
deep latent space, respectively. As a consequence, Z and E (De (Z)) are compact representations of the
original image and background, respectively. Specifically, the residual error between Z and E (De (Z))
is beneficial to cloud detection. More details of each step are described as follows.

Figure 1. The detailed description of the proposed unsupervised network for cloud detection (UNCD)
in remote sensing imagery.
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3.1. Constructing the Residual Error in the Latent Space

The proposed UNCD method relies on two assumptions for cloud detection. One is that the
background can be distinguished from the clouds in the latent feature space and most of a remote
sensing scene is background, while clouds are sparse. When a remote sensing image Y that contains
clouds is input into the network, the network is expected to generate a compact representation of Y and
to reconstruct a corresponding background via an unsupervised approach. Consequently, the residual
error refers to the deep latent feature space in which the clouds are enhanced, and the background
is suppressed:

∆Z= |Z− E (De (Z))| . (3)

The encoder learns a mapping from input Y into the deep latent space, which produces a feature
matrix Z that preserves the essential information including the clouds and background. Then, Z is
input into the decoder De to reconstruct Y. Since sufficient training samples are available for most of the
background and clouds are sparse with limited training samples in a remote sensing scene, the decoder
produces small reconstruction error for the background region but relatively large reconstruction error
for the clouds. The adversarial leaning terms and physical constraints regarding the characteristics of
the cloud-contaminated images are imposed on the network to enhance the capability of discriminative
feature learning performance.

3.2. Adversarial Feature Learning Term

Adversarial feature learning is used in the latent space to extract distinctive features. As shown in
Figure 1, the encoder0 acts as a generator to produce latent feature variables zi ∼ q

(
E0 (yi)), which

strives to fool the latent discriminator Dz with zi ∼ p
(
zi) sampled from the prior distribution. The

latent discriminator Dz aims to distinguish between input that comes from the encoder zi ∼ q
(
E0 (yi))

versus that from prior distribution zi ∼ p
(
zi). As a consequence, the generator (encoder) E0 attempts

to minimize this objective against the latent discriminator Dz that attempts to solve min
E0

max
Dz

Lossadv_z,

where Lossadv_z is denoted as:

Lossadv_z = Ezi∼N(0,I)

[
log Dz

(
zi
)]

+Ezi∼q(E0(yi))

[
log
(

1− Dz

(
E0
(

yi
)))]

. (4)

Here, we set the prior distribution zi ∼ p
(
zi) as multivariate Gaussian distribution to extract

feature variables that are more beneficial to cloud detection considering that clouds are sparse and the
majority is background.

3.3. Adversarial Image Learning Term

The adversarial feature learning in the previous part may generate out-of-class features due to
the capability of GAN to generate new variants. To generate features of the original remote sensing
images, we constrain the network by the image discriminator DI to avoid the generation of out-of-class
features, as illustrated in Figure 1. Via this approach, the decoder De and the image discriminator DI
are combined into a GAN again, in the training phase of which the decoder De is changed to a generator
to ensure that the generated image can fool the image discriminator DI . The image discriminator DI
aims to distinguish whether its input comes from the generator De or the real input. The optimization
problem is to achieve min

De
max

DI
Lossadv_I , where Lossadv_I can be expressed as:

Lossadv_I = Eyi∼pdata

[
log DI

(
yi
)]

+Ezi∼N(0,I)

[
log
(

1− DI

(
De
(

zi
)))]

. (5)

The first term indicates that the discriminator attempts to maximize the output of the real sample
to make it closer to 1. The second term indicates that by optimizing the discriminator, the output to
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the generated sample becomes closer to zero. At the same time, the generator is optimized, thereby
making the output of the discriminator on the generated samples closer to 1.

3.4. Latent Representation of the Background

The Gaussian distribution that is imposed on the network focuses on reconstructing the majority
class, namely, the background, with relatively sufficient samples. Consequently, the generated image
De (Z) with the same size as the input is closer to the background than to the clouds. Due to the strong
representational capability of AE, it can still reconstruct the sparse pixels (i.e., the clouds). To further
reduce the proportion of clouds in the reconstructed image De (Z), we impose the representation
consistency constraint in the deep latent feature space, that is, we enforce the satisfaction of a
multivariate Gaussian distribution by E (De (Z)) via an unsupervised approach that better accords
with the background characteristics:

LossGauss = KL
(

q
(

E
(

De
(

zi
)) ∣∣∣De

(
zi
)))

‖p
(

E
(

De
(

zi
)))

, (6)

where E
(

De
(

zi,l
))

= µi + σi � εl and εl ∼ N (0, I). The encoded output of the second encoder is

represented by E
(

De
(
zi)), and the output of the first decoder is denoted by De

(
zi). During the

training of encoder1, only the parameters of the encoder are optimized, while the parameters of the
decoder De are kept fixed as, illustrated in Figure 1. E

(
De
(

zi,l
))

is the projection of the reconstructed

spectral vector De
(
zi) in the low-dimensional latent space, which is the enhanced background

representation obtained by imposing the representation consistency constraint. Thus, the distinctive
residual error for distinguishing between the background and the clouds in the low-dimensional latent
space can be calculated via Equation (3), and an example is represented in Figure 2.

Figure 2. An example of a residual error map.

3.5. Reconstruction Loss

In a traditional AE network, the input data are encoded by the hidden layers to be decoded
correctly in the output. The parameters are selected such that the objective of minimizing the following
cost function is realized:

Lossr =
∥∥∥yi − ŷi

∥∥∥
2
, (7)

where yi denotes an input spectral vector with L dimensions and ŷi denotes the corresponding
reconstructed spectral vector. Finally, the combination of the aforementioned losses yields

Loss = Lossadv_z+Lossadv_I+LossGauss+Lossr. (8)

The model is trained and updated via the stochastic gradient descent (SGD) algorithm. When the
model loss converges, the parameters, including the weight matrix and the bias, are obtained. According
to Figure 2, the compact representation of the original image, Z, contains features of both clouds and
background regions, whereas E (De (Z)) can well represent the background information with the clouds
restricted. As a consequence, the residual error ∆Z obtained from the pixel-wise difference enhances
the clouds while suppressing the background in the lower-dimensional feature space, which facilitates
the detection of clouds as shown in Figure 3. Subsequently, an adaptive weighting method that was
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proposed in our previous work [35,36] is applied on each dimension of the residual error ∆Z to discard
redundant information and to construct a comprehensive map, where the structure tensor (ST) is
utilized. The ST of the ith dimension in the residual error ∆Z can be defined as [35,36]:

Si =


(

∆Zi
)2

x

(
∆Zi

)
x

(
∆Zi

)
y(

∆Zi
)

x

(
∆Zi

)
y

(
∆Zi

)2

y

 , (9)

where
(

∆Zi
)

x
= ∂∆Zi

∂x and
(

∆Zi
)

y
= ∂∆Zi

∂y represent the derivatives of the ith dimension of the residual

error ∆Z along the x and y directions, respectively. Since this structure tensor Si of the ith dimension
is a semi-determined matrix, it can be decomposed into [35,36]:

Si =
[
ηi

1 ηi
2

] λi
1 0

0 λi
2


ηi

1

ηi
2

 , (10)

where λi
1 and λi

2 are the non-negative eigenvalues of the ith dimension and ηi
1, ηi

2 are the corresponding
eigenvectors. The larger eigenvalue is represented by λi

1. As discussed in our previous work [35,36],
the relative larger eigenvalue can represent the response intensity of each pixel in the corresponding
dimension of ∆Z. Therefore, the weight vector for each dimension of ∆Z is calculated from the relative
larger eigenvalue. The larger the edge intensity of the ith dimension, the more structural information
the ith dimension of ∆Z contains. Consequently, the ith dimension should occupy a larger proportion.
The (i− 1)th dimension should also occupy a larger proportion. If the larger eigenvalues of all the
dimensions are same, all the dimensions will have the same proportion, which is the same as the
result obtained with the averaging function. In summary, the weighted residual error ∆Ẑ is calculated
as [35,36]:

∆Ẑ = ∑l
i=1

λi
1

∑l
i=1 λi

1

∆Zi, (11)

where l is the dimension of ∆Z. To further consider that the adjacent pixels have high correlations
with each other, we utilize a guided filter [37] to move the neighboring pixels to the same object for
both the background and clouds. Finally, we use an iterative optimization step to further increase the
detection accuracy, namely, we multiply the initial detection map by the residual error ∆Z, and repeat
the detection procedure until the following stopping rule is satisfied:∣∣∣C f−1

D − C f
D

∣∣∣ ≤ 10−4, (12)

where C f−1
D and C f

D represent the ( f − 1)th and f th detection maps, respectively. According to this
stopping rule, if the ( f − 1)th and f th detection maps are highly similar, the iterative optimization
will terminate.

Figure 3. Detailed description of the proposed iterative optimization method.
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3.6. Data Description

3.6.1. Landsat 8 Dataset

The Landsat 8 dataset was made available online https://www.usgs.gov/land-resources/nli/
landsat/spatial-procedures-automated-removal-cloud-and-shadow-sparcs-validation, and is widely
used to evaluate the cloud detection methods due to its wide coverage and high resolution. This
dataset consists of 80 MS remote sensing images, with details described in [38]. The Landsat 8 dataset
was collected globally using two instruments: OLI (Operational Land Imager) and TIRS (Thermal
Infrared Sensor). We use the data from both of these. All the channels are used for cloud detection.
The spatial resolution of each Landsat image is 30 m—that is, each pixel represents information on an
area of 900 m2. The location of the dataset is global. Each image contains 1000 × 1000 pixels in the
spatial domain and ten bands in the spectral domain. The corresponding reference maps are shown
in Figure 4.

Figure 4. Cloud detection maps of the compared methods: (a) Input images labeled I from the Landsat
8 dataset, (b) reference detection map, (c) proposed, (d) K-means, (e) progressive refinement scheme
(PRS), (f) principal component analysis network (PCANet), (g) support vector machine (SVM), and (h)
scene learning (SL).

3.6.2. GF-1 WFV Dataset

The GaoFen-1 (GF-1) satellite was launched by China. Gaofen means “high resolution” in Chinese.
Detailed information on the GF-1 satellite and wide field of view (WFV) images are available online
http://sendimage.whu.edu.cn/en/resources/mfc-validation-data/. The GF-1 WFV image considered
here is a Class 2A product produced via relative radiation correction and system geometry correction.
The Class 1A data are the original digital product for regular radiation calibration, while the Class
2A data were generated after system geometry correction, where all pixels are re-sampled to 16-m
resolution with 10-bit data. The false-color images and the corresponding reference maps are shown in
Figure 5.

https://www.usgs.gov/land-resources/nli/landsat/spatial-procedures-automated-removal-cloud-and-shadow-sparcs-validation
https://www.usgs.gov/land-resources/nli/landsat/spatial-procedures-automated-removal-cloud-and-shadow-sparcs-validation
http://sendimage.whu.edu.cn/en/resources/mfc-validation-data/
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Figure 5. Cloud detection maps of the compared methods: (a) Input images labeled II from the Landsat
8 dataset, (b) reference detection map, (c) proposed, (d) K-means, (e) PRS, (f) PCANet, (g) SVM, and
(h) SL.

3.6.3. GF-5 Hyperspectral Dataset

The GaoFen-5 (GF-5) satellite can capture hyperspectral observations in the Chinese Key Projects
of the High-Resolution Earth Observation System. Six payloads were carried on it: an Advanced
Hyperspectral Imager (AHSI), a Visual and Infrared Multispectral Imager (VIMI), an Atmospheric
Infrared Ultra-Spectral Sounder (AIUS), a Greenhouse Gases Monitoring Instrument (GMI), an
Environmental Monitoring Instrument (EMI), and a Directional Polarization Camera (DPC). The spectral
coverage of these sensors ranges from ultraviolet to long-wave infrared bands. Two HS images captured
by the GF-5 AHSI sensor were used to evaluate the performance of the proposed method. Each image
has a size of 430 × 430 × 180 pixels. The false-color images are shown in Figure 6. The reference maps
for this dataset have not been published yet.

Figure 6. Cloud detection maps of the compared methods: (a) Input images labeled III from the
GaoFen-1 (GF-1) wide field of view (WFV) dataset, (b) reference detection map, (c) proposed, (d)
K-means, (e) PRS, (f) PCANet, (g) SVM, and (h) SL.
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4. Experimental Results

We comprehensively evaluated the proposed method on three real datasets, which included MS
and HS images captured by various imaging sensors over various scenes. First, we describe the dataset.
Then, we introduce the compared methods and evaluation criterion. Third, we further investigate
the performance of the proposed UNCD method, both qualitatively and quantitatively. Finally, we
analyze the impact of the network structure on the detection performance.

4.1. Experimental Setting

Due to insufficient samples in the remote sensing imagery, we fixed the depth of our UNCD to 2
to avoid overfitting. Inspired by [39], the number of hidden nodes was fixed to

√
L + 1, where L is

the number of bands of the input remote sensing image. The leaky ReLU (LReLU) was used as the
nonlinear activation function with a slope of 0.2 to compress the negative input and retain the negative
part of the information to a certain extent. As the number of epochs increases, both the detection
performance and the computational complexity increase. Thus, we set the number of epochs to 1000 as
a trade-off. The batch size was fixed to the number of pixels in the spatial domain, namely, M× N for
each remote sensing image. The learning rate was set to 0.01. The parameters introduced above were
set to the default values in our experiments, and they can be tuned by the user for the optimal results.

We conducted experiments on 8 NVIDIA Tesla k80 graphics cards based on a system running
Python 3.6.0 and TensorFlow 1.10.0. All compared methods were implemented in MATLAB R2017a.

4.2. Compared Methods and Evaluation Criterion

To evaluate the performance of the proposed UNCD model, several representative cloud detection
methods that are frequently cited in the literature, namely, K-means, PRS, SVM, PCANet, and SL, were
employed for comparison in terms of both visual effects and quantitative evaluations. The K-means
method is a typical unsupervised method. The PRS method yields satisfactory results on several
remote sensing images, and is also an unsupervised method. Since the PRS method is only applicable
to RGB images, we combined band 4-red, band 3-green, and band 2-blue into RGB images. The SVM,
PCANet, and SL methods are supervised learning methods for cloud detection.

To comprehensively evaluate the cloud detection results, the three commonly used evaluation
criteria, namely, the area under the curve (AUC) [40] of the receiver operating characteristic (ROC), the
overall accuracy (OA), and the kappa coefficient (Kappa), were employed.

The area under the curve (AUC) [40] is widely used in objective evaluation indices. The AUC can
identify general trends in the detection performance. The larger the AUC value of the ROC curve, the
better the performance. The OA is defined as [41]:

OA =
TP + TN

TP + TN + FN + FP
, (13)

where true positives (TPs), true negatives (TNs), false positives (FPs) and false negatives (FNs) represent
the number of correctly detected cloud pixels, the number of correctly detected non-cloud pixels,
the number of false-alarm pixels, and the number of missed cloud pixels, respectively. The kappa
coefficient reflects the agreement between a final cloud detection image and the ground-truth map.
Compared with the overall accuracy (OA), the kappa coefficients can more objectively reflect the
accuracy of the results. The larger the value of the kappa coefficient, the higher the accuracy of the
result will be. The kappa coefficient is calculated as [41]:

Kappa =
OA− P

1− P
, (14)

where

P =
(TP + FP)(TP + FN)

(TP + FP + FN + TN)2 +
(FN + TN)(FP + TN)

(TP + FP + FN + TN)2 . (15)
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4.3. Cloud Detection Results

4.3.1. Landsat 8 Dataset Results

The reference maps and the visual cloud detection results that were obtained by the competing
methods for two images from the Landsat 8 dataset are shown in Figures 4 and 5. The reference map is
published at the same time as the dataset and used together with the data. Moreover, the provider
of the dataset marks the annotation. Image I is an example of a case with thin clouds, and Image II
is an example of a case with thick clouds. With these two images, we compared our method with
K-means, PRS, SVM, PCANet, and SL. We implemented these compared methods via the publicly
released codes. According to Figures 4 and 5, the proposed UNCD method caused the smallest
visual difference between the reference map and the detection map compared to K-means, PRS, SVM,
PCANet, and SL. As illustrated in Figures 4 and 5, the K-means method yielded many noise-like
detection results. The PRS method realized minimal improvement for Image I with respect to the
K-means method, and thin clouds were undetected in large areas in Image I. The SL method generated
some detection mistakes in the image due to the thinness and thickness of the clouds. The PCANet
and SVM methods outperformed the K-means, PRS, and SL methods. In particular, the proposed
UNCD method could accurately distinguish clouds and complex background scenes. The reason is that
the proposed detection method extracts the spectral features of the image while utilizing the spatial
background information between adjacent pixels. In comparison to these methods, the advantage of
the proposed UNCD method is its robust detection performances for different clouds with different
scales in different scenes. The objective evaluations, including AUC, OA, and Kappa obtained by
all the considered algorithms, are reported in Table 1, which complies with the visual observation.
Concretely, the AUCs obtained by the proposed UNCD method were 0.9543 and 0.9637 for Images I
and II, respectively, which are much higher than those obtained by the second-best approach in each
case, 0.8485 (PRS method) and 0.8848 (K-means method). The OA and Kappa obtained by the proposed
UNCD method were also the highest, and much higher than those obtained by the second-best method.

Table 1. The detection performance of different methods on Images I and II from the Landsat 8 dataset.
AUC: area under the curve; Kappa: kappa coefficient; OA: overall accuracy. The bold fonts indicate the
best results.

Image I Proposed K-means PRS PCANet SVM SL

AUC 0.9543 0.7979 0.8485 0.8468 0.8286 0.7401
OA 0.9526 0.6745 0.9391 0.9359 0.9343 0.8448

Kappa 0.8719 0.3545 0.7747 0.7646 0.7503 0.4814

Image II Proposed K-means PRS PCANet SVM SL

AUC 0.9637 0.8848 0.8184 0.8701 0.8762 0.8593
OA 0.9536 0.9062 0.7668 0.8962 0.8409 0.8821

Kappa 0.9016 0.7899 0.5560 0.7659 0.6845 0.7365

4.3.2. GF-1 WFV Dataset

The reference maps and detection maps obtained by the compared methods are shown in
Figures 6 and 7. The detection results obtained by the proposed method were similar to the reference
maps, indicating that the proposed method could obtain a satisfactory detection performance. It is
apparent that the UNCD method achieved better detection results than the K-means, PRS, PCANet,
SVM, and SL methods. For the GF-1 WFV dataset, Table 2 lists the corresponding quantitative metrics.
In addition, the competing methods are also reported in Table 2. From Table 2, the AUC values, OA,
and Kappa obtained by the proposed UNCD method were the best among the compared methods.
The reported OA scores on Images III and IV (0.9957 and 0.9934) obtained by the proposed UNCD
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method were higher than that obtained by the second-best methods (0.9835 for SVM on Image III and
0.9690 for SL on Image IV).

Figure 7. Cloud detection maps of the compared methods: (a) Input images labeled IV from the GF-1
WFV dataset, (b) reference detection map, (c) proposed, (d) K-means, (e) PRS, (f) PCANet, (g) SVM,
and (h) SL.

Table 2. The detection performance of different methods on Images III and IV from the GaoFen-1
(GF-1) wide field of view (WFV) dataset. The bold fonts indicate the best results.

Image III Proposed K-means PRS PCANet SVM SL

AUC 0.9676 0.9310 0.8387 0.9168 0.8873 0.8840
OA 0.9957 0.9491 0.9726 0.9815 0.9835 0.9661

Kappa 0.9636 0.6646 0.7434 0.8403 0.8458 0.7261

Image IV Proposed K-means PRS PCANet SVM SL

AUC 0.9860 0.8753 0.8586 0.9304 0.8980 0.8280
OA 0.9934 0.8585 0.9623 0.9591 0.9743 0.9690

Kappa 0.9630 0.4621 0.7551 0.7732 0.8338 0.7743

4.3.3. GF-5 Hyperspectral Dataset

The GF-5 dataset was used to evaluate the feasibility of our proposed UNCD method on real
hyperspectral data. The cloud detection results are displayed in Figures 8 and 9. Image V in Figure 8
contains large clouds, while Image VI in Figure 9 contains many small clouds. It can be observed
that our method was capable of discriminating clouds of different sizes from the background pixels.
The K-means method introduced many false positives. PRS and PCANet failed to detect all the
clouds. By contrast, the SVM and SL methods had better performance while also generating some
detection mistakes. For example, the buildings in Image V were still detected as clouds by the SVM
and SL methods.
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Figure 8. Cloud detection maps of the compared methods: (a) Input images labeled V from the GF-5
dataset, (b) proposed, (c) K-means, (d) PRS, (e) PCANet, (f) SVM, and (g) SL.

Figure 9. Cloud detection maps of the compared methods: (a) Input images labeled VI from the GF-5
dataset, (b) proposed, (c) K-means, (d) PRS, (e) PCANet, (f) SVM, and (g) SL.

4.4. Component Analysis

This section analyzes the effects of the significant processing components on the detection
performance on each dataset. Since the reference maps of the GF-5 hyperspectral dataset are not
publicly available, the objective evaluations could not be obtained for this dataset. Therefore, four
remote sensing images coming from the Landsat 8 dataset and the GF-1 WFV dataset were used to
evaluate the effect of each component objectively. Three comparison experiments were conducted.
In the first experiment, only the AE was considered, which is a basic model for joint encoder–decoder
training. The second considered AE with additional adversarial training (a latent feature discriminator).
The third utilized the proposed method. The AUC, OA, and Kappa values were calculated as reported
in Table 3. The better the detection performance, the higher the AUC, OA, and Kappa values. The AUC
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values were 0.9254, 0.9025, 0.9436, and 0.9462 for four images when only using AE. When applying
the adversarial feature learning, the AUC values were improved to 0.9477, 0.9379, 0.9506, and 0.9689,
respectively. When the multivariate Gaussian distribution was introduced, the method yielded the
best AUC values, which reached 0.9543, 0.9637, 0.9676, and 0.9860, respectively. Similarly, the other
two indicators (i.e., OA and Kappa) also increased. These results demonstrate that each component of
the proposed UNCD method has a positive influence on the cloud detection performance.

Table 3. The area under the curve (AUC), overall accuracy (OA) and Kappa for component analysis of
UNCD for different datasets. AE: autoencoder. The bold fonts indicate the best results.

AUC

Component Image I Image II Image III Image IV

Only AE 0.9254 0.9025 0.9436 0.9462
AE with Dz 0.9477 0.9379 0.9506 0.9689
Proposed 0.9543 0.9637 0.9676 0.9860

OA

Component Image I Image II Image III Image IV

Only AE 0.9211 0.8749 0.9917 0.9897
AE with Dz 0.9248 0.9310 0.9922 0.9923
Proposed 0.9526 0.9536 0.9959 0.9934

Kappa

Component Image I Image II Image III Image IV

Only AE 0.8678 0.7469 0.9258 0.9336
AE with Dz 0.8540 0.8535 0.9309 0.9515
Proposed 0.8719 0.9016 0.9636 0.9630

5. Discussion

According to the values of AUC, OA, and Kappa in Tables 1 and 2 and the visual observations in
Figures 4–9 for various types of datasets, compared to several state-of-the-art methods, the proposed
UNCD method performed the best in detection according to both the objective evaluation results and the
visual observations. The superior performance of the proposed method is due to the latent adversarial
learning constrained encoder, the image discriminator, and the multivariate Gaussian distribution in
the network architecture. It can be concluded from the component analysis experiments that each part
had a positive impact on the detection results. While the proposed UNCD method yielded promising
results in cloud detection, several areas were identified during experiments for improvement in future
work. It is worthwhile to further utilize the data characteristics of remote sensing images in order to
optimize unsupervised networks and to improve the cloud detection performance. In addition, the
network architecture can be enhanced by adding some loss functions and constraints.

The OA values of Images I–IV that were obtained by the proposed UNCD method were 0.9526,
0.9536, 0.9957, and 0.9934, respectively. Our method outperformed the second-best method by 1.44%,
5.23%, 1.24%, and 1.96%, respectively. While the performance of our method was the best among the
considered methods, there is still room for improvement. Moreover, the accuracy of cloud detection
was not high, and there were still many missed detections. However, other comparison methods
also have this problem. Meanwhile, the proposed UNCD method is devoted to cloud detection. In
the future, we will further realize cloud shadow detection. At the same time, to make the method
universal, we will conduct additional experiments on datasets acquired by additional sensors.

6. Conclusions

In this paper, we proposed a discriminative feature learning constrained unsupervised network
for cloud detection (UNCD) for remote sensing imagery. The induced latent discriminator, image
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discriminator, and multivariate Gaussian distribution consider the fact that clouds are sparse and
modeled as outliers and realize a discriminative residual map between the original input and the
background. Based on the analysis of the strong correlation between adjacent pixels, a guided filter is
employed on the residual map to obtain an initial detection map. To further improve the detection
performance, an iterative optimization algorithm is introduced which terminates automatically if the
stopping condition is satisfied. Extensive experimental results on several datasets demonstrate that
the proposed UNCD not only realizes a more favorable detection performance but also generalizes
better to different datasets compared with other state-of-the-art methods. Moreover, the OA values for
Images III and IV from the GF-1WFV dataset were 0.9957 and 0.9934, respectively. This signifies that
our algorithm performwe better than other known algorithms. In future work, we will expand the
datasets used for the experiments to improve the performance of the algorithm.
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Abbreviations

The following abbreviations are used in this manuscript:

AHSI Advanced Hyperspectral Imager
AIUS Atmospheric Infrared Ultra-spectral Sounder
AUC Area under the curve
CDnet Cloud detection neural network
CNN Convolutional neural network
DNN Deep neural network
DPC Directional Polarization Camera
EMI Environmental Monitoring Instrument
FN False negative
FP False positive
GAN Generative adversarial network
GF-1 GaoFen-1
GF-5 GaoFen-5
GMI Greenhouse Gases Monitoring Instrument
HRG High-resolution geometric
HS Hyperspectral
Kappa Kappa coefficient
MS Multispectral
MSCFF Multiscale convolutional feature fusion
OA Overall accuracy
OLI Operational Land Imager
PCANet Principal component analysis network
PRS Progressive refinement scheme
ROC Receiver operating characteristic
SGD Stochastic gradient descent
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SL Scene learning
ST Structure tensor
SVM Support vector machine
TP True positive
TN True negative
TIRS Thermal Infrared Sensor
UNCD unsupervised network for cloud detection
VAE Variational autoencoder
VIMI Visual and Infrared Multispectral Imager
WFV Wide field of view
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