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Abstract: In this paper, we propose a novel method to precisely match two aerial images that were
obtained in different environments via a two-stream deep network. By internally augmenting the
target image, the network considers the two-stream with the three input images and reflects the
additional augmented pair in the training. As a result, the training process of the deep network is
regularized and the network becomes robust for the variance of aerial images. Furthermore, we
introduce an ensemble method that is based on the bidirectional network, which is motivated by the
isomorphic nature of the geometric transformation. We obtain two global transformation parameters
without any additional network or parameters, which alleviate asymmetric matching results and
enable significant improvement in performance by fusing two outcomes. For the experiment, we
adopt aerial images from Google Earth and the International Society for Photogrammetry and Remote
Sensing (ISPRS). To quantitatively assess our result, we apply the probability of correct keypoints
(PCK) metric, which measures the degree of matching. The qualitative and quantitative results show
the sizable gap of performance compared to the conventional methods for matching the aerial images.
All code and our trained model, as well as the dataset are available online.

Keywords: aerial image; image matching; image registration; end-to-end trainable network; ensemble;
gemetric transformation

1. Introduction

1.1. Motivation

Aerial image matching is a geometric process of aligning a source image with a target image. Both
images display the same scene but are obtained in different environments, such as time, viewpoints
and sensors. It also a prerequisite of a variety of aerial image tasks such as change detection, image
fusion, and image stitching. Since it can have a significant impact on the performance of the following
tasks, it is an extremely important task. As shown in Figure 1, various environments have considerable
visual differences of land-coverage, weather, and objects. The variance in the aerial images causes
degradation of the matching precision. In conventional computer vision approaches, correspondences
between two images are computed by the hand-crafted algorithm (such as SIFT [1], SURF [2], HOG [3],
and ASIFT [4]), followed by estimating the global geometric transformation using RANSAC [5] or
Hough transform [6,7]. However, these approaches are not very successful for aerial images due to their
high-resolution, computational costs, large-scale transformation, and variation in the environments.
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Figure 1. Variance in the aerial image data. We captured images that were obtained at different times,
viewpoints and by different sensors. These images represent the same place but are visually different,
which causes degradation in performance.

Another problem with aerial image matching is the asymmetric result. As aforementioned,
there are tons of aerial image matching methods [1–7]. Notwithstanding, these methods [1–7] have
overlooked the consistency of matching flow. i.e., most methods consider only one direction of the
matching flows (from source to target). It causes asymmetric matching results and degradation of the
overall performance. In Figure 2, it illustrates a failure case when the source image and the target
image are swapped.

Figure 2. Asymmetric matching result. When image 1 and image 2 enter into source and target
respectively, the matching process is successful. In the opposite case, however, it completely fails.

Many computer vision tasks have been applied and developed in real life [8–24]. Because deep
neural networks (DNNs) have shown impressive performance in real-world computer vision tasks [25–28],
several approaches apply DNNs to overcome the limitation of traditional computer vision methods
for matching the images. The Siamese network [29–32] has been extensively applied to extract
important features and to match image-patch pairs [33–35]. Furthermore, several works [36–38] apply
an end-to-end manner in the geometric matching area. While numerous matching tasks have been
actively explored with deep learning, few approaches utilize DNNs in aerial image matching areas.
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In this work, we utilize a deep end-to-end trainable matching network and design a two-stream
architecture to address the variance in the aerial images obtained in diverse environments. By internally
augmenting the target image and considering the three inputs, we regularize the training process,
which produces a more generalized deep network. Furthermore, our method is designed as a
bidirectional network with an efficient ensemble manner. Our ensemble method is inspired by the
isomorphic nature of the geometric transformation. We apply this method in our inference procedure
without any additional networks or parameters. The ensemble approach also assists in alleviating the
variance between estimated transformation parameters from both directions. Figure 3 illustrates an
overview of our proposed method.

Figure 3. Overview of the proposed network. Our network directly estimates the outcomes
(θ̂S→T , θ̂T→S, θ̂S→T′ , θ̂T′→S), where θ̂S→T and θ̂T→S are the global transformation parameters that
transform IS to IT , vice versa, and (θ̂S→T′ , θ̂T′→S) are those between IS and IT′ . Subsequently,
the outcomes are employed for the backpropagation in the training procedure. In the inference
procedure, we warp IS to IT using the final ensembled parameters.

1.2. Contibutions

To sum up, our contributions are three-fold:

• For aerial image matching, we propose a deep end-to-end trainable network with a two-stream
architecture. The three inputs are constructed by internal augmentation of the target image, which
regularizes the training process and overcomes the shortcomings of the aerial images due to
various capturing environments.

• We introduce a bidirectional training architecture and an ensemble method, inspired by the
isomorphism of the geometric transformation. It alleviates the asymmetric result of image
matching. The proposed ensemble method assists the deep network to become robust for the
variance between estimated transformation parameters from both directions and shows improved
performance in evaluation without any additional network or parameters.
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• Our method shows more stable and precise matching results from the qualitative and quantitative
assessment. In the aerial image matching domain, we first apply probability of correct keypoints
(PCK) metrics [44] to objectively assess quantitative performance with a large volume of aerial
images. Our dataset, model and source code are available at https://github.com/jaehyunnn/
DeepAerialMatching.

1.3. Related Works

In general, the image matching problem has been addressed in two types of methods: area-based
methods and feature-based methods [39,40]. The former methods investigate the correspondence
between two images using pixel intensities. However, these methods are vulnerable to noise and
variation in illumination. The latter methods extract the salient features from the images to solve
these drawbacks.

Most classical pipelines for matching two images consist of three stages, (1) feature extraction,
(2) feature matching, and (3) regression of transformation parameters. As conventional matching
methods, hand-crafted algorithms [1–4] are extensively used to extract local features. However, these
methods often fail for large changes in situations, which is attributed to the lack of generality for
various tasks and image domains.

Convolutional neural networks (CNNs) have shown tremendous strength for extracting high-level
features to solve various computer vision tasks, such as semantic segmentation [27,41], object
detection [26,42], classification [25,43], human action recognition [44,45], and matching. In the field
of matching, E. Simo-Serra et al. [33] learned local features based on image-patch with a Siamese
network and use the L2-distance for the loss function. X. Han et al. [35] proposed a feature network and
metric network to match two image patches. S. Zagoruyko et al. [34] expanded the Siamese network
in two-streams: surround stream and central stream. K.-M Yi et al. [46] proposed a framework that
includes detection, orientation, estimation, and description by mimicking SIFT [1]. H. Altwaijry et al. [31]
performed ultra-wide baseline aerial image matching with a deep network and spatial transformer
module [47]. H. Altwaijry et al. [48] also proposed a deep triplet architecture that learns to detect and
match keypoints with 3-D keypoints ground-truth extracted by VisualSFM [49,50]. I. Rocco et al. [36]
first proposed a deep network architecture for geometric matching, and demonstrated the advantage
of a deep end-to-end network by achieving 57% PCK score in the semantic alignment. This method
constructs a dense-correspondence map using two image features and directly regress the transformation
parameters. These researchers further proposed a weakly-supervision approach that does not require
any additional ground-truth for training [37]. P. Seo et al. [38] applied an attention mechanism with an
offset-aware correlation (OAC) kernel based on [36] and achieved a 68% PCK score.

Although these works show meaningful results, their accuracy or computational costs for aerial
image matching require improvement. Therefore, we compose a matching network that is suitable for
aerial images by pruning the factors that degrade performance.

2. Materials and Methods

We propose a deep end-to-end trainable network with a two-stream architecture and bidirectional
ensemble method for aerial image matching. Our proposed network focuses on addressing the
variance in the aerial images and asymmetric matching results. The steps for predicting transformation
are listed as follows: (1) internal augmentation, (2) feature extraction with the backbone network,
(3) correspondence matching, (4) regression of transformation parameters, and (5) application
of ensemble to the multiple outcomes. In Figure 4, we present the overall architecture of the
proposed network.

https://github.com/jaehyunnn/DeepAerialMatching
https://github.com/jaehyunnn/DeepAerialMatching
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Figure 4. Overall architecture of the proposed network. Architecture has four stages: internal
augmentation, feature extraction, matching, and regression. First, the target image is augmented using
random color-jittering. Subsequently, the source, target, and augmented images are passed through the
backbone networks which share the weights, followed by the matching operations, which produces the
correspondence maps. The regression networks which also share the weights simultaneously output
the geometric transformation parameters of the original pair (IS, IT) and the augmented pair (IS, IT′ ).
We fuse the transformation parameters (θ̂S→T , θ̂T→S) for inference or compute the losses with the
balance parameters α, β, and γ for training.

2.1. Internal Augmentation for Regularization

The network considers two aerial images (source image IS and target image IT) with different
temporal and geometric properties as the input. By using this original pair (IS, IT) in the training
process, the deep network is trained by considering the relation of only two images obtained in different
environments. However, this approach is insufficient for addressing the variance in the aerial images.
Collecting various pair sets to solve these problems is expensive. To address this issue, we augment
the target image by internally jittering image color during the training procedure. The network
can be trained with various image pairs since the color of the target image is randomly jittered in
every training iteration as shown in Figure 5. This step has a regularization effect of the training
process, which produces a more generally trained network. The constructed three inputs are passed
through a deep network. Subsequently, the network directly and simultaneously estimates global
geometrical transformation parameters for the original pair and augmented pair. Note that the internal
augmentation is only performed in the training procedure. In inference procedure, we utilize a
single-stream architecture without the internal augmentation process for computational efficiency.

Figure 5. Internal augmented samples. In every iteration of training, the target image is augmented
using random color-jittering. Therefore, in every iteration, the network considers a different augmented
training pair.
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2.2. Feature Extraction with Backbone Network

Given the input images (IS, IT , IT′) ∈ Rh×w×d, we extract their feature maps ( fS, fT , fT′) ∈
Rh′×w′×d′ by passing a fully-convolutional backbone network F , which is expressed as follows:

F : Rh×w×d → Rh′×w′×d′ , (1)

where (h, w, d) denote the heights, widths, and dimensions of the input images and (h′, w′, d′) are
those of the extracted features, respectively.

We investigate various models of the backbone networks, as shown in Section 3.
SE-ResNeXt101 [43] add the Squeeze-and-Excitation (SE) block as the channel-attention module
to ResNeXt101 [51], which has shown its superiority in [52]. Figure 6 shows the SE-block. Therefore,
we leverage SE-ResNeXt101 as the backbone network and empirically show that it has an important
role in improving performance compared with other backbone networks. We utilize the image features
extracted from layer-3 in the backbone network and apply L2-normalization to extracted features.

Figure 6. Squeeze-and-Excitation (SE) block. The input feature map is applied by global average
pooling (GAP), followed by a multi-layer perceptron (MLP). The input feature map is elementwise
multiplied by the channel-scores.

2.3. Correspondence Matching

As a method for computing a dense-correspondence map between two feature maps [36],
the matching function C is expressed as follows:

cS→T(i, j, k) = C( fS(ik, jk), fT(i, j))

= fT(i, j) f
S(ik, jk), (2)

where cS→T is the dense-correspondence map that matches the source feature map fS to the target
feature map fT . (i, j) and (ik, jk) indicate the coordinate of each feature point in the feature maps. Each
element in cS→T refers to the similarity score between two points.

We construct the dense-correspondence map of the original pair and augmented pair. To consider
only positive values for ease of training, the negative scores in the dense-correspondence map are
removed by ReLU non-linearity, followed by L2-normalization.

2.4. Regression of Transformation Parameters

The regression step is for predicting the transformation parameters. When the
dense-correspondence maps are passed through the regression network R, the network R directly
estimates the geometric transformation parameters as follows:

R : Rh′×w′×(h′×w′) → RDoF, (3)
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where (h′, w′) indicate the heights and widths of the feature maps, and DoF means the degrees of
freedom of the transformation model.

We adopt the affine transformation which has 6-DoF and the ability to preserve straight lines.
In the semantic alignment domain [36–38], thin-plate spline (TPS) transformation [53] which has
18-DoF is used to improve the performance. However, it is not suitable in the aerial image matching
domain, because it produces large distortions of the straight lines (such as roads and boundaries of the
buildings). Therefore, we infer the six parameters that handle the affine transformation.

2.5. Ensemble Based on Bidirectional Network

The affine transformation is invertible due to its isomorphic nature. We take advantage of
this characteristic to design a bidirectional network and apply an ensemble approach. Applying
the ensemble method enables alleviating the variance in the aerial images and improvement in the
matching performance without any additional networks or models.

2.5.1. Bidirectional Network

Inspired by its isomorphic nature, we expand the base architecture by adding a branch that
symmetrically estimates the transformation in the opposite direction symmetrically. The network yields
the transformation parameters in both directions of each pair, i.e., (θ̂S→T , θ̂T→S) and (θ̂S→T′ , θ̂T′→S).
To infer the parameters of another branch, we compute the dense-correspondence map in the opposite
direction by using the same method as in Section 2.3. All dense-correspondence maps are passed
through the identical regression network R. Since we utilize a regression network for all cases, no
additional parameters are needed in this procedure. The proposed bidirectional network only adds a
small amount of computational overhead compared with the base architecture.

2.5.2. Ensemble

In general, the ensemble technique requires several additional different architectures and
consumes additional time costs to train models differently. We introduce an efficient ensemble
method without any additional architectures or models by utilizing the isomorphism of the affine
transformation. Figure 7 illustrates the overview of the ensemble procedure. (θ̂T→S)

−1, which is the
inverse of θ̂T→S, can be expressed as another transformation parameters in the direction from IS to IT .
To compute (θ̂T→S)

−1, we convert θ̂T→S into the homogeneous form:

[a1, a2, tx, a3, a4, ty] =⇒

a1 a2 tx

a3 a4 ty

0 0 1

 . (4)

In the affine transformation parameters [a1, a2, tx, a3, a4, ty], a1 ∼ a4 represent the scale, rotated
angle and tilted angle, and (tx, ty) denotes the (x-axis, y-axis) translation. We compute (θ̂T→S)

−1 by
converting the homogeneous form, as shown in Equation (4). This inverse matrix denotes another
affine transformation from IS to IT . As a result, we fuse the two sets of affine transformation parameters
as follows:

θ̂en = µ(θ̂S→T , (θ̂T→S)
−1), (5)

where µ(∗) denotes the mean function for fusing two parameters. In the various experiments, we apply
three types of mean: arithmetic mean, harmonic mean and geometric mean. Empirically, arithmetic
mean shows the best performance. In the inference process, θ̂en warps the source image into the target
image. Note that we fuse only parameters that correspond to the original pair since we use the original
two-stream network in the inference procedure and do not utilize the ensembled parameters in the
training procedure to maximize the ensemble effects.
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Figure 7. Ensemble process of affine parameters. The outcomes that correspond to the original pair are
the transformation parameters (θ̂S→T , θ̂T→S) in two possible directions. Since the affine transformation
is isomorphic, we can use the inverse of θ̂T→S to warp the source image to the target image. Therefore,
the final transformation parameters are obtained by fusing these parameters.

2.6. Loss Function

In the training procedure, we adopt the transformed grid loss [36] as the baseline loss function.
Given the predicted transformation θ̂ and the ground-truth θgt, the baseline loss function l(θ̂, θgt) is
obtained by the following:

l(θ̂, θgt) =
1
N

N

∑
i,j=1

d(Tθ̂(xi, yj), Tθgt(xi, yj))
2, (6)

where N is the number of grid points, Tθ̂(∗) and Tθgt(∗) are the transforming operations parameterized
by θ̂ and θgt, respectively. To achieve bidirectional learning, we add a term for training the additional
branch to the baseline loss function. Formally, we define the proposed bidirectional loss of the original
pair, Lorg, as follows:

Lorg =l(θ̂S→T , θ
gt
S→T) + l(θ̂T→S, (θgt

S→T)
−1). (7)

Note that additional ground-truth information for the opposite direction is not required due to the
isomorphism of the affine transformation. For regularization of training, we add two terms utilizing
the augmented pair:

Laug =l(θ̂S→T′ , θ
gt
S→T) + l(θ̂T′→S, (θgt

S→T)
−1), (8)

Lid =l(θ̂S→T , θS→T′) + l(θ̂T→S, θT′→S). (9)

The augmented pair also share the ground-truth since the geometric relation between two images
is equivalent to the original pair. The identity term in Equation (9) induces training to ensure that the
prediction values from the original pair and the augmented pair are equal. Our proposed final loss
function is defined by the following:



Remote Sens. 2020, 12, 465 9 of 20

L =α · Lorg + β · Laug + γ · Lid, (10)

where (α, β, γ) are the balance parameters of each loss term. In our experiment, we set these parameters
to (0.5, 0.3, 0.2), respectively.

3. Results

In this section, we present the implementation details, experiment settings, and results. For the
quantitative evaluation, we compare the proposed method with other methods for aerial image
matching. We further experiment with various backbone networks to obtain more suitable features for
our work. We show the contributions of each proposed component in the ablation study section and
the qualitative results of the proposed network compared with other networks.

3.1. Implementation Details

We implemented the proposed network using PyTorch [54] and trained our model with the
ADAM optimizer [55], using a learning rate 5× 10−4 and a batch size of 10. We further performed
data augmentation by generating the random affine transformation as the ground-truth. All input
images were resized to 240× 240.

Figure 8. Process of generating the training pairs. In the training procedure, given a multi-temporal
aerial image pair, we perform the transformation on the second image using the ground-truth θ

gt
S→T

which is randomly generated.

3.2. Experimental Settings

3.2.1. Training

We generated the training input pairs by applying random affine transformations to the
multi-temporal aerial image pairs captured in Google Earth. Since no datasets were annotated with
completely correct transformation parameters between two images, we built the training dataset, 9000
multi-temporal aerial image pairs, and corresponding ground-truths. Basically, multi-tempral image
pairs consisted of the image pairs which were taken at different times (2019, 2017, and 2015) and
by different sensors (Landsat-7, Landsat-8, WorldView, and QuickBird). The process of annotating
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ground-truth is as follows: (1) we employed the multi-temporal image pairs (I, I′) with the same region
and viewpoint. (2) The first images in the multi-temporal aerial image pairs were center-cropped.
(3) The second images are transformed by the randomly generated affine transformation θ

gt
S→T which

was used as a ground-truth and subsequently center-cropped. (4) The center-crop process was
performed to exclude the black area that serves as noise after transformation. Figure 8 illustrates the
process of generating training pairs and ground-truths. In Algorithm 1, the training procedure is
detailed. It has O(N) complexity with respect to the number of training pairs N. We train our model
for 2-days on a single NVIDIA Titan V GPU.

Algorithm 1: Training procedure.
Input : Training aerial image dataset D

Randomly initialized modelMw

Output : Trained modelMw

for epochs do
for (I, I′) in D do

# Construct three inputs
θ

gt
S→T = randomly generated transformation;

IS = center-cropped image of I;
IT = center-cropped image of T

θ
gt
S→T

(I′);

IT′ = color-jittered image of IT ;
# Feed-forward
θ̂S→T , θ̂T→S, θ̂S→T′ , θ̂T′→S =Mw(IS, IT , IT′ );
# Compute loss
L = L(θ̂S→T , θ̂T→S, θ̂S→T′ , θ̂T′→S, θ

gt
S→T);

# Backpropagation and update weights
w = w− η( ∂L

∂w ) ;
end

end

3.2.2. Evaluation

To demonstrate the superiority of our method quantitatively, we evaluated our model using the
PCK [56], which was extensively applied in the other matching tasks [36–38,57–60]. PCK metric is
defined as follows:

PCK =
∑n

i=1 ∑pi
1[d(Tθ̂(pi), Tθgt(pi)) < τ ·max(h, w)]

∑n
i=1 |pi|

, (11)

where pi is the ith point, which consists of (xi, yi), and τ ·max(h, w) refers to the tolerance term
in the image size of h× w. Intuitively, the denominator and the numerator denote the number of
correct keypoints and overall annotated keypoints, respectively. The PCK metric shows how well
matching is successful globally according to given τ with a lot of test images. In this evaluation,
we assess in the cases of τ = 0.1, 0.3, and 0.5. The greater value of τ allows measuring degrees of
matching more globally. To adopt the PCK metric, we annotated the keypoints and ground-truth
transformation to 500 multi-temporal aerial image pairs. The multi-temporal pairs are captured
in Google Earth and composed of major administrative districts in South Korea, like the training
image pairs. The annotation process is as the following process: (1) we extracted the keypoints
of multi-temporal aerial image pairs using SIFT [1], and (2) picked up the overlapping keypoints
between each image pair. We annotate 20 keypoints per image pair, which generate a total of 10k
keypoints for a quantitative assessment. This approach provides a fair demonstration of quantitative
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performance. In the evaluation and the inference procedure, we used a two-stream network, except for
the augmented branch shown in Algorithms 2.

Algorithm 2: Inference procedure.

Input : Source and target images (IS, IT)

Trained modelMw

Output : Transformed image I
′
S

# Feed-forward
θ̂S→T , θ̂T→S =Mw(IS, IT);
# Ensemble
θ̂en = µ(θ̂S→T , (θ̂T→S)

−1);
# Transform source image to target image
I
′
S = Tθ̂en

(IS)

3.3. Results

3.3.1. Quantitative results

Aerial Image Dataset

Table 1 shows quantitative comparisons to the conventional computer vision methods (SURF [2],
SIFT [1], ASIFT [4] + RANSAC [5] and OA-Match [61]) and CNNGeo [36] on aerial image data
with large transformation. Conventional computer vision methods [1,2,4,5,61] showed quite a
number of critical failures globally. As shown in Table 1, the conventional methods show low PCK
performance in the case of τ = 0.05. However, in the case of τ = 0.01, these methods showed lower
degradation of performance compared with other deep learning based methods. This result implies
that conventional methods enable finer matching if the matching procedure does not failed entirely.
Although CNNGeo fine-tuned by aerial images shows somewhat tolerable performance, our method
considerably outperforms this method in all cases of τ. Furthermore, we performed an investigation
of the various backbone networks to demonstrate the importance of feature extraction. Since the
backbone network substantially affects the total performance, we experimentally adopted the best
backbone network.

Table 1. Comparisons of probability of correct keypoints (PCK) in the aerial images. CNNGeo is
evaluated in two versions: the pre-trained model provided in [36] and the fine-tuned model by the
aerial images. Both models use ResNet101 as the backbone network.

Methods PCK (%)
τ = 0.05 τ = 0.03 τ = 0.01

SURF [2] 26.7 23.1 15.3
SIFT [1] 51.2 45.9 33.7
ASIFT [4] 64.8 57.9 37.9
OA-Match [61] 64.9 57.8 38.2

CNNGeo [36] (pretrained) 17.8 10.7 2.5
CNNGeo (fine-tuned) 90.6 76.2 27.6
Ours; ResNet101 [62] 93.8 82.5 35.1

Ours; ResNeXt101 [51] 94.6 85.9 43.2
Ours; Densenet169 [63] 95.6 88.4 44.0
Ours; SE-ResNeXt101 [43] 97.1 91.1 48.0
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Ablation Study

The proposed method combines two distinct techniques: (1) internal augmentation and (2)
bidirectional ensemble. We analyze the contributions and effects of each proposed component and
compare our models with CNNGeo [36]. ’+ Int. Aug.’ and ’+ Bi-En.’, which signify the internal
augmentation and bidirectional ensemble addition, respectively. As shown in Table 2, all models
added by our proposed component improves the performances of CNNGeo for all τ, while maintaining
the number of parameters. We further compare the proposed two-stream architecture to single-stream
architecture which is added to the proposed components (internal augmentation, bidirectional
ensemble). Table 3 shows the excellence of the proposed two-stream architecture compared to the
single-stream architecture. It implies that the proposed regularization terms by the two-stream
architecture are reasonable.

Table 2. Results of models with different additional components. We analyzed the contributions of
each component with ResNet-101 backbone.

Methods PCK (%)
τ = 0.05 τ = 0.03 τ = 0.01

CNNGeo [36] 90.6 76.2 27.6
CNNGeo + Int. Aug. 90.9 76.6 28.4
CNNGeo + Bi-En. 92.1 79.5 31.8
CNNGeo + Int. Aug. + Bi-En. (Ours) 93.8 82.5 35.1

Table 3. Comparison of single-stream and two-stream architecture. We analyzed the effectiveness of
the two-stream based regularization with ResNet-101 backbone.

Methods PCK (%)
τ = 0.05 τ = 0.03 τ = 0.01

Single-stream (with Int. Aug. and Bi-En.) 92.4 79.7 33.5
Two-stream (Ours) 93.8 82.5 35.1

3.3.2. Qualitative Results

Global Matching Performance

We performed a qualitative evaluation using the Google Earth dataset (Figure 9) and the ISPRS
dataset (Figure 10). The ISPRS dataset is a real-world aerial image dataset that was obtained from
different viewpoints. Although our model was trained from the synthetic transformed aerial image
pairs, it is successful with real-world data. In Figures 9 and 10, the samples consist of challenging
pairs, including numerous difficulties such as differences in time, occlusion, changes in vegetation,
and large-scale transformation between the source images and the target images. Our method
correctly aligned the image pairs and yields accurate results of matching compared with other
methods [4,5,36,61] as shown in Figures 9 and 10.
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Source ASIFT [4] + OA-Match [61] CNNGeo [36] Ours Target

RANSAC [5]

Figure 9. Qualitative results for Google Earth data. These sample pairs are captured in Google Earth
with different environments (viewpoints, times, and sensors).

Source ASIFT [4] + OA-Match [61] CNNGeo [36] Ours Target

RANSAC [5]

Figure 10. Qualitative results for the ISPRS dataset. These samples are released by ISPRS [64].

Localization Performance

We visualized the matched keypoints for comparing localization performance with CNNGeo [36].
It is also important how fine source and target images are matched within the success cases. As shown
in Figure 11, we intuitively compared localization performance. The X marks and the O marks on the
images indicate the keypoints of the source images and the target images, respectively. Both models
([36] and ours) successfully estimated global transformation. However, looking at the distance of
matched keypoints, ours was better localized.
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Figure 11. Visualization of the matched keypoints. Rows are each as follows: (1) source images, (2)
results of CNNGeo [36], (3) results of our method, (4) target images.

4. Discussion

4.1. Robustness for the Variance of Aerial Image

Furthermore, we experimented on robustness for the variance of aerial images as shown in
Figure 12. The source images were taken in 2004, 2006, 2015, 2016, and 2019, respectively. The target
images were absolutely identical images. As a result, ours showed more stable results for overall
sessions. Especially, source images which were taken in 2004 and 2006 have large differences of
including object compared with the target image. It showed that ours had better robustness for the
variance of the aerial images while the baseline [36] is significantly influenced by these differences.

4.2. Limitations and Analysis of Failure Cases

We describe the limitation of our method and analyze the case in which the proposed method fails.
As shown in Section 3.3.1, our method quantitatively showed state-of-the-art performance. However,
comparing τ = 0.05 with τ = 0.01 indicates a substantial difference in performance. Our method is
weak in detailed matching even though it successfully estimates global transformation in most cases.
This weakness can be addressed by additional fine-grained transformation as post-processing.

Our proposed method failed in several cases. As a result, we have determined that our method
fails in mostly wooded areas or largely changed areas as shown in Figures 13 and 14. In mostly wooded
areas, repetitive patterns hinder the focus on a salient region. In the case of largely changed areas,
massive differences, such as buildings, vegetation, and land-coverage between the source image and
the target image are observed, which leads to degradation of performance. To address these limitations,
a method that can aggregate local contexts for reducing repetitive patterns is required.



Remote Sens. 2020, 12, 465 15 of 20

Figure 12. Results for various source images taken at different times. Rows are each as follows:
(1) source images, (2) results of CNNGeo [36], (3) results of our method, (4) target images.

Figure 13. Failure cases, which primarily consist of wooded areas. Although there are objects that can
be focused, it fails completely.
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Figure 14. Failure cases, which are largely changed areas. Since the changed area is too large, it
fails completely.

5. Conclusions

We propose a novel approach based on a deep end-to-end network for aerial image matching.
To become robust to the variance of the aerial images, we introduce two-stream architecture using
internal augmentation. We show its efficacy for consideration of various image pairs. An augmented
image can be seen as an image which is taken in different environments (brightness, contrast, saturation),
and by training these images with original target images simultaneously, it leads to the effect of
regularizing the deep network. Furthermore, by training and inferring in two possible directions, we
apply an efficient ensemble method without any additional networks or parameters, which considers
the variances between transformation parameters from both directions and substantially improves
performance. In the experimental section, we show stable matching results with a large volume of aerial
images. However, our method also has some limitations as aforementioned (Section 4.2). To overcome
these limitations, we plan to research the localization problem and the attention mechanism. Moreover,
The studies applying Structure from Motion (SfM) and 3D reconstruction to image matching are very
interesting and can improve performance of image matching, so we also plan to conduct this study in
the future work.
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Abbreviations

The following abbreviations are used in this manuscript:

DNNs Deep Neural Networks
CNNs Convolutional Neural Networks
ReLU Rectified Linear Unit
TPS Thin-Plate Spline
PCK Probability of Correct Keypoints
ADAM ADAptive Moment estimation
Bi-En. Bidirectional Ensemble
Int. Aug. Internal Augmentation
ISPRS International Society for Photogrammetry and Remote Sensing
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