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Abstract: The quantification of impervious surface through remote sensing provides critical
information for urban planning and environmental management. The acquisition of quality reference
data and the selection of effective predictor variables are two factors that contribute to the low
accuracies of impervious surface in urban remote sensing. A hybrid method was developed to
improve the extraction of impervious surface from high-resolution aerial imagery. This method
integrates ancillary datasets from OpenStreetMap, National Wetland Inventory, and National Cropland
Data to generate training and validation samples in a semi-automatic manner, significantly reducing
the effort of visual interpretation and manual labeling. Satellite-derived surface reflectance stability
is incorporated to improve the separation of impervious surface from other land cover classes.
This method was applied to 1-m National Agriculture Imagery Program (NAIP) imagery of three
sites with different levels of land development and data availability. Results indicate improved
extractions of impervious surface with user’s accuracies ranging from 69% to 90% and producer’s
accuracies from 88% to 95%. The results were compared to the 30-m percent impervious surface data
of the National Land Cover Database, demonstrating the potential of this method to validate and
complement satellite-derived medium-resolution datasets of urban land cover and land use.

Keywords: impervious surface; land cover; National Agriculture Imagery Program (NAIP); spectral
stability; OpenStreetMap (OSM); Landsat; Google Earth Engine

1. Introduction

Over half the Earth’s population now resides in cities [1]. Urbanization inevitably alters hydrologic
processes, energy balance, and biological composition, resulting in higher nutrient loads, elevated
surface temperature, increased peak flow, and accelerated habitat degradation in many urban areas
and watersheds [2–4]. A characteristic indicator of urbanization is the increase of impervious surface,
a unique land cover class that involves paved roads, sidewalks, parking lots, buildings, and other
built structures, through which precipitation does not readily infiltrate into the underlying soil [5].
Understanding the spatiotemporal pattern of impervious surface has important implications for
many urban studies on stormwater, heat islands, water quality, ecosystem function, population
growth, and community resilience [6–11]. The quantification of impervious surface provides critical
information to city managers and researchers for a range of issues in urban planning and environmental
management [5].
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Remote sensing has been used for decades to monitor land cover change and map the growth
of impervious surface. This has led to the generation of important databases at national or global
scales, such as the National Land Cover Database (NLCD) in the United States [12,13], Coordination
of Information on the Environment (CORNIE) land cover inventory in Europe [14], Finer Resolution
Observation and Monitoring-Global Land Cover (FROM-GLC) database in China [15], and MODIS
Land Cover Type Yearly Global dataset [16]. As these databases are derived from medium-resolution
satellite imagery with pixel size ranging from 30 m to 500 m, they have to use multiple urban land
cover classes (i.e., low- and high-intensity developed areas) to reflect different levels of impervious
surface cover at the scale of a satellite image pixel. High-resolution datasets of impervious surface are
not available over large spatial extents, but some studies have utilized meter- or submeter-level aerial
imagery to characterize urban landscape. For example, object-based feature extraction and regression
tree techniques were applied to National Agriculture Imagery Program (NAIP) orthophotography in
Minnesota and led to an overall accuracy of 74% [17]. An algorithm of multiple agent segmentation
was applied to analyze NAIP imagery of Rhode Island [18]. More recently, random forest (RF) models
were combined with geographic object-based image analysis to generate a 1-m land cover dataset of
West Virginia with an overall accuracy of 96.7% [19].

However, reported accuracies for impervious surface were often lower than the accuracies of
other land cover classes in supervised classification. An important reason is the acquisition of sufficient
and reliable samples that are needed to train a classification model. Studies have shown that increasing
the size of training data generally improves classification performance and could have a greater
influence than the classification model [19,20]. Collecting a large number of quality samples by field
surveys or screen digitalization is very complex, costly, and time consuming [21]. This is exacerbated
by the acquisition of independent samples for validation, as using the same data for training and
validation could result in optimistically biased accuracy assessments [22]. Another influential factor
on the extraction of impervious surface is the selection of variables. Including predictor variables in
addition to original image bands generally improves classification performance. These additional
predictors include a variety of spectral, textural, and feature geometric indices, derived from the
targeted image and sometimes with the support of ancillary datasets [2,19,23–29]. These measures
enhance the signatures of impervious surface across various spatial scales, but they lack the information
about the unique temporal behaviors of impervious surface. Although some predictor variables of
temporal changes (e.g., phenological features and time series) have been used in studies on vegetation
classification [30–32], such variables have been rarely included in the extraction of impervious surface.

The goal of this study was to develop a hybrid method for extracting impervious surface from
1-m NAIP imagery. Reference data for training and validation were generated in a semi-automatic
scheme that integrated multiple ancillary datasets to minimize human edits. Classification was also
improved by analyzing temporal stability of surface reflectance based on a time series of Landsat
imagery. We demonstrated this method at three sites in South Texas to address different levels
of development intensity and data availability. Furthermore, after the accuracy assessment, the
1-m results of impervious surface were upscaled to 30-m resolution for a comparison to the NLCD
percent impervious surface product, demonstrating the potential value of our method to validate and
complement this important national land cover database.

2. Materials and Methods

2.1. Study Area and Data

The study area is located in the Corpus Christi-Kingsville metropolitan region in South Texas,
United States (Figure 1). This region is a flat coastal plain that faces the Gulf of Mexico. Elevation
varies from sea level to 70 m with an average slope of 0.5%. Soils are mainly Victorian clay and Orelia
fine sandy loam. According to 2016 NLCD data, the major land cover classes in this area include
developed (26%), open water (24%), cultivated crops (15%), hay and pasture (10%), and shrub and
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scrub (8%). This area has a humid subtropical climate with an average annual precipitation of 805 mm
and an average annual temperature of 22.3 ◦C.

Figure 1. Study area in South Texas, United States.

Three sites were selected for this study (Figure 1). Site 1 was in the south region of Corpus Christi,
the urban core with a population of 325,733 in 2016. The landscape of this site was dominated by
developed land and large areas of coastal water. Site 2 covered the majority of Kingsville, a satellite city
with a population of 25,714 in 2016 and surrounded by agricultural land. Site 3 was an industrial zone
in north Corpus Christi with a mixture neighborhood of farmland and wetland. Thus, the three sites
reflected a gradient of land development: high (Site 1), medium (Site 2), and low (Site 3). They also
addressed different conditions of barren land, ranging from limited mixed barren land (Site 1) to
abundant single-type barren land (Site 3) and abundant mixed barren land (Site 2). NAIP imagery of
these sites consisted of three 1-m multispectral (blue, green, red, and near-infrared) images acquired in
May 2016.

Several ancillary datasets were used in this study. Vector datasets of building and roads were
downloaded from the database of the OpenStreetMap (OSM) project (www.openstreetmap.org). Built
on the concept of volunteered geographic information, the OSM project relies on volunteers to collect
information of various built features, collates them on a central database, and distributes free datasets
with sound quality [33]. Vector datasets of freshwater and estuarine wetland boundaries were extracted
from the National Wetland Inventory (NWI) database of the United States Fish and Wildlife Service.
Created through a hierarchical classification framework that utilizes aerial photography, NWI maps
are recognized as the most comprehensive wetland maps in the United States [34]. National cropland
data were accessed through Google Earth Engine (GEE). This robust raster dataset is created annually
by the National Agricultural Statistics Service (NASS) of the United States Department of Agriculture
using moderate resolution satellite imagery and extensive agricultural ground truth [35].

We also directly used satellite data, including 9 Landsat-5 TM images, 41 Landsat-7 ETM+ images,
and 25 Landsat-8 OLI images, acquired from 2011 and 2016 in the path-26/row-41 scene of the Landsat
World Reference System 2. The Landsat data were Level-2 30-m surface reflectance of six bands (blue,
green, red, near-infrared, and two shortwave infrared bands). GEE was used to access and process all
remote sensing data in this study.

www.openstreetmap.org
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2.2. Sample Generation

We developed a semi-automatic approach to efficiently generate quality training samples for
land cover classification (Figure 2). This method uses multiple ancillary datasets to improve the
identification of representative pixels for impervious surface, vegetation, water, and barren land.

Figure 2. Flowchart of the generation of training samples using ancillary datasets (green parallelograms).
OSM, NASS, and NWI denote OpenStreetMap, National Agricultural Statistics Service, and National
Wetland Inventory databases, respectively.

First, training samples for impervious surface were generated using vector data of buildings and
roads extracted from OSM (Figure 3). Building samples were created by buffering building polygons
inward by three meters and then calculating the centroids of the buffered polygons. Using the centroids
instead of taking random positions within the building polygons reduced the potential disturbance of
vegetation around roof edges. Road samples were generated using the vertices of road polylines in
OSM. This comprehensive road dataset included a variety of motorway, primary, secondary, residential,
and service roads, as well as the lanes in many commercial parking lots. NAIP pixels at the centroids
of building polygons and the vertices of road polylines were extracted to establish the pool of samples
for impervious surface. The size of this pool would vary with the local availability of OpenStreetMap
data. The three sites in this study reflected a gradient of OSM data availability: abundant (Site 1),
medium (Site 2), and scarce (Site 3).

Second, a sampling pool of barren land was established to represent both barren wetland (Figure 4)
and barren farmland (Figure 5). Barren wetland consists of tidal flats, sand beaches, and sand dunes
that are adjacent to natural water bodies. They were first roughly delineated on the NAIP image
by overlaying polygons of estuarine and freshwater wetlands extracted from the National Wetland
Inventory. Then, barren wetland was identified using masks of NDVI < 0 and NDWI < 0.1, calculated
using the green, red, and near-infrared bands of the NAIP image. Barren farmland mainly consists of
bare soils in arable lands that are left fallow. Arable lands were first identified using the cultivated areas
of the NASS Cropland Data. Then, a threshold of NDVI < 0 was applied to identify pixels without
crop cover. We did not attempt to differentiate all non-vegetation patches through NDVI thresholding.
The purpose of using an NDVI threshold was to identify representative areas with sufficiently low
values of NDVI, which were highly unlikely to be vegetated areas. Samples were randomly generated
within these identified areas of barren land.
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Figure 3. Extracting training samples of impervious surface based on (a) NAIP imagery and (b)
OpenStreetMap vector data.

Figure 4. Extracting training samples of barren wetland using three criteria: (a) located within the
wetland areas of the NWI dataset, (b) NDWI values < 0.1, and (c) NDVI values < 0. Subplot (d) shows
the identified areas of barren wetland and the samples (circles) randomly generated within them.
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Figure 5. Extracting training samples of barren farmland using two criteria: (a) Located within the
cultivated areas of the USDA Cropland Layer, and (b) NDVI values < 0. Subplot (c) shows the identified
areas of barren farmland and the samples (circles) randomly generated within them.

Third, sampling pools of water and vegetation were established using thresholds of NDVI and
NDWI, respectively. The thresholds were calculated based on NDVI and NDWI values of impervious
surface samples within the same NAIP image:

TND = µimp,ND + cNDσimp,NDVI (1)

where TND is the threshold of a normalized difference index (i.e., NDVI or NDWI); µimp,ND and σimp,ND
denote the mean and standard deviation of this index, respectively, calculated from its values of all
impervious surface samples; and cND is a coefficient with values of 1.0 and 2.0 for NDVI and NDWI,
respectively. Pixels with values above the calculated NDVI and NDWI thresholds were determined as
vegetation and water samples, respectively.

Last, 600 samples were randomly selected from the pool of impervious surface and 300 samples
for each of the other classes (vegetation, water, and barren land), leading to a training dataset of 1500
samples for the targeted NAIP image. Using a large sample size for impervious surface was aligned
with the emphasis of this study on separating impervious surface from other land cover classes. If a
pool did not contain sufficient samples, all available samples were included. Given the 1-m resolution
of NAIP imagery, it was reasonable to assign a single land cover class to each pixel, so we did not
consider any mixed land cover classes.

A modified scheme was developed to generate a separate dataset of samples for validation. First,
a group of 1500 pixels were randomly selected across the scene of the NAIP image. Second, pixels
located within inward-buffered building polygons or outward-buffered road polygons were labeled
as impervious surface. Third, pixels with NDVI and NDWI values exceeding the above thresholds
(Equation (1)) were labeled as vegetation and water, respectively. Finally, unlabeled points were
visually inspected to determine its land cover. In doing so, the effort of manual editing in generating
validation samples was significantly reduced.

2.3. Spectral Stability

Spectral stability (in %) describes the variability (standard deviation σ) of a pixel reflectance ρλ
relative to the average reflectance ρλ over the whole time series [36]:

TSλ = 100×
σ(ρλ−ρλ)

ρλ
(2)

This index was calculated using a six-year time series of Landsat imagery that covered the domain
of the targeted NAIP image. The time series consisted of Level 2 surface reflectance products from
Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI sensors. They are high-level Landsat products
generated by the United States Geological Survey (USGS) to eliminate the need for routine reprocessing
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efforts of geometric, radiometric, and atmospheric corrections [37]. Landsat images with cloud and
cloud shadow cover over 50% were excluded. Over the selected satellite images, spectral stability was
calculated for each of six bands: Blue, green, red, near-infrared, shortwave infrared 1, and shortwave
infrared 2. Details of band characteristics are available on the website of USGS (www.usgs.gov).
The generated 30-m spectral stability images were resampled and clipped to align with the 1-m
resolution and domain of the targeted NAIP image.

2.4. Classification and Accuracy Assessment

Three types of predictor variables were used in classification: (i) four original NAIP brightness
bands (red, green, blue, and near-infrared); (ii) two multispectral indices (NDVI and NDWI) calculated
using NAIP brightness bands; and (iii) six bands of spectral stability calculated using the time series of
Landsat surface reflectance. This led to a 12-band, 1-m composite image for classification. For each site,
a random forest model of 100 trees was trained on GEE using the 1500-sample training dataset and
was then applied to the whole NAIP image. Accuracy was assessed using overall accuracy, the kappa
statistics, and the class user’s and producer’s accuracies based on the independent 1500-sample
validation dataset.

After the 1-m classification results were fully validated, we further compared the results to the
NLCD imperviousness product that represents impervious surface as a percentage of developed surface
over every 30-m pixel. We first converted our result into a 1-m binary impervious/non-impervious
layer. Then, the percent impervious surface was calculated by dividing the number of 1-m impervious
pixels by 900 within each of 30-m grids that were aligned with NLCD pixels.

3. Results

3.1. Classification Results

For Sites 1 to 3 (Tables 1–3), overall accuracies were 96%, 92%, and 91%, respectively, and kappa
values were 0.94, 0.86, and 0.85, respectively. As expected, user’s and producer’s accuracies were higher
for vegetation and water relative to the accuracies for impervious surface and barren land. Producer’s
accuracies varied from 88% to 95% for impervious surface and from 60% to 84% for barren land. User’s
accuracies were more variable, ranging from 69% to 90% for impervious surface and 57% to 99%
for barren land. Confusion associated with impervious surface was a primary area of disagreement,
accounting for 92%, 63%, and 54% of the classification errors at Sites 1 to 3, respectively. In particular,
the classification errors were driven by the confusion between impervious surface and barren land,
accounting for over 40% of the classification errors at all sites. As shown in Figure 6, it mainly included
the misidentification of impervious surface from various natural bare ground along shorelines (Sites
1 and 3), unpaved rural roads (Sites 2 and 3), and the edges of cropland patches (Site 3). Most of
these areas represent a transition zone between a homogeneous landscape feature and its neighboring
features that are smaller and more fragmented (i.e., estuary water versus narrow beach zones, and
cropland versus rural roads). The resolution mismatch between 1-m NAIP imagery and 30-Landsat
imagery was evident in such areas and had an apparent impact on the spectral characteristics of training
samples. Another noticeable component of disagreement was the confusion between vegetation and
impervious surface in residual areas with low or medium development intensity, accounting for ~25%
of the classification errors.

www.usgs.gov
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Table 1. Error matrix of classification results at Site 1 using automatically generated reference data.

Reference

Impervious Surface Vegetation Water Barren Row Total UA

Classification

Impervious Surface 279 12 8 11 309 90.0%

Vegetation 2 389 0 0 392 99.5%

Water 1 0 766 0 766 99.9%

Barren 12 1 0 17 31 56.7%

Column Total 277 402 774 28 Overall: 96.2%

PA 94.9% 96.8% 99.0% 60.7% Kappa: 0.939

PA = Producer’s accuracy, UA = User’s accuracy.

Table 2. Error matrix of classification results at Site 2 using automatically generated reference data.

Reference

Impervious Surface Vegetation Water Barren Row Total UA

Classification

Impervious Surface 200 31 0 49 280 71.4%

Vegetation 10 788 0 38 836 94.3%

Water 1 0 2 0 3 66.7%

Barren 8 3 0 370 381 97.1%

Column Total 219 822 2 457 Overall: 91.5%

PA 91.3% 95.9% 100.0% 81.0% Kappa: 0.855

Table 3. Error matrix of classification results at Site 3 using automatically generated reference data.

Reference

Impervious Surface Vegetation Water Barren Row Total UA

Classification

Impervious Surface 160 15 4 53 232 69.0%

Vegetation 17 725 7 32 781 92.8%

Water 3 0 49 0 52 94.2%

Barren 2 1 2 430 435 98.9%

Column Total 182 741 62 515 Overall: 90.6%

PA 86.8% 97.4% 80.6% 83.3% Kappa: 0.849

Figure 6. NAIP images and classification results of Site 1 (a,d), Site 2 (b,e), and Site 3 (c,f).
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3.2. Selection of Predictor Variables

As shown in Figure 7, including NAIP-derived multispectral indices (i.e., NDVI and NDWI) and
Landsat-derived spectral stability led to improved classification accuracies at all three sites, compared
to the performance of only using NAIP four-band brightness. Improvements on the identification
of impervious surface and barren land were particularly evident. For example, at Site 1, the user’s
accuracy of the barren land improved 20% and the producer’s accuracy of impervious surface improved
10%. At Site 3, the user’s accuracy of the barren land improved 5% and the producer’s accuracy of
impervious surface improved 13%. This had an important impact on the overall agreement, as the
confusion between impervious surface and barren land was the dominant source of classification
errors. The results also indicate that including both multispectral indices and spectral stability was
more effective than using only one of them. For example, at Site 1, adding multispectral indices alone
was better than adding spectral stability alone, but including both further improved the performance.

Figure 7. Effect of predictor variables on classification accuracies. In the legend, B, MI, and
TS denote brightness, multispectral indices, and temporal spectral stability, respectively. In the
y-axis labels of subplots, OA, UA, and PA denote overall accuracy, user’s accuracy, and producer’s
accuracy, respectively.

3.3. Training and Validation Samples

The semi-automatic sampling approach resulted in large training and validation datasets for
each site (Figure 8). There were 600, 300, 300, and 300 training samples for impervious surface, water,
vegetation, and barren land, respectively. This led to a total of 1500 pixels per NAIP image, i.e., one
sample per 35,000 pixels or a high sampling fraction of 0.00286. As expected, the spatial distributions
of training samples per class and overall were not homogeneous, as the locations of these samples
were confined to scene-specific availability of ancillary data (e.g., OSM building polygons and road
polylines) and overall land cover pattern. The validation dataset also consisted of 1500 pixels for each
site. Because these pixels were selected using random sampling, the fractions of different land cover
categories in the validation dataset reflected the actual land cover composition of the site. The size of
validation dataset was deemed sufficient to represent minor land cover categories, e.g., barren ground
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at Site 1 (2.5%) and water at Site 3 (4.3%). The semi-automatic sampling approach significantly reduced
the manual effort of assigning labels to individual pixels. In this study, manual labeling was only
needed for 315, 570, and 615 pixels of the validation dataset for Sites 1 to 3, respectively, or on average
17% of the whole 3000-pixel reference dataset per site. To ensure the quality of the reference datasets,
visual inspection was performed on all samples that were generated automatically from ancillary data
in this study, and no correction was needed for any of them.

Figure 8. Training samples (a–c) and validation samples (d–f) of the study sites.

Although the semi-automatic sampling approach could generate even larger reference datasets,
using more samples did not always lead to enhanced agreement (Figure 9). The performance based on
50 samples per class was quite close to the performance of using 400 samples per class. This indicates
that the quality of samples plays a more important role than the quantity of samples in training the
random forest models of this study. This is generally consistent with the findings from other studies
on the insensitivity of random forest models to the size of training data [19,38].

3.4. NDVI and NDWI Thresholds

The generation of vegetation and water samples relied on the thresholds of NDVI and NDWI,
respectively. As shown in Equation (1), the thresholds were determined by: (i) The statistics of index
values, calculated from the pool of impervious samples; and (ii) cND, the predefined multiplicative
coefficient. Figures 10 and 11 show the responses of classification accuracies to different values of cND,
ranging from 0 to 3.0. The increase of cND for NDVI generally led to decreased producer’s accuracy
and increased user’s accuracy (Figure 10). This pattern was more evident for impervious surface than
barren land. The default value of 1.0 was associated with high values of overall accuracy and kappa
coefficient. In comparison, the change of cND for NDWI appeared to have limited effect on classification
(Figure 11). Exceptions were accuracies of impervious surface at Site 2, where the increased NDWI
threshold tended to improve producer’s accuracy and reduce user’s accuracy. The default value of 2.0
for NDWI thresholds yielded good results at all sites.
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Figure 9. Effects of the number of training samples per category on classification accuracies.

Figure 10. Effects of the NDVI threshold on classification accuracies.

3.5. Comparison to NLCD data

Figure 12 shows the comparison between the NLCD percent impervious surface and the
NAIP-derived percent impervious surface from this study. The NLCD dataset was produced using
regressions tree models with predictor variables from Landsat images and ancillary data of nighttime
lights and road networks [12,13]. Overall, the two datasets agreed quite well for all three sites, with R2

= 0.87, 0.69, and 0.68, respectively. The best agreement occurred at Site 1 due to the high intensity of
development and the easy identification of open water. Visual inspection using the original NAIP
images (Figure 6a–c) indicates the overestimation of the NLCD data in residential areas mainly due to
the misclassification of urban green space as developed land. The NLCD data had a better performance
than our results in identifying barren wetland, leading to fewer low-intensity developed areas along
shorelines. The confusion with barren land contributed to the overestimation of low-density impervious
areas at Site 2 (Figure 10b) and Site 3 (Figure 10c) in our results. Nevertheless, our results suggest a
smaller fraction of developed land with medium intensity (i.e., 50%–80% impervious surface cover)
compared to the NLCD estimate (Figure 10g–i). This is consistent with the low producer’s accuracy of
this class reported by Yang et al. [12].
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Figure 11. Effects of the NDWI threshold on classification accuracies.

Figure 12. Estimates of percent impervious surface by this study (a–c) and the NLCD product (d–f).
Subplots (g–i) compare the histograms of the two estimates.
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4. Discussion

Our method addressed two important issues in mapping impervious surface: reference data and
selection of predictor variables. Obtaining high-quality reference data is one of the most important
factors in achieving an accurate classification and accounts for a major component of time and resource
demands [19]. Our method was able to significantly reduce the effort of visual interpretation and
manual labeling in the generation of quality samples for training and validation (Figure 8). In the
era of big data, the fast expansion of satellite and aerial imagery resources is outpacing the capacity
of conventional effort of collecting ground truth through field surveys or on-screen digitalization.
Our results suggest that semi-automatic sampling approaches have the potential to fill this gap through
efficient uses of existing ancillary data with proven accuracy. The benefit of ancillary data also
contributed to the improved inclusion of predictor variables (Figure 7). Through extending variables
into the temporal perspective, classification models were able to separate landscape features that
were spectrally indifferentiable in a snapshot. This is consistent with findings on the positive effect of
including temporal measures in classification [39]. Our method echoes the concept of pseudo-invariant
features (PIV) [40–42] in radiometric calibration and provides an example of integrating satellite and
aerial imagery to enhance the extraction of impervious surface.

The proposed method could contribute to the improved production and assessment of NLCD
products and other satellite-derived national land cover data that have played a critical role in a variety
of environmental and socioeconomic studies [9,12,13,43]. The landmark assessment by Wickham et al.
in 2013 [13] found that user’s accuracies for developed classes in NLCD products increased as the level
of urbanization (i.e., percent impervious surface) increased. However, a more recent assessment on
NLCD products of 2001–2016 [12] reported an opposite pattern, i.e., increased percent impervious
surface was associated with reduced user’s accuracies. Although the overall accuracies in the former
study (0.78–0.79) were comparable to that of the later study (0.88–0.90), their conflicting findings in the
user’s accuracies of developed land classes indicate a need to improve the consistence of reference
data and validation procedure. The agreement of urban classes in NLCD products is generally lower
than other land cover classes. A separated assessment on the NLCD imperviousness product has been
highly recommended [12]. Wickham et al. [13] suggested that the ideal assessment of NLCD products
would require estimation of percent impervious surface for every 30-m pixel based on NAIP imagery,
but they had to use a more limited, indirect method because the cost to obtain such ideal reference
data was prohibitive. Although a national assessment on the NLCD imperviousness product has not
been reported, a recent pilot study in the Chesapeake Bay region has demonstrated the promising
value of using NAIP imagery as reference data [44]. The demand of substantial human intervention
in generating pixel-level, full-coverage reference data for impervious surface is a major obstacle
for the continuous development and validation of NLCD products and similar medium-resolution
satellite-derived datasets in other countries.

As indicated in Figure 12, our method could provide an alternative means to verify NLCD
products. The quality of samples was ensured by the proven high quality of ancillary datasets. NWI
data has already been used as the proxy of ground truth for the validation of satellite-derived land
cover products [12], and studies have indicated the trend of incorporating volunteered geographic
information data in environmental remote sensing [45–48]. As our approach is built on GEE and uses
publicly available ancillary datasets, it can be easily applied to the validation of NLCD products for
other regions. This method provides an efficient, comprehensive, and transferrable way to evaluate the
quality of NLCD land cover and imperviousness products. It is feasible to plan for a full validation of
NLCD products at the national level using this method, but that would require the technical support
of GEE to upgrade the storage and computation capacity that are available for regular users. Those
issues are irrelevant to our methodology and are thus beyond of the scope of this paper.
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5. Conclusions

A hybrid remote sensing method was developed to improve the extraction of impervious surface
from aerial imagery. This method took advantage of multiple ancillary datasets to accelerate the
acquisition of reference data and incorporated satellite-derived spectral stability to enhance the
signature of impervious surface. This method was applied to three Texas sites with different levels
of land development and availability of ancillary data. Results indicate satisfactory separation of
impervious surface from barren land, vegetation, and water, with user’s accuracies ranging from 69%
to 90% and producer’s accuracies from 88% to 95%. This method was able to significantly reduce the
effort of visual interpretation and manual labeling in the generation of quality samples for training and
validation. Including measures of spectral stability as predictor variables led to improved classification
performance. The comparison of our results to the NLCD percent impervious cover product at the
30-m level indicates the value of this method as an efficient, comprehensive means to validate and
complement satellite-derived medium-resolution datasets of urban land cover and land use at regional
or national scales.
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