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Abstract: The rapidly increasing use of unmanned aerial vehicles pose a significant challenge to no-

fly zone management. The vehicle state in flight should be available for the whole mission, enabling 

an alert to be issued to the relevant users and entities at an appropriate time and location before 

intrusion into a no-fly zone. In addition to spatial databases and other control mechanisms, the 

navigation system used must have the required accuracy, integrity, continuity, and availability. In 

this paper, the accuracy and integrity requirements, and the positioning system for no-fly zone 

unmanned aerial vehicle management are specified. The proposed positioning system integrates 

global navigation satellite systems (GNSS) and inertial navigation system (INS) in the measurement 

domain. An integrity monitoring layer is incorporated for fault detection and exclusion as well as 

real-time horizontal protection level computation functions. Experimental results show that the 

algorithm proposed is capable of delivering accuracy and integrity requirements for unmanned 

aerial vehicle (UAV) no-fly zone management. 
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1. Introduction 

There has been a rapid increase in unmanned aerial vehicles (UAVs) for commercial activities. 

However, this has been accompanied by an increasing number of reported events or incidents, 

including flights at or proximate to airports and military bases. Currently, traditional technologies 

such as radar and signal jamming sensors are used to detect and neutralize, respectively, suspicious 

incoming UAVs. While effective to a certain extent, these methods suffer from the limitations of low 

performance and high cost. Therefore, in order to reliably manage UAVs, it is recommended that 

every UAV should have an effective control and management system [1]. The system is required to 

alert registered UAV users or operators when they are about to enter a no-fly zone or when to avoid 

certain areas, such as where emergency responders are active. The registered users or operators could 

also be required to report the trajectory to the authorities after completing the flight mission to 

determine any violations [2]. Therefore, a crucial part of the management system is that the 

navigation system used must have the required navigation performance (RNP) to offer the right level 

of protection of restricted areas. 

Advanced technologies, including global navigation satellite systems (GNSS), sensor networks, 

and communication devices, are widely applied for UAV position determination. These technologies 

and their outputs of vehicle state (position, velocity and timing) are used, albeit without an agreed 

set of performance requirements to support aspects of no-fly zone management [3]. Hence, it is 
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paramount to firstly, specify the RNP and then the corresponding positioning and navigation system. 

In this process, the level of criticality of each mission or application must be considered, usually 

categorized into: (1) high, for missions related to safety-of-life and military activities; (2) medium, for 

commercial/liability critical missions (e.g., UAVs for delivery applications); and (3) low, for non-

mission critical applications (e.g., private UAVs for domestic use). Hence, to cater for different levels 

of criticality, navigation systems must meet the targets for the RNP parameters of accuracy, integrity, 

continuity, and availability [4]. 

Accuracy measures the nominal performance of a system in the absence of failure through 

conformality between the estimated position to the true position at the 95th percentile. This means 

that the probability of position errors that meet the accuracy requirements should be at least 95%. 

Integrity is defined as a measure of the trust that can be placed on the correctness of the information 

provided by a navigation system. Integrity, focuses on the “tail” of the error density with the goal of 

protection against hazardously misleading information (HMI). Continuity defines the capability of 

the navigation system to provide a navigation solution with the specified level of accuracy and 

integrity during the intended period of operation (POP), given that the system was usable for the 

operation at the start. Availability is the percentage of time during which the service of a navigation 

system is usable with the required accuracy, integrity, and continuity requirements satisfied 

simultaneously [5]. UAV no-fly zone management is mission critical, and therefore, accuracy and 

integrity are key parameters that are addressed in this paper. 

In terms of characteristics, GNSS measurements are have a long stability but are inherently 

noisy, while the INS measurements have less noise but with short term stability. Hence, integrating 

GNSS with INS, delivers improved performance by exploiting the complementary features of long 

stability and low noise. [6]. The integration of GNSS and INS not only avoids positioning outage 

and/or inaccuracy caused by GNSS signal jamming and/or interference but also provides redundant 

measurements for integrity monitoring. Although GNSS integration has been widely applied in UAV 

state estimation [7], there has been very limited research on UAV no-fly zone management. In 

addition, for the purpose of designing a navigation system that can be used onboard a UAV for no-

fly zone management, the service level requirements (and hence system requirements) of the 

corresponding navigation system are still to be specified. 

In order to bridge the current research gap on the concept and framework for GNSS-based UAV 

no-fly zone management, this paper clarifies the definitions of service level and system level 

requirements focusing on accuracy and integrity. In addition, an algorithm for GNSS/INS integration 

incorporating integrity monitoring is developed to underpin the application for no-fly zone 

management. In particular, fault detection and exclusion and horizontal protection level computation 

are incorporated into the designed algorithm for integrity monitoring to enhance the robustness of 

the on-board navigation system. The contributions are summarized below. 

1) Clarification of service and system requirements of accuracy and integrity in the context of 

UAV no-fly zone based management; 

2) Proposal of an improved positioning system with an integrity monitoring algorithm for an 

integrated GNSS/INS system in the measurement domain to support UAV no-fly zone management; 

3) Development of a novel hybrid fault detection and exclusion method. A dual-mode detector 

is generated by combing historical and real-time innovation sequences to allow fast detection of both 

step and ramp errors. The detection threshold is determined by imposing chi-square distribution 

assumption of the constructed detector. In addition, a W-test statisticsbased algorithm is proposed to 

map the test statistic errors to the measurement for the fault exclusion. 

2. Related Work 

The related literature is summarized in two parts: 1) UAV monitoring and air traffic 

management, and 2) sensor fusion based positioning and integrity monitoring. 

2.1. UAV Monitoring and Air Traffic Management 
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UAV monitoring and management involves three main elements: pilots, UAVs, and airspace. 

The operation of UAVs includes application of flight plan, real time monitoring of flight data, and 

issuance of alert and countering of illegal flights. In recent years, several methods have been 

developed to address the problem of monitoring and managing UAVs to ensure the safety of low 

altitude airspace. Mason et al. [8] proposed a cloud-based web application that provides real-time 

flight monitoring and management for UAVs. The system reads the flight data from UAV sensors 

and transfers them onto maps, allowing users or operators to dynamically monitor aircraft on a user 

interface. The United States National Aeronautics and Space Administration (NASA) has 

implemented a cloud-based unmanned aircraft traffic management (UTM) system that provides a 

way for civilian pilots to reserve airspace [2,9]. This system maintains a database of reserved and 

active flights, providing information to pilots about adverse weather conditions and restricted 

airspace. The UTM project consists of four technical capability levels, the ultimate goal of which is to 

enable the management of UAVs in high-density urban areas with large-scale contingency 

mitigation. Damilano et al. [10] developed a flight mission planning methodology based on the use 

of a ground control station to create and verify a flight mission. Geng et al. [11] also presented a 

mission planning system that generates mission plans for a group of UAVs to provide continuous 

surveillance over an urban area. Torens and Adolf [12] proposed a method to validate a sampling-

based mission planner for autonomous UAV. 

The current UAV monitoring and management systems above do no account for the mission 

criticality of no-fly zone management. In order to do this, research on service level and hence system 

level requirements are required, which in turn drive the specification of the positioning and 

navigation system architecture. This paper addresses these issues. 

2.2. Sensor Fusion Based Positioning and Integrity Monitoring 

To implement a an GNSS/INS navigation system, the first concern should be the coupling 

scheme selection. There are three mainstream schemes: loosely coupled scheme, tightly coupled 

scheme, and ultra-tightly coupled scheme [13]. It is worth noting that the loosely coupled scheme 

(also referred to as position domain integration), although with the simplest structure, cannot 

provide redundant measurements, and the ultra-tightly coupled scheme with the most complex 

structure cannot ensure the mutual independence of measurements. Obviously, the tightly coupled 

scheme (also referred to as position domain integration) with medium complexity is the best choice, 

since measurement redundancy and inter-independence of measurements, which are key 

requirements for integrity monitoring, can be obtained at the same time [14]. The carrier and code 

phase measurements are two types of raw GNSS measurements. Positioning with code phase 

measurements can provide meter-level accuracy with a higher reliability and lower computation cost 

than carrier phase and therefore, when used together with INS measurements, has the potential to 

provide the required accuracy and integrity for UAV no-fly zone management. Therefore, a tightly 

coupled GNSS/INS integrated system incorporating an integrity monitor is selected for further 

development in this paper. 

The existing integrity monitoring methods are reviewed and summarized as follows. In the 

context of state-of-the-art integrity monitoring technique, there are two major categories: (1) receiver 

autonomous integrity monitoring (RAIM) and its variations, and (2) special augmentation 

mechanisms. The latter consists of the ground based augmentation system (GBAS), satellite based 

augmentation system (SBAS), and aircraft based augmentation system (ABAS) [15]. In particular, 

RAIM is a satellite navigation integrity monitoring scheme within the receiver for detecting 

significant measurement errors arising from satellite malfunctions, propagation environment, and 

others by the use of information including redundant measurements, geometrical configuration of 

satellites relative to the users, and knowledge of nominal error behavior [14]. There are four basic 

RAIM methods: (1) range and position comparison method [16]; (2) least squares residuals method 

[17]; (3) parity space method [18]; and (4) maximum slope (MS) method [19]. Various methods are 

further developed based on these basic methods. Brown [20] applied the improved MS method, 

denoted as slope-max-max method, by imposing a worst-case hypothetical two-failure requirement 
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on RAIM to handle dual satellite failures. As the traditional RAIM algorithms are designed only for 

horizontal position monitoring, advanced RAIM (ARAIM) emerged along with the prospect of 

handling any number of simultaneous significant measurement errors and providing vertical 

integrity monitoring [21]. In order to handle the limitations caused by the Gaussian assumptions, 

Blanch et. al. [22] characterized the range error distribution by a mixture of Gaussian modes, which 

helps account for heavy tails without losing the advantage of Gaussian distributions. Results show 

that the computed vertical protection levels are reduced by 50% without degrading integrity. 

Panagiotakopoulos et. al. [23] applied extreme value theory to the tails of position errors, and the 

generalized extreme value (GEV) distribution is derived to capture residual navigation errors. The 

results indicated that GEV is more powerful in characterizing the tails than Gaussian models when 

“blunder” errors are present. 

Besides satellite navigation, the integrity monitoring for GNSS-based integrated systems has 

received increasing attention. Escher et. al. [24] used the multiple solution separation (MSS) method 

based fault detection and exclusion (FDE) for the integrated GNSS/INS systems. In particular, INS 

aids in detecting GNSS faults, and the primary Kalman filter is used to estimate the state vector. Sub-

solutions offered by sub-filters are compared to their “parent” filter, and the differences are utilized 

to form various test statistics with a threshold. Further developments resulted in the autonomous 

integrity monitored extrapolation (AIME) method also used for integrated systems [25]. In AIME, the 

historical Kalman filter innovation sequence is used to form the test statistic. It is shown that the 

AIME method delivers higher availability over the MSS method, while the latter is much easier to 

demonstrate analytically in terms of integrity performance [26]. Considering the various types of 

failure modes in integrated GNSS/INS systems, Bhatti et. al. [14] developed a rate detector algorithm 

for the detection of slowly growing errors. 

In summary, positioning accuracy and integrity are both critical for the reliability of navigation 

sensors and therefore, to support the applications. In particular, for monitoring the integrity of 

integrated GNSS/INS systems, the AIME method is more popular due to its fast detection of the 

slowly growing errors with a high detection accuracy. Nevertheless, considering the application 

characteristics of the UAV no-fly zone management, both ramp and step errors of the navigation 

system need to be detected during the UAV operation. Therefore, in this paper, we design a tightly 

coupled sensor fusion scheme with a novel integrity monitoring algorithm to enhance the reliability 

of the on-board GNSS/INS integrated system. The proposed hybrid dual-mode detector-based 

integrity monitoring algorithm improves the historical innovation sequence based detector in AIME 

by integrating the real-time innovation sequence for the detection of step and ramp errors. 

3. Concept and Requirement of No-Fly Zone Management 

This section introduces the concept of no-fly zone management, and clarifies the different levels: 

service, positioning and integrity for the location-based UAV no-fly zone management. 

3.1. Concept of Location Based No-Fly Zone Management 

A plan view of a no-fly zone is illustrated in Error! Reference source not found.. The blue area is 

the no-fly zone created through geo-fencing, a specific airspace restricted to specific activities such as 

military (e.g., bases), commercial aviation (e.g., airports), and other secured protected areas. 

Therefore, unauthorized entry of UAVs into such areas is prohibited. Considering the inevitability of 

navigation error and some unforeseen circumstances, a buffer zone (the dashed area) is added to 

provide redundancy to the passing air vehicles to protect the no-fly zone from being violated. There 

is a negative correlation between the extent of the buffer zone and the positioning error, i.e. the 

smaller the position error is, the smaller the extent of the buffer zone. In this case, we can relate the 

width of buffer zone with the maximum horizontal position error, i.e., the horizontal alert limit, 

which is further analyzed in Section 3.4. When the circle of uncertainty of the estimated UAV position 

whose radius represents the horizontal alert limit intersects the buffer zone, an alarm is issued. 

The UAV navigation system alongside a supporting management module is designed for 

“friendly” (those unintended to make trouble) UAV users or entities. The no-fly zone management 
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module on the management client can allow an administrator to add or delete temporary no-fly zones 

on a map. The main functions of flight management systems include: application of flight plan, 

monitoring and extraction of flight information, and countering unauthorized flights. In particular, 

prevention of UAV violation of restricted zones is a key function of the system. If the UAV is on 

course to enter the buffer zone unintentionally, the control software should correct the UAV 

trajectory away from the no-fly zone and send an “intrusion alert” to the UAV operator and owner 

of the no-fly zone. In order to support the violation detection, the related requirement must be 

clarified. Typical requirements of the GNSS/INS integration based no-fly zone management system 

include the service level requirements and the navigation or system level requirements. The service 

level requirements are mainly measured by violation detection rate, false detection rate, and 

misdetection rate, while the navigation systems, the underpinning technologies to support this user 

level requirement, include positioning level and integrity level requirements. 

 

Figure 1. Upper view of a no-fly zone. 

3.2. Requirements at Service Level 

The UAV no-fly zone management system should only detect and collect the positioning data 

for each UAV that crosses the boundary of the buffer zone. The detection technique is commonly 

considered as belonging to the so-called geo-fencing techniques, in which the alarm function is 

referred to as an intrusion alert. When the estimation of the location of a UAV and its intent proximate 

and in the direction of the outer boundary of the buffer zone, the intrusion alert should be triggered 

so that the user can maneuver the UAV away from the zone as soon as possible. 

The performance of violation events detection could be illustrated in Error! Reference source not 

found.. 

Table 1. Violation detection outcomes. 
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System detects a violation event 

Yes No 

Actual violation event 
Yes Correct detection 

Missed detection 

(True violation but not detected) 

No False detection (False violation) Correct non-detection 

In Error! Reference source not found., there are two successful scenarios (correct detection and 

correct non-detection) and two unsuccessful scenarios (missed detection and false detection). Missed 

detection has the potential to result in significantly compromising the safety and security of the no-

fly zone, with in some cases those responsible not being punished. Although false detection does not 

pose a threat to the no-fly zone, it may result in unfair punishment of the operators or wastage of 

resources by the owner of the non-fly zone and therefore, risks eroding trust in the system. Thus, 

both missed detection and false detection have a negative impact on the system, necessitating their 

probabilities of occurrence to be low (typical values of 10-3 and 10-5 per hour, respectively). 

3.3. Requirements at Positioning Level 

Accuracy is the basic element in positioning techniques and is of great importance to violation 

event detection for UAV no-fly zone management. Based on the RNP approach applied in our 

previous work on UAV, 5 m (95%) accuracy was specified. In particular, the spatial requirements for 

UAV landing were considered, as a UAV could be hijacked for malicious purposes [27]. Therefore, 

considering the importance of UAV no-fly zone management and the relationship to other 

applications, such as that discussed above, this paper adopts 5 m at the 95th percentile for the accuracy 

requirement, which means that the probability of position errors larger than 5 m should be at most 

5%. 

3.4. Requirements at Integrity Level 

Navigation system integrity monitoring is critical to no-fly zone management, as it is the 

parameter most directly related to mission (e.g., safety) criticality. The definition of related indicators 

for integrity, including horizontal alert limit (HAL), target integrity risk (TIR), and horizontal 

protection level (HPL), are described as follows. 

• Horizontal alert limit (HAL): this is the maximum horizontal position error ( 𝐻𝑃𝐸  ) that must 

not be exceeded without issuing an alert to the user. A horizontal position failure (HPF) occurs 

when the 𝐻𝑃𝐸 exceeds the 𝐻𝐴𝐿  . 

• Target integrity risk ( 𝑻𝑰𝑹  ): this is calculated by multiplying the probability of position failure 

𝑃𝑃𝐹 and the probability of missed detection 𝑃𝑀𝐷 in Equation (1). 𝑇𝐼𝑅 is typically very low (e.g., 

1E-7) for mission critical (e.g., safety of life) applications. 

𝑇𝐼𝑅 = 𝑃𝑃𝐹 ∙ 𝑃𝑀𝐷 (1) 

• Horizontal protection level ( 𝑯𝑷𝑳  ): the threshold value of the 𝐻𝑃𝐸 that satisfies the 𝑇𝐼𝑅  . Thus, 

𝐻𝑃𝐿 should bound the position error in line with the 𝑇𝐼𝑅  . The probabilistic relationship is 

expressed as: 

𝑃(𝐻𝑃𝐸 ≥ 𝐻𝑃𝐿) = 𝑇𝐼𝑅 (2) 

The 𝐻𝑃𝐿 should be computed in real time to examine the availability of integrity algorithm and 

to provide a position-domain check if the final solutions could be used for navigation. Only the 

horizontal condition is considered because it is enough for the intrusion detection of the no-fly zone 

management. An integrity alert is triggered when the 𝐻𝑃𝐿  exceeds 𝐻𝐴𝐿  , indicating the 

unavailability of the integrity monitoring of the system. When the integrity alert is issued, the user 

should also give a resolution order to the UAV if the UAV location is around the no-fly zone. 

_Ref31841930
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When determining the target integrity risk, we follow the assumption made in traditional RAIM 

on the basis of a nominal eight-satellite-in-view situation: the position failure rate is chosen as 10-4 

per hour, and the missed detection rate is chosen as 10-3 per hour. Hence, 𝑇𝐼𝑅 will be 10-7 per hour. 

Thus, we have the worst-case violation rate for UAV no-fly zone management: 10−7 × 24 × 365 =

0.000876 per year, which is fairly tolerable. 

The required 𝐻𝐴𝐿 is correlated with the required horizontal accuracy and 𝐻𝑃𝐸 distribution. The 

required accuracy, 5 m as we determined, is specified at 95th percentile. When the 𝐻𝑃𝐸 goes beyond 

5 m but still within the 𝐻𝐴𝐿  , the system is degrading but still available. Once the 𝐻𝑃𝐸 exceeds the 

𝐻𝐴𝐿  , the maximum allowable value, the system exhibits loss of integrity. Given that the empirical 

distribution usually tends to have much heavier tails than Gaussian, we specify the value of 𝐻𝐴𝐿 as 

50 m. The specification of 𝐻𝐴𝐿 seems to be generous on account that: (1) we are more pessimistic in 

the “tails” of error distribution; (2) the overbounding value, i.e., 𝐻𝑃𝐿  , should be between 𝐻𝑃𝐸 and 

𝐻𝐴𝐿  , thus the 𝐻𝐴𝐿 should not be too tight to ensure the basic availability of the system. 

The determination of 𝐻𝐴𝐿 can be an important reference when we designate the buffer zone (see 

Error! Reference source not found.), while the navigation system integrity is available, i.e., 𝐻𝑃𝐿 ≤

𝐻𝐴𝐿  , the circle with the estimated UAV position at the center and the radius of 𝐻𝐴𝐿 should be 

outside of the buffer zone. Once the circle overlaps the buffer zone, a risky event happens, and an 

intrusion alert must be issued at once. We can conclude that the minimum width of buffer zone 

should be the value of 𝐻𝐴𝐿 in case of intrusion into a no-fly zone. 

 

Figure 2. Relationship between the width of buffer zone and horizontal alert limit. 

4. Integrated Navigation with Integrity Monitoring for the UAV No-Fly Zone Management 

4.1. System Framework 
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Figure 3. System flow chart. 

A flow chart of the designed integrated navigation system with integrity monitoring is depicted 

in Error! Reference source not found.. The positioning algorithm is realized by fusing the GNSS code 

phase/Doppler measurements and INS specific force/angular rate measurements. The algorithm 

starts from the availability check by calculating 𝐻𝑃𝐿  , which is compared with 𝐻𝐴𝐿  . The 

computation of 𝐻𝑃𝐿  uses information, including satellite geometry, measurement distribution 

assumption etc. to determine if the integrity monitoring function is available. If 𝐻𝑃𝐿 is larger than 

𝐻𝐴𝐿  , the integrity is considered as unavailable with an integrity alert issued. Otherwise, the 

conditions suffice to perform fault detection. Dual detectors were constructed based on the 

innovation sequence generated in the Kalman filter for step and ramp errors detection, respectively. 

If the value of the detector is larger than the predefined threshold, then fault exclusion is executed. 

After exclusion, 𝐻𝑃𝐿 is re-calculated and compared with 𝐻𝐴𝐿 again. The navigation solutions can be 

considered as trustable when computed 𝐻𝑃𝐿 is equal or smaller than 𝐻𝐴𝐿  . After FDE, the system 

outputs the navigation solutions and the process repeated at the next epoch. The real-time estimated 

UAV results with integrity are used to support the UAV no-fly zone management. 

4.2. Tightly Coupled GNSS/INS Integration 

In this section, an Extended Kalman Filter (EKF)-based, tightly coupled GNSS/INS data fusion 

is designed to output the KF innovation, the basis for the integrity monitoring. The steps are as 

follows. 

The defined state vector for the EKF is: 

𝑿 = [𝛿𝒓3×1
𝐸𝐶𝐸𝐹 𝛿𝒗3×1

𝐸𝐶𝐸𝐹 𝝓3×1 𝑏𝑔3×1 𝑏𝑎3×1 𝛻𝑔3×1 𝛻𝑎3×1 𝑡𝑏 𝛿𝑡𝑏]
𝑇
 (3) 

where 𝑿 is composed of INS position error vector expressed in the Earth Centered Earth Fixed (ECEF) 

coordinates 𝛿𝒓3×1
𝐸𝐶𝐸𝐹   ; INS velocity error vector expressed in the ECEF coordinates 𝛿𝒗3×1

𝐸𝐶𝐸𝐹  ; INS 

attitude error vector 𝝓3×1 (roll, yaw, and pitch error separately); gyroscope three-axis bias vector 

𝑏𝑔3×1  and scale factor vector 𝛻𝑔3×1  ; accelerometer three-axis bias vector 𝑏𝑎3×1 and scale factor vector 

𝛻𝑎3×1  ; GNSS receiver clock bias 𝑡𝑏 and GNSS receiver clock drift 𝛿𝑡𝑏  . 

INS GNSS

Specific Force

Angular Rate

Code Phase Measurements

Doppler Measurements

EKF based Fusion Algorithm

Integrity Availability Check

HPL HAL

Fault Detectiom

Integrity Unavailable

Issue Integrity Alert

Y

N

Detector  Threshold

Fault Exclusion

Y

Real-time Estimated UAV Positioning Results

Real-Time Estimated 

Positioning, Velocity and 

Attitude States

Next epoch

UAV no-fly Zone Management

Detection 

Mode 1

Detection 

mode  2

Accumulated 

Innovation Sequence 

Covariance Matrix

Real-time 

Innovation Sequence 

Covariance Matrix

Sliding window

N

HPL HAL

Y
Y

Dual-mode detector

_Ref31842087
_Ref31842087


Remote Sens. 2020, 12, 524 9 of 22 

The UAV system model is then formed as a first-order state equation in (4): 

�̇� = 𝐹𝑋 + 𝐺𝑤 (4) 

where �̇� is the first derivative of the state vector 𝑋  , 𝐹 is the dynamic transition matrix, 𝐺 is the noise 

driven matrix, and 𝑤 is the system noise. 

The measurement model is given by: 

𝑍 = 𝐻𝑋 + 𝑛 (5) 

where 𝑍  is the measurements, 𝐻  is the measurement mapping matrix, and 𝑛  represents the 

measurement noise. In this paper, if the number of visible satellites is 𝑚  , the pseudo-range error and 

the Doppler measurement error are used to form measurement vector 𝑍 as: 

𝑍 =

[
 
 
 
 
 
𝜌𝐼𝑁𝑆,1 − 𝜌𝐺𝑁𝑆𝑆,1

⋮
𝜌𝐼𝑁𝑆,𝑚 − 𝜌𝐺𝑁𝑆𝑆,𝑚

𝑓𝐼𝑁𝑆,1 − 𝑓𝐺𝑁𝑆𝑆,1

⋮
𝑓𝐼𝑁𝑆,𝑚 − 𝑓𝐺𝑁𝑆𝑆,𝑚 ]

 
 
 
 
 

2𝑚×1

 (6) 

where 𝜌𝐼𝑁𝑆  and 𝑓𝐼𝑁𝑆  denote INS derived pseudo-range and Doppler measurements respectively. 

𝜌𝐺𝑁𝑆𝑆 and 𝑓𝐺𝑁𝑆𝑆 refer to pseudo-range and Doppler measurements decoded from GNSS observation 

data, respectively. Systematic error (tropospheric, ionospheric, clock related error, etc.) corrections 

were applied in advance to 𝜌𝐺𝑁𝑆𝑆  . 

After discretization of (4) and (5), the discrete form of Kalman filtering procedure can be split 

into two stages as follows: 

Prediction stage: 

�̂�𝑘,𝑘−1 = 𝛷𝑘,𝑘−1�̂�𝑘−1 (7) 

𝑃𝑘,𝑘−1 = 𝛷𝑘,𝑘−1𝑃𝑘−1𝛷𝑘,𝑘−1
𝑇 + 𝑄𝑘−1 (8) 

Update stage: 

𝐾𝑘 = 𝑃𝑘,𝑘−1𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘,𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘)
−1

 (9) 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘,𝑘−1 (10) 

�̂�𝑘 = �̂�𝑘,𝑘−1 + 𝐾𝑘(𝑍𝑘 − 𝐻𝑘�̂�𝑘,𝑘−1) (11) 

where, 

�̂�𝑘: system state vector estimates at time epoch 𝑘  

𝛷𝑘: system transition matrix at time epoch 𝑘  

𝑃𝑘: error covariance matrix at time epoch 𝑘  

𝑄𝑘: system noise covariance matrix at time epoch 𝑘  

𝑅𝑘: measurement noise covariance matrix at time epoch 𝑘  

𝐻𝑘: measurement matrix at time epoch 𝑘  

𝐾𝑘: Kalman gain matrix at time epoch 𝑘  

∎𝑘,𝑘−1: matrix/vector ∎  propagation from time epoch 𝑘 − 1 to 𝑘  

4.3. Integrity Monitoring Algorithm 

The process of integrity monitoring includes fault detection, exclusion, and real-time HPL 

computation. The steps for the proposed integrity monitoring algorithm are as follows. 

1. Dual-mode detector determination 

A dual-mode detector is generated based on the EKF innovation and its covariance matrix. The 

first mode of the detector is formed using the real-time measurements to detect step errors. The 

second mode of the detector is generated by using both historical and current measurements. In 

particular, the averaging mechanism with windowing size of 10 (from experience) is applied in the 

second mode of the detector for fast detection of ramp errors. 
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The innovation sequence 𝑟𝑘 in the Kalman filter is generated for fault detection and system state 

monitoring: 

𝑟𝑘 = 𝑍𝑘 − 𝐻𝑘�̂�𝑘 (12) 

𝑟𝑘  exhibits a white Gaussian sequence of mean zero and covariance 𝑉𝑘  where 𝑉𝑘 =

𝐻𝑘𝑃𝑘,𝑘−1𝐻𝑘
𝑇 + 𝑅𝑘 [28]. 

The first mode of detector 𝐷1 is expressed as: 

𝐷1 = (𝑟𝑘
𝑇)(𝑉𝑘

−1)(𝑟𝑘) (13) 

The innovation sequence accumulated by a sliding window can be effective for the detection of ramp 

errors. The innovation generated during the extrapolation process is expressed as: 

𝑟𝑘−𝑇+𝑖 = 𝑧𝑘−𝑇+𝑖 − 𝐻𝑘−𝑇+𝑖�̂�𝑘−𝑇+𝑖 (14) 

where T is the length of the sliding window, and 𝑖 ∈ [0, 𝑇]  . Considering the changeable satellite state 

in the current sliding window, we may shorten the size of the sliding window during the process 

(e.g., for the cases when the number of satellites decreases/increases or the visible satellites change). 

In these cases, the size of the sliding window is changed to 𝑖  -1 once the changes of the satellite state 

are detected at the 𝑖 th epoch. 

Hence, the second mode of the detector 𝐷2   is given as: 

𝐷2 = (𝑟𝑎𝑣𝑔
𝑇 )(𝑉𝑎𝑣𝑔

−1 )(𝑟𝑎𝑣𝑔) (15) 

where, 

𝑟𝑎𝑣𝑔 = (𝑉𝑎𝑣𝑔
−1 )−1 ∑𝑉𝑘−𝑖

−1 𝑟𝑘−𝑖

𝑚

𝑖=1

;  𝑉𝑎𝑣𝑔
−1 = ∑𝑉𝑘−𝑖

−1

𝑚

𝑖−1

 (16) 

The test statistic exhibits central chi-square distribution for fault-free cases and non-central chi-

square distributions for faulty conditions [25]. 

2. Detection threshold 

The detection threshold 𝑇𝐷  is also determined based on the chi-square distribution and is 

selected based on the false alert rate 𝑃𝐹𝐴  , whose value is related to different phases of flight. The in-

between relationship is given by: 

𝑃𝐹𝐴 = ∫ 𝜒2(𝑥, 𝑛)𝑑𝑥
∞

𝑇𝐷

 (17) 

Where 𝜒2(𝑥, 𝑛)  denotes the probability density of the chi-square distribution, and 𝑛  is the 

degrees of freedom. The detection threshold can thereby be calculated accounting for the maximum 

allowable 𝑃𝐹𝐴 of 10-5/hr and the number of satellites-in-view (see Error! Reference source not found.). 

Table 2. Values of detection threshold for different number of satellites view. 

Number of satellites-in-view 1 2 3 4 5 6 7 8 

  𝑻𝑫   19.51 23.03 25.90 28.47 30.86 33.11 35.26 37.45 

 

3. Fault exclusion 

Following fault detection, fault exclusion is proposed based on the w-test. Test statistic errors 

can be mapped to the measurement for the fault exclusion based on the w-test as follows [29]. 

Integrating the predicted state �̂�𝑘,𝑘−1  with the measurement vector 𝑍𝑘  , the extended 

measurement model is expressed as: 

𝑙𝑘 = 𝐴𝑘𝑋𝑘 + 𝑣𝑘 (18) 

where 𝑙𝑘 = [
𝑍𝑘

�̂�𝑘,𝑘−1
] ; 𝑣𝑘 = [

𝑣𝑍𝑘

𝑣�̂�𝑘,𝑘−1
] ; 𝐴𝑘 = [

𝐻𝑘

𝐼
]  . 

_Ref31842549
_Ref31842549
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The error covariance matrix of the extended measurement vector 𝑙𝑘 is: 

𝐶𝑙𝑘
= [

𝑅𝑘 𝟎
𝟎 𝑃𝑘,𝑘−1

] (19) 

The optimal estimates for the error covariance matrix of the predicted system error states �̂�𝑘,𝑘−1 

is: 

𝑄�̂�𝑘,𝑘−1
= (𝐴𝑘

𝑇𝐶𝑙𝑘
−1𝐴𝑘)

−1
 (20) 

The cofactor matrix of the filtering residuals is: 

𝑄𝑣𝑘
= 𝐶𝑙𝑘

− 𝐴𝑘𝑄�̂�𝑘,𝑘−1
𝐴𝑘

𝑇 (21) 

The test statistics for fault exclusion is: 

𝑤𝑖 = ||
𝑒𝑖

𝑇𝐶𝑙𝑘
�̂�

√𝑒𝑖
𝑇𝐶𝑙𝑘

𝑄�̂�𝐶𝑙𝑘
𝑒𝑖

|| (22) 

where, 

𝑣𝑍𝑘
= residual vector of measurement vector 𝑍𝑘  

𝑣�̂�𝑘,𝑘−1
= residual vector of predicted system state vector 

𝐼 = identity matrix 

𝑒𝑖 = a unit vector with its 𝑖  th component is 1 and other components are 0. 

The measurement with the largest value 𝑤𝑖 is selected as the candidate fault and is excluded. 

 

4. Horizontal protection level computation 

Protection level computation is performed twice for integrity availability check and 

dependability check of the final navigation solutions in the position domain, see Error! Reference 

source not found.. The computation of 𝐻𝑃𝐿 is the combination of two limits [26]: 

𝐻𝑃𝐿1 is given by 5.33 σ where σ is determined from the horizontal position error covariance 

matrix, and 5.33 is chosen to reflect the missed detection rate 𝑃𝑀𝐷 of 10-3/hr. 

The determination of 𝐻𝑃𝐿2 is similar to the traditional maximum-slope method based RAIM 

given by: 

𝑆𝑙𝑜𝑝𝑒𝑖 =
𝑑𝑅𝑖

𝑑𝑆𝑖
⁄  (23) 

where, 

𝑑𝑅𝑖 = √(𝑑𝑥𝑖1)
2 + (𝑑𝑥𝑖2)

2; 𝑑𝑥𝑖 = 𝐾𝑘𝑏𝑖;  𝑑𝑆𝑖 = 𝐷−
1
2𝑏𝑖 (24) 

𝑑𝑅𝑖 is the horizontal position error due to measurement 𝑖  

𝑏𝑖 is the bias in measurement 𝑖  

𝑑𝑆𝑖is the transformed residual formed by the introduction of range bias error 𝑏𝑖  

𝑑𝑥𝑖1 and 𝑑𝑥𝑖2  are the latitude and longitude error states in the state vector respectively 

𝐷 is the diagonal matrix of the eigenvalues of the covariance matrix for the innovation 

𝐻𝑃𝐿2 is calculated by: 

𝐻𝑃𝐿2 = 𝑚𝑎𝑥(𝑆𝑙𝑜𝑝𝑒𝑖)𝑃𝑏𝑖𝑎𝑠 (25) 

where 𝑃𝑏𝑖𝑎𝑠 is the square-root of the non-centrality parameter of the chi-square distribution that 

would make the probability of missed detection rate 𝑃𝑀𝐷 equal to 10-3/hr. 

Then, we can obtain 𝐻𝑃𝐿 by: 

𝐻𝑃𝐿 = √(𝐻𝑃𝐿1)
2 + (𝐻𝑃𝐿2)

2 (26) 

5. Field Test and Results Analysis 
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5.1. Data Collection and Sensitivity Analysis 

In order to validate the proposed positioning and integrity algorithm of the on-board GNSS/INS 

integrated system for the no-fly zone based UAV management, a field test was carried out in Nantou 

City, Taiwan. The UAV flight route is shown in Error! Reference source not found. (b). The UAV used 

in the test is AXH-E230 from AVIX Technology. The real-time three-axis yaw rates and accelerations 

were collected from gyroscopes and accelerometers of the onboard MEMS INS, STIM-300 from 

Sensonor, and the raw pseudorange and velocity measurements were collected from a dual-

frequency GNSS receiver, Trimble BD 982 with a sampling rate of 10 Hz. The experimental setup is 

shown in Error! Reference source not found. (a). In particular, the reference trajectory used in the 

experiment was obtained from close range photogrammetry providing centimeter-level positioning 

accuracy using the on-board VLP-16 Velodyne Lidar. With the collected data, the designed algorithm 

was tested in a real-time replay mode. 

 

 

Figure 4. (a) Experimental setup; (b) unmanned aerial vehicle (UAV) flight trajectory. 

The two defined fault scenarios were added to the real trajectory: (1) step errors in scenario 1 

and (2) ramp errors in scenario 2. The details for the two scenarios are described in Error! Reference 

source not found.. A sensitivity analysis was carried out to evaluate the performance of the algorithm 

with different ranges and types of error sources added to the trajectory. The eight visible satellites 

were SV10, SV12, SV15, SV20, SV21, SV24, SV25, and SV32 during the flight. In Scenario 1, step errors 

ranging from 10 to 90m were added to the pseudorange measurements from SV12 at an interval of 

20 m. The performance statistics of the detector is shown in Error! Reference source not found., and 

the time to detection of the algorithm is shown in Error! Reference source not found.. From the results, 

the larger the value of the errors in the pseudorange measurement, the easier it is to detect the fault. 

It is worth noting that the time to detection with 30 to 90m step faults added is 0.1 s, while it is 1.6sfor 

a 10 m step error. This indicates that, in the detection of 10 m step error, the detection mode 2, i.e., 

historical innovation sequence based detection, is triggered by our algorithm. Error! Reference source 

not found. illustrates that SV12 with a 10 m step error is effectively identified and excluded. 

Table 3. The defined scenarios. 

Scenarios 
Fault Start 

Time (s) 

Fault End 

Time (s) 

Error 

Types 
Error Sources 

Scenario 1 200 300 
Step 

error 

10~90m range error added to SV12 with an 

interval of 20m 

_Ref31842397
_Ref31842397
_Ref31842665
_Ref31842665
_Ref31842665
_Ref31843090
_Ref31843090
_Ref31842709
_Ref31842709
_Ref31843099
_Ref31843099
_Ref31843099
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Scenario 2 500 600 
Ramp 

error 

0.1~0.5m/s clock drift equivalent range 

error added to SV10 with an interval of 

0.1m/s 

Table 4. The detection time of the step errors with error ranges from 10-90m added at an interval of 

20m in SV12. 

Error Source Error Detected Time (s) 

10 m 1.6s 

30 m 0.1s 

50 m 0.1s 

70 m 0.1s 

90 m 0.1s 

 

 

Figure 5. Value of dual-mode detector for step error detection with error ranges from 10-90m added 

at an interval of 20m during 200s-300s. 
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Figure 6. W-test statistics value with a 10m step error added during 200s-300s. 

Since the difficulty of detection increases when the magnitude of error becomes smaller, the 

hazardousness of small and undetectable faults must be considered. The sensitivity analysis results 

show that the dual-mode detector is no longer sensitive when a 3m step error is added, see Error! 

Reference source not found.. The 3D positioning errors with the 3m step error added to the 

pseudorange measurements are shown in Error! Reference source not found.. It can be seen that the 

positioning accuracy is not affected and therefore, meets the accuracy requirement. Hence, for some 

non-detected errors, the final positioning accuracy was not affected with the error included in the 

calculation; therefore, it is tolerable for the no-fly zone based UAV management. The analysis results 

show the effectiveness of the proposed dual-mode detector with fast detection and exclusion ability 

to support the UAV management application. 

_Ref31843120
_Ref31843120
_Ref31843120
_Ref31843127
_Ref31843127
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Figure 7. Value of dual-mode detector with 3m step error added during 200s-300s. 

 

Figure 8. The positioning error with the 3m step error in the calculation. 

In scenario 2, with the 0.1~0.5m/s clock drift equivalent range error added to SV10 at an interval 

of 0.1m/s, the performance statistics of the detector is shown in Error! Reference source not found., 

and the detection time performance of the dual-mode detector for the ramp error detection is shown 

_Ref31843154
_Ref31843154


Remote Sens. 2020, 12, 524 16 of 22 

in Error! Reference source not found.. It is shown that the errors can be detected by the designed 

algorithm, and the detection time for the ramp errors varies with the value of the error sources. The 

larger errors are detected earlier, e.g., the detection time is 11.1s for the 0.5m/s errors, while it is 60.3s 

for the 0.1m/s errors. The 0.2m/s ramp error added to SV 10 during 500s-600s is effectively identified 

and excluded (see Error! Reference source not found.). However, although the 0.1m/s ramp error 

could be detected within 60.3s, it is not be excluded by our algorithm, see Error! Reference source not 

found.. This implies that, with the 0.1m/s ramp error added, the intercorrelation between the w-test 

statistics increased and thus invalidated the fault exclusion ability of W-test statistics. 

The positioning performance with the 0.1m/s ramp error added during 500s-600s is shown in 

Error! Reference source not found.. Although the 0.1m/s ramp error is difficult to detect, the impact 

on positioning accuracy is also limited, and the positioning accuracy still meets our requirements. 

Hence, for detectable fault without exclusion an alert can still be issued to the user to be cautious 

within a certain time duration. 

Table 5. The detection time of the ramp errors with the 0.1~0.5m/s clock drift equivalent range error 

added at an interval of 0.1m/s in SV10. 

Error Source Error Detected Time (s) 

0.1 m/s 60.3 s 

0.2 m/s 31.5 s 

0.3 m/s 21.8 s 

0.4 m/s 15.9 s 

0.5 m/s 11.1 s 

 

 

_Ref31843168
_Ref31843168
_Ref31843201
_Ref31843201
_Ref31843201
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Figure 9. Test statistics value for ramp error detection with the 0.1~0.5m/s clock drift equivalent range 

error added at an interval of 0.1m/s in SV10. 

 

Figure 10. W-test statistics value with 0.2m/s ramp error added during 500s-600s. 

 

Figure 11. W-test statistics value with 0.1m/s ramp error added during 500s-600s. 
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Figure 12. 3D position error with 0.1m/s ramp error added. 

5.2. Results Analysis of the Positioning with Integrity Monitoring 

From the results of the sensitivity analysis, we combined two scenarios to design a typical test 

with both type of errors, in which a step error of 90 m was added to SV32 during 200-300s, and a 

ramp error of 0.5m/s was added to SV20 during 500-600s. The reaction of the dual-mode detector to 

the errors is depicted in Error! Reference source not found.. The step error added at 200s was detected 

at 200.1s, and the ramp error added at 500s was detected at 511.1s. Positioning results performance 

before and after FDE are illustrated in Figure 1. This validates that our algorithm is efficient in 

detecting and excluding step and ramp errors and therefore, provides the required accuracy for the 

UAV no-fly zone management. The corresponding positioning accuracy after FDE is analyzed in 

Error! Reference source not found.. The 95% percentile accuracies with FDE for the horizontal and 

the vertical are 2.943m and 4.845m, respectively, which are within 5m and 10m requirements for the 

UAV no-fly zone management. Therefore, although failure occurred, the navigation system could 

still meet the accuracy requirements after applying FDE. 

The integrity monitoring performance was further analyzed by the Stanford diagram (Error! 

Reference source not found.), in which the relationship between 𝐻𝑃𝐸 and 𝐻𝑃𝐿 is briefly presented. 

As shown, during the whole flight mission, the UAV navigation system was in nominal operation 

with neither integrity risk arising nor integrity hole appearing. The calculated real-time 𝐻𝑃𝐿  s, 

overbound 𝐻𝑃𝐸  s. Additionally, the maximum 𝐻𝑃𝐿 is still within 35 m, within a predefined 𝐻𝐴𝐿 of 

50 m (Section 3.4). Hence, the integrity requirements determined in Section 3.4 are satisfied. The 

results indicate that the algorithm proposed is capable of delivering the accuracy and the integrity 

requirements for UAV no-fly zone management. 

_Ref31843264
_Ref31843264
_Ref31843303
_Ref31843303
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Figure 13. Dual-mode detector’s reaction to step and ramp errors. 

 

Figure 1. Positioning performance before and after fault detection and exclusion (FDE). 
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Figure 15. Stanford Diagram for the integrity monitoring performance. 

 

Table 6. Positioning accuracy analysis after FDE. 

Direction East North Horizontal Vertical 

RMSE (m) 0.557 2.007 2.083 2.503 

95% percentile (m) 1.148 2.879 2.943 4.845 

MAX (m) 1.468 3.404 3.498 8.857 

 

RMSE: root mean square error. 

6. Conclusions 

In this paper, UAV no-fly zone management is addressed from the perspective of the 

relationship between the service level requirements and the required navigation performance (RNP) 

parameters of accuracy, integrity, continuity, and availability, with particular attention paid to the 

first two parameters. Based on accuracy and integrity requirements, a tightly coupled GNSS/INS 

integration scheme was developed for the UAV no-fly zone management. The navigation system 

incorporates an integrity monitoring algorithm failure detection and exclusion and real-time 

horizontal protection level computation. Simulation and field test results show that the proposed 

algorithm is capable of delivering the accuracy and integrity requirements for UAV no-fly zone 

management. 

In future work, further improvements to positioning and navigation performance, including the 

introduction of other positioning methods such as wireless local area networks (WLAN), and aiding 

through map matching will be investigated for UAV no-fly zone management. 
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