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Abstract: The detection of airports from Synthetic Aperture Radar (SAR) images is of great significance
in various research fields. However, it is challenging to distinguish the airport from surrounding
objects in SAR images. In this paper, a new framework, multi-level and densely dual attention (MDDA)
network is proposed to extract airport runway areas (runways, taxiways, and parking lots) in SAR
images to achieve automatic airport detection. The framework consists of three parts: down-sampling
of original SAR images, MDDA network for feature extraction and classification, and up-sampling of
airports extraction results. First, down-sampling is employed to obtain a medium-resolution SAR
image from the high-resolution SAR images to ensure the samples (500 × 500) can contain adequate
information about airports. The dataset is then input to the MDDA network, which contains an
encoder and a decoder. The encoder uses ResNet_101 to extract four-level features with different
resolutions, and the decoder performs fusion and further feature extraction on these features. The
decoder integrates the chained residual pooling network (CRP_Net) and the dual attention fusion
and extraction (DAFE) module. The CRP_Net module mainly uses chained residual pooling and
multi-feature fusion to extract advanced semantic features. In the DAFE module, position attention
module (PAM) and channel attention mechanism (CAM) are combined with weighted filtering. The
entire decoding network is constructed in a densely connected manner to enhance the gradient
transmission among features and take full advantage of them. Finally, the airport results extracted by
the decoding network were up-sampled by bilinear interpolation to accomplish airport extraction
from high-resolution SAR images. To verify the proposed framework, experiments were performed
using Gaofen-3 SAR images with 1 m resolution, and three different airports were selected for
accuracy evaluation. The results showed that the mean pixels accuracy (MPA) and mean intersection
over union (MIoU) of the MDDA network was 0.98 and 0.97, respectively, which is much higher
than RefineNet and DeepLabV3. Therefore, MDDA can achieve automatic airport extraction from
high-resolution SAR images with satisfying accuracy.

Keywords: deep learning; airport extraction; deep neural network; dense connection; attention
mechanism; synthetic aperture radar
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1. Introduction

Synthetic Aperture Radar (SAR) can acquire images all day and all night without being affected
by the weather and light conditions [1], which is a tremendous advantage that optical remote sensing
images cannot offer. Therefore, it plays an increasingly important role in military and civilian
applications. The airports are strategic hubs of the national economy and key targets in military
missions. It is of great practical significance to implement automatic airport detection from SAR images.
Additionally, this work can facilitate the takeoff and landing of aircraft, assist air traffic management,
and provide various navigation services. This work is also very helpful to reduce the false alarms
generated by aircraft detection by excluding specious targets from SAR images.

Airports share considerable common features in SAR images [2]: (1) The visualization of long and
straight runways, taxiways, and parking lots are mostly black in SAR images; (2) The ground, made of
cement and asphalt, looks lighter than the runway in SAR images; (3) Aircraft and buildings such as
terminals and hangars are shown as highlighted areas in SAR images because of their strong scattering
characteristics. However, they are difficult to distinguish from the buildings around the airport, which
also look highlighted. The complex airport runway area plays a pivotal role in airport detection [3].
Based on its distinct visual features in SAR images, the airport runway area was extracted to achieve
automatic airport detection.

The main contribution of this paper is listed as:

(1) A new framework for airport extraction is proposed. It includes three parts: down-sampling of the
original SAR images, deep learning network for the airport extraction, and bilinear interpolation to
acquire the extraction result of high-resolution SAR images. For SAR images with high-precision,
down-sampling is performed to produce medium resolution (5 m–10 m resolution) SAR images,
and then datasets are generated. After extracting airports of medium SAR images by the deep
learning network, up-sampling is carried out to produce the results with the same size as the
original SAR images with high-resolution.

(2) A new deep neural network is presented to accomplish airport extraction from SAR images, which
is the multi-level and densely dual attention (MDDA) network. It mainly contains two parts, the
encoder and the decoder. The encoder employs the ResNet-101 to extract features with different
levels. In the decoder, the features of different levels are fully utilized through dense connection,
and then the essential features of the airport are extracted by using the CRP_Net_x (1, 2, 3)
modules and dual attention fusion and extraction (DAFE) module to realize the airport extraction.
In the DAFE module, the dual attention is introduced to fuse global semantic information via
weighting spatial position and channels to extract more distinguishing features.

(3) The proposed framework MDDA is implemented and the performance of airport extraction is
evaluated by using large-scale Gaofen-3 SAR images with a 1-m resolution.

The remainder of the paper is as follows. Section 2 is the state-of-the-art, in which the development
of airport detection and deep learning in semantic segmentation are described. Section 3 is the
methodology, which elaborates on the proposed framework (MDDA) and the operating principle for
airport extraction. In Section 4, the experiment is performed on the MDDA network using Gaofen-3
SAR images with a 1-m resolution including four airports, and the performance is assessed. Section 5
introduces the proposed network simply, and puts forward the future research. Finally, our conclusions
are given in Section 6.

2. State-Of-The-Art

Since airports are important transportation hubs and military facilities, their detection has
significant application values. Optical remote sensing images are usually utilized to detect airports [4].
However, it is impossible to obtain optical remote sensing images in bad weather (such as cloud, fog,
rain), which has become an important problem restricting its wide application. In this case, the use of
SAR images for airport detection has become a favorable choice.
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The methods of airport detection can be roughly divided into two categories: one based on
low-level features such as airport edges and geometric features, and the other based on high-level
features of airport targets. For the first type of features, most researchers use the method of linear
feature detection. Kou et al. [5] proposed an airport detection method from remotely sensed images
based on line segment detectors, and Xiong et al. [6] presented a detection algorithm of airports from
SAR images based on random transform and hypothesis testing. These methods rely on line segment
detector (LSD) transform, random transform, or other transformation methods to obtain the linear edge
segments of airports, which are then stitched for airport identification. These methods are simple and
fast. However, linear segmentation in large-scale SAR images is time-consuming and prone to false
detection. For the second type of features, airports are usually detected based on the object difference
between the airport and the surrounding area. Zhu et al. [7] combined the saliency analysis model
with edge detection to detect airports based on remote sensing images, and Liu et al. [8] integrated line
segmentation and saliency analysis to detect airports based on SAR images. However, the airports
in these experiments were all small airports with fewer types of objects and obvious edges, and the
saliency model often generates more false alarm targets when applied to SAR images. To accomplish
airport detection from high-resolution SAR images with large scales, Zhang et al. [9] pre-processed the
original image to generate the region of interest (RoI) using adaptive threshold segmentation, and
extracted the airport via the binary decision tree. This method could perform airport extraction, but
was always confused by road networks.

In recent years, deep learning [10] has been widely used in various fields, especially in object
detection and segmentation of optical images. It provides a good technical approach for the traditional
target detection from SAR images. Therefore, the target detection network or image segmentation
network based on deep learning can be incurred to implement airport detection. Among them,
some popular networks have been widely applied in semantic segmentation. The so-called semantic
segmentation is to label each pixel in the image with its corresponding category. Airport runway
extraction from SAR images is to classify the SAR image pixel by pixel, and assign different category
labels to the pixels of the airport runway area and the background area. Remarkable progress has
been made in semantic segmentation using convolutional neural networks (CNNs) [11]. The fully
connected layer of traditional CNNs classifies feature vectors with fixed length, so it can only accept
input images of a specific size. To solve this problem, Jonathan et al. [12] proposed fully convolutional
networks (FCN) for image segmentation, and Yang et al. [13] used FCN combined with conditional
random field (CRF) to classify SAR images. Since FCN may produce rough segmentation results,
Badrinarayanan et al. [14] proposed the SegNet network, but it has a poor segmentation performance
on the edges of objects. DeepLab v1 [15] combined deep convolutional nets (DCNs) and fully connected
CRF, and added hole convolution to improve the boundary segmentation effect; DeepLab v2 [16]
introduced the atrous spatial pyramid pooling (ASPP) structure based on DeepLab v1 to improve
the shortage of DeepLab v1 in fusing the information of different layers. RefineNet [17] was a new
encoder–decoder architecture for sematic segmentation, which utilizes the ResNet_101 module in
the encoder and RefineNet block in the decoder. Peng et al. [18] and Zhang et al. [19] facilitated the
encoding network to extract the middle and high-level features of the image, and utilized the decoding
network to merge and re-extract the features generated by the encoding network to finally implement
the segmentation. There are several latest and excellent networks for further optimizing the accuracy
or improving the efficiency of the segmentation results such as PSPNet [20], DeepLab v3 [21], DeepLab
v3 + [22], and Auto-DeepLab [23].

Researchers have also applied deep learning to airport detection. Yu et al. [24] combined CNN
based on the You Only Look Once (YOLO) model with salient features to extract airports and achieved
good results. Xiao et al. [25] constructed a Google-LF network to fuse multiscale features, and then the
generated features were input into support vector machine (SVM) to produce the detected airports. It
accomplished airport detection from remote sensing images with complex background information,
but the model was often overfit due to insufficient samples. Fan et al. [26] proposed a layered airport
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detection algorithm based on spatial analysis and Faster R-CNN to achieve large-scale airport detection
from optical remote sensing images. Li et al. [27] built an end-to-end airport detection model from
remote sensing images based on a deep transferable convolutional neural network, which overcame
the shortcomings of traditional CNN models for airport detection under complex backgrounds.

Most of the above studies have focused on optical remote sensing images, but there are very few
studies on the application of deep learning methods to airport detection from SAR images as SAR
images are hard to understand, and the speckle noise makes it more difficult for airport detection.
However, in light of the tremendous advantages of SAR images, it is necessary to study them further
for airport detection from SAR images based on deep learning.

3. Methodology

We proposed the multi-level and densely dual attention (MDDA) framework, which includes
three components: down-sampling, deep learning network for features extraction, and up-sampling
using bilinear interpolation. First, high-resolution SAR images are down-sampled to generate
medium-resolution images, so that samples can contain adequate information about the airport.
Second, the samples are input into the deep learning network, which includes the encoder and decoder.
The encoder utilizes ResNet to produce four-level features, which are input into the decoder. In the
decoder, the dense connection and dual attention mechanism are incurred to improve the ability of
features extraction. Then, the airport extraction is performed. Finally, the results are up-sampled by
bilinear interpolation to accomplish the airport detection of high-resolution SAR images.

3.1. Residual Network

The residual network (ResNet) was proposed by He et al. [28,29] in 2016, which solves the problem
that the accuracy of the training set decreases with the deepening of the network, and makes the CNN
no longer hindered by the number of layers. The deeper the layers, the better the expression will be.
The ResNet is formed by stacking the numerous residual units, as shown in Figure 1. For a residual
unit, the output is

yl = xl + F(xl + wl), wl =
{
wl,k

∣∣∣1 ≤ k ≤ K
}

(1)

where F is the residual function, and wl denotes the weight. xl and yl represent the input and output of
the l-th residual unit. The activation between the two residual units is realized by the residual function.
First, the residual function is used to calculate the residual of the input xl, and then the residual is
added with xl to generate the output.

Let xl+1 = yl, we can obtain the output of the L-th residual unit by recursively using Equation (1)

xL = xl +
∑L−1

i=1
F(xi, wi) (2)

Equation (2) indicates that the output of the L-th residual unit can be expressed as the sum of
the input of a shallow residual unit and the mapping of all complex residual functions in the middle,
which shows the good back propagation ability of the network. Assuming the loss function of the
network is α, then the back propagation can be obtained via

∂α
∂xl

=
∂α
∂xL

∂xL

∂xl
=

∂α
∂xL

1 +
∂
∂xl

L−1∑
i=l

F(xi, wi)

 (3)

It can be seen that ∂α
∂xL

and ∂
∂xl

∑L−1
i=l F(xi, wi) determine the value of the weight ω. Unless they

are the opposite number of each other, the gradient cannot vanish. In fact, this case never happens in
practice, so the gradient flow of the network from high to low layers is very smooth, which makes the
training of deep networks possible.
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Figure 1. The structure of the residual unit.

3.2. Dense Connection

The dense connection links each layer to the others via the feedforward cascade method, as shown
in Figure 2. DenseNet [30] changes the network architecture by adding the idea of skip connection
and shorter connection to the residual network, and solves the problem of loss appearing or the
disappearance of network input or gradient information after being transmitted through many layers.
Zhang et al. [31] proposed an encoder–decoder network with dense connection to implement the
extraction of water and shadow, and good results were achieved.

Figure 2. The dense connection.

The traditional L-layer neural network has L connections while the L-th layer network of DenseNet
consists of the feature maps of the previous L-1 layers. Take x0 . . . . . . xl−1 as input, then we can obtain

xl = Hl([x0,x1, . . . . . . , xl−1]) (4)

where x0,x1, . . . . . . , xl−1 denotes the feature map connection generated by the feature maps at 0, . . . . . . , l−
1 layers, and these connections are combined via using Hl finally.

This allows the information to be transmitted from one layer to the next, and each time, it reads
information from its previous layer and writes it to the latter layer. It promotes the information
transmitting of the network, strengthens the propagation of features, and enables features to be
used sufficiently.

3.3. Dual-Attention Mechanism

The attention module plays an important role in the field of semantic segmentation. It weights the
input feature maps, filters useful feature information, and removes redundant feature information. The
attention module can fuse the input global information, and is widely used in the field of image vision.
Chen et al. [32] proposed a feature recalibration network with multi-level spatial features (FRN-MSF)
to implement scene classification for 11 types of scenes from SAR images, which incurred the SENet
and achieved a satisfactory classification result. Fu et al. [33] extended two types of attention modules
based on the self-attention module, and constructed the position attention module (PAM) and channel
attention module (CAM), which work in parallel to capture the global information of the image in the
spatial and channel dimensions to obtain rich contextual information.

• Position Attention Module (PAM)

The key in semantic segmentation is feature recognition. The PAM builds a positional relationship
model between features by capturing global feature information, and selectively aggregates features at
each position via the sum of weights for features at all positions. Regardless of the distance, similar
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features will be related to each other, thus enhancing the ability of PAM to express the features. Figure 3
shows the working mechanism of the PAM.

Figure 3. The position attention module (PAM).

As shown in Figure 3, the input feature map A (C ×H ×W) performs a convolution operation
with a BN layer and a ReLu layer to produce three new feature maps A1, A2, and A3. They are all
single-channel feature maps and they all come from feature map A, but feature maps A1 and A2 have
the same dimensions, except for feature map A3. After performing the reshape operation on the feature
maps of A1, A2, and A3, the scale of the feature maps becomes H ×W, then a matrix multiplication is
performed on the feature of transposed A1 and feature A2. B is a position attention map, and its essence
is applying the softmax layer to the transposed feature map generated by the matrix multiplication.

Bi j =
exp

(
A2i·A3 j

)
∑N

i=1 exp
(
A2i·A3 j

) (5)

where N = H ×W, and Bi j denotes how much the j-th position is affected by the i-th position. The
more similar the position information of the two features, the larger the value of Bi j.

A matrix multiplication operation is performed between B and A3 after reshaping, then D is
obtained. The final output feature map E (C × H ×W) is obtained by adding the reshaped D and
the original feature A. Here, we need to set the weighting factor α, which is initialized to 0 and then
gradually learns automatically.

E j = α
N∑

i=1

(
B ji·A3i

)
+ A j (6)

It can be seen that each position of the final output feature E is a weighted sum of the features of
all positions and the features of the original input, so global semantic information is aggregated.

• Channel Attention Module (CAM)

The CAM is mainly oriented to high-level features. Each channel mapping of high-level feature
can be regarded as a type of response, and there is a close relationship between these types of responses.
To enhance the feature map’s ability to express specific semantics, the CAM obtains the interdependence
relation between different channel mappings, and its working mechanism is shown in Figure 4.

Unlike the PAM, three features of A1, A2, and A3 with the same dimensions are directly produced
by reshaping the original feature A. Moreover, a matrix multiplication operation is performed on A2
and A1, and then the obtained value is processed by softmax to generate the feature map X (C × C).

Xi j =
exp

(
A1i·A2 j

)
∑C

i=1 exp
(
A1i·A2 j

) (7)

where Xi j represents the effect of the i-th channel on the j-th channel.
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Figure 4. Channel attention module (CAM).

After a matrix multiplication of X and A3, a reshape operation is performed to generate D. Finally,
a weight β is multiplied to D. Finally, the final feature map E (C × H × W) is obtained by adding
the original feature A and D multiplied by the weighting factor β, which is initialized to 0 and then
gradually learns automatically.

E j = β
C∑

i=1

(
X ji·A3i

)
+ A j (8)

It can be seen that the output features of each channel are the weighted sum of the features of all
channels and the original features. It encodes the global semantic relationship among the feature maps
of different channel and improves the ability to discriminate the feature maps.

3.4. The Proposed Automatic Airport Extraction Algorithm

To extract the airport, the multi-level and densely dual attention (MDDA) framework as shown in
Figure 5 is proposed in this paper. The framework mainly includes two parts: the encoding network and
decoding network. The encoding network employs the ResNet_101 [28] residual network to perform
multi-level features extraction on the input dataset. The decoding network incurs a dense connection
and dual attention mechanism to fuse the multi-level features and further extract essential features. It
mainly consists of four modules: dual attention fusion and extraction (DAFE), CRP_Net_1, CRP_Net_2,
and CRP_Net_3. The last three modules have the same internal structure. Each low-resolution feature
produced by ResNet is sent to all the previous modules with higher resolution to achieve adequate
fusion of features with different resolutions. After the airport segmentation is realized by extracting
features from the decoding network, the up-sampling processing is carried out by bilinear interpolation
to get the large-scale airport segmentation results, where the up-sampling multiple is the same as that
of the input SAR image at the beginning. Finally, the airport extraction result is fused with the SAR
image to generate a fusion image.
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Figure 5. The multi-level densely double attention network for airport extraction.

3.4.1. Dense Connection

As shown in Figure 6a, CRP_Net_x (x = 1, 2, 3) is composed of a residual convolutional unit
(RCU), multi-resolution fusion (MRF), and chained residual pooling (CRP). The RCU [17] is a residual
unit [28] with the BN layer removed and the MRF module (as shown in Figure 6b). It consists of a
series of parallel convolutions and down-samplings, which are used to fuse the features from different
resolutions. The CRP (as shown in Figure 6c) [17] is the core module of CRP_Net_x. It consists of the
ReLU activation function, pooling unit, and convolution unit. The features extracted from the ResNet
network are input into CRP_Net_x for further processing. First, an RCU unit is used to fine-tune the
weight of ResNet training. Then, the MRF module is utilized to fuse the input features from ResNet
and the output features from lower resolutions. Moreover, the CRP module is employed to extract
global semantic information, and finally, the result is output from an RCU.

The dense connection is mainly reflected in the connection between the features of different
resolutions in the decoding network. As shown in Figure 5, the input of CRP_Net_x (x = 1,2,3) contains
two parts: one is the input of the feature map from residual network, and the other is the feature
map from all CRP_Net_x with lower resolutions. This allows each CRP_Net Block to make full use of
the previous middle and high-level semantic features, and finally input them into the DAFE module,
thus repeatedly fusing and re-extracting the features. The dense connection fuses the features of four
resolutions, which makes the training gradient transfer effectively between the CRP_Net module and
the DAFE module, and avoids the disappearance of the gradient.
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Figure 6. The internal structure of CRP_Net_x. (a) is the overall structure of CRP_Net_x; (b) is the
MRF structure; (c) is the Chained Residual Pooling (CRP) structure.

3.4.2. Dual Attention Mechanism

In this paper, dual attention is incurred with the highest-resolution features produced by ResNet
to form a DAEF module, while the other three CRP_Net_x (x = 1, 2, 3) with lower resolutions remain
unchanged. The input of the DAEF module includes the highest resolution features from ResNet and
all of the high-level semantic features extracted from CRP_Net_x (1, 2, 3). These features are fused by
the MRF module. Then, the PAM and CAM are employed to weigh the position features and channel
features. Moreover, the weighted features are fused by the MRF module and perform a RCU operation.
Finally, the extraction results are generated by the Softmax function. The detailed implementation
process of the PAM and CAM in this paper is shown in Figure 7.

Figure 7. The detailed implementation process of Position Attention Mechanism (PAM) and Channel
Attention Mechanism (CAM). (a) PAM; (b) CAM.

• The implementation of PAM

As shown in Figure 7a, the detailed implementation process of the PAM can be divided into three
stages. Query1, Key1, and Value1 are all the position variables generated by the input. Query2 is
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obtained when the ‘reshape’ operation is performed on Query1, and Query3 is acquired when Query2
is transposed. Reshaping Key1 and Value1, we can gain Key2 and Value2, respectively. All of the
element values of the input image can be regarded as a collection of <Query, Key>. In the first stage, a
matrix multiplication function is introduced to calculate the similarity of the positional relationship
between the two variables.

S1 = Similarity(Query3, Key2) = Query3∗Key2
S2 = Similarity(Query3, Key1) = Query3∗Key1

(9)

In the second stage, softmax is introduced to numerically convert the S1 and S2 obtained in the first
stage. One purpose is to perform normalization, and the other purpose is to emphasize the weight of
elements in important positions, which is more prominent through the internal mechanism of softmax.

a1 = Softmax(S1) = eS1

eS1+eS2

a2 = Softmax(S2) = eS2

eS1+eS2

(10)

The calculated a1 and a2 are the weight coefficients corresponding to Value2 and Value1. In
addition, matrix multiplication is performed, and then the position attention values are produced after
the operation of the weight and sum.

Position Attention = a1∗Value2 + a2∗Value1 (11)

Through the above calculation of the three stages, the position attention value for Query3 can
be obtained.

• The implementation of CAM

The calculation process for the CAM is shown in Figure 7b. Unlike the PAM, ProjQuery1, ProjKey1
and ProjValue1 are all directly reshaped from the input, and ProjKey2 is generated after transposing
ProjKey1. The calculation method of S1 and S2 is the same as that of PAM, but the difference is that
S1 and S2—obtained by CAM in the first stage—are not directly input to softmax. In the CAM, the
maximum value of elements in each dimension of the channel tensor is selected, and the dimension is
expanded. Moreover, the total number of elements from the matrix is subtracted from the total number
of elements after the expansion.

TS1 = Expanddim(Max(S1))

TS2 = Expanddim(Max(S2)) (12)

In the second stage, softmax is introduced to perform numerical conversion on TS1 − S1 and
TS2 − S2 obtained in the first stage.

a1 = Softmax(TS1 − S1) = eTS1−S1

eTS1−S1+eTS2−S2

a2 = Softmax(TS2 − S2) = eTS2−S2

eTS1−S1+eTS2−S2

(13)

The calculated values of a1 and a2 are respectively matrix-multiplied with ProjValue1, and then
weighted and summed to obtain the value of the channel attention value.

Channel Attention = (a1 + a2)∗ProjValue1 (14)

The PAM weights the position features of all semantic features, and selectively aggregates features
at each position. Regardless of whether the position is near or far, similar features are related to each
other. The CAM integrates the relationships between all feature channels, and selectively emphasizes
the interdependent channel features. The entire dual attention weights and selects the position features
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and channel features, retains useful features, discards low-level features, and further improves features
representation to make the segmentation results more precise.

3.5. The Training Process of the Framework

The framework of the MDDA network proposed in this paper consists of two parts: one is the
encoding network ResNet_101, and the other is the decoding network including the CRP_Net_x
(x = 1, 2, 3) module and DAFE module. In this paper, dense connections were utilized between the
CRP_Net_x (1, 2, 3) modules and also between the CRP_Net module and the DAFE module. In the
DAFE module, the dual attention mechanism is introduced. The entire training process of the MDDA
network is as follows:

Input: Datasets including small SAR images and corresponding ground truth.
Training:

(1) Initializing of input data: the coding network loads training data from the ImageNet
pre-trained model.

(2) The loaded training data are input to ResNet-101 to extract multi-level features.
(3) The decoding network fuses and re-extracts the features extracted by the coding network. Of

which, dense connections enhance gradient propagation between features, and dual-attention
selects the features by weights.

(4) Back propagation (BP) algorithm performs end-to-end training for the whole network.
(5) The softmax function calculates the probabilities that the network output is mapped to the runway

and background categories by the following formula.

p̂k =
eXk∑K

k=1 eXk

where Xk represents the number of pixels corresponding to the k-th category, and K is the number of
the sample categories. p̂k denotes the probability of the k-th category being predicted correctly after the
softmax function.

The network employs Cross Entropy Loss as the optimization function, which is shown as follows:

E =
K∑

k=1

pk log
(
p̂k

)
where pk is defined as a variable 0 or 1, that is, when the predicted category is the same as the sample
category, pk = 1; otherwise, pk = 0.

Since there were only two types of targets in this paper, runway areas and background, we can
directly use the binary classification of the cross-entropy loss function.

E = pk log
(
p̂k

)
+

(
1− pk

)(
1− p̂k

)
Output: Trained model for airport extraction.

4. Experiment and Results

4.1. Dataset Used in the Experiment

To validate the proposed framework MDDA in this paper, SAR images with 1-m resolution from
Gaofen-3 system were utilized. Many large-scale SAR images including airports were used in the
experiment. First, SAR images were down-sampled by five times to generate medium resolution
images. Then, the ground truth was produced by Image Labeler of MATLAB, which includes runway
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areas and the background. The runway area, which includes runways, taxiways, and parking lots,
is marked red and other targets are regarded as background. In addition, the down-sampled SAR
images and corresponding ground truth were cut into small images with 500 × 500 pixels to generate
the dataset. After data augmentation using flip, mirror, and shift, a total of 2479 samples was achieved,
and the ratio of the training set to the validation set was 3:1. To test the model generated by training
the proposed framework, four SAR images including airports unused in making the dataset were
utilized to extract runway areas of airports.

Figure 8 shows some samples of the airports in the experiment. Figure 8a–c are SAR images,
the ground truth, and the optical remote sensing image of Hongqiao Airport in Shanghai, China.
Figure 8d–f denote the three images of Capital airport, the same as Hongqiao Airport. From these
samples, we can note the background of Hongqiao Airport is relatively simple, while the background
of Capital Airport is more complicated and harder to extract.

Figure 8. Airport images and corresponding ground truth. (a–c) denote the SAR image, ground truth,
and the corresponding optical remote sensing image for Hongqiao Airport of China. (d–f) are the SAR
image, ground truth, and optical remote sensing image for Capital Airport.

4.2. Evaluation Measurements

To evaluate the extraction precision of airports, pixel accuracy (PA) and intersection over union
(IoU) were used following previous works [21–23,34]. PA denotes the ratio of correctly extracted pixels
to the total pixels of the type of targets, and IoU represents the ratio of intersection and union of
extracted results to the ground truth. Mean pixel accuracy (MPA) is the mean proportion of correctly
classified pixels for all categories, and mean intersection over union (MIoU) denotes the mean IoU of
all types of targets. The specific calculation formulas are as follows [34].

PA =

∑k
i=0 Pii∑k

i=0
∑k

j=0 Pi j
(15)

MPA =
1

k + 1

∑k
i=0 Pii∑k

i=0
∑k

j=0 Pi j
(16)
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IoU =
k∑

i=0

Pii∑k
j=0 Pi j +

∑k
j=0 P ji − Pi j

(17)

MIoU =
1

k + 1

k∑
i=0

Pii∑k
j=0 Pi j +

∑k
j=0 P ji − Pi j

(18)

where k + 1 is the total number of categories (because the background is also a category). Pi j denotes
the number of pixels that originally belong to class i but are predicted to be class j, which are false
positive samples. P ji indicates the number of pixels that originally belong to class j, but are predicted
to be class i, which are false negative samples. Pii means the number of pixels correctly classified in
class i.

4.3. Experiment Analysis and Evaluation

To test the proposed framework of MDDA, four SAR images covering airports unused in
training and validation were utilized. Furthermore, two popular deep neural networks for semantic
segmentation (RefineNet [17] and DeepLabV3 [21]) were used as reference studies. DeepLabV3 was an
excellent network for semantic segmentation, which achieved the best performance on the PASCAL
VOC 2012 with other state-of-art models in 2017. RefineNet presented a multi-level structure and
chained residual pooling strategy to accomplish semantic segmentation, which also attained much
better performance than the vast majority of the networks at that time in PASCAL VOC 2012.

• The extraction result of Airport I

Figure 9 indicates the extraction results for Airport I. Figure 9a is the SAR image of Airport I from
the Gaofen-3 system with a 1-m resolution and Figure 9b is the down-sampled image by five times of
(a). From what we can see, the texture of the targets in (a) is much clearer than that in (b). Figure 9c is
the ground truth of the airport corresponding to (b). Figure 9d–f are the extraction results of the airport
generated by RefineNet, DeepLabV3, and the proposed framework MDDA, respectively. Figure 9g–i
denote the fusion maps of (d), (e), and (f) with (b), respectively. Figure 9j–l represent the fusion maps
of Figure 9a and the corresponding up-sampled extraction results of Figure 9d–f by five times.

Airport I belongs to the civil airport. According to Figure 9a, there are many buildings around
Airport I, and the traffic lines are intertwined and complicated. The airport has a relatively obvious
characteristic difference from the surrounding ground features, visually showing a large area of gray
and black, and the runway area is black. Comparing Figure 9d–f with the ground truth in Figure 9c,
we can see that result (f) had the highest overlap with (c), which indicates that MDDA extracted the
best result for Airport I. From Figure 9g, RefineNet had a great number of missed detections, most
of which were parking lots and some runways. Figure 9h shows that DeepLabV3 had some missed
detections and false detections, and the integrity of the edge extraction for the runway area was not
high. While for MDDA, only a small part of the runway was not detected, the missed detection rate
was low, and there was no false detection. Comparing Figure 9g–i, we can see much more detailed
information in Figure 9j–l because of the high resolution, which also demonstrates that we can obtain
a satisfactory extraction result of the airport for SAR images with high resolution by the proposed
MDDA framework.
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Figure 9. The experiment result for Airport I. (a) SAR image of Airport I from Gaofen-3. (b) The
down-sampled SAR image of (a) by 5 times. (c) The ground truth of the airport for (b). (d) The
extraction result of (b) by RefineNet. (e) The extraction result of (b) by DeepLabV3. (f) The extraction
result of (b) by MDDA. (g) The fusion map of (d,b). (h) The fusion map of (e,b). (i) The fusion map of
(f,b). (j) The fusion map of (a,d) up-sampled by 5 times. (k) The fusion map of (a,e) up-sampled by 5
times. (l) The fusion map of (a,f) up-sampled by 5 times.

• The result of Airport II

Figure 10 demonstrates the extraction results for Airport II. Figure 10a–l are the same type of
images as the corresponding images in Figure 9. According to Figure 10a, the buildings around the
airport are sparse, but there is a large area of water, and the characteristics of the water and the runway
area are very similar. As shown in Figure 10h,k, DeepLabV3 mis-detected a large number of water
bodies as runway areas, and there were also some missed detections for the airport. From Figure 10g,j,
we found that RefineNet acquired a better extraction result than DeepLabV3, but there were still some
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false alarms and missed detections, while according to Figure 10f,i,l, MDDA achieved the best detection
performance for Airport II. There was no false alarm and only a few missed detections.

Figure 10. The experiment result for Airport II. (a) SAR image of Airport II from Gaofen-3. (b) The
down-sampled SAR image of (a) by 5 times. (c) The ground truth of the airport for (b). (d) The
extraction result of (b) by RefineNet. (e) The extraction result of (b) by DeepLabV3. (f) The extraction
result of (b) by MDDA. (g) The fusion map of (d,b). (h) The fusion map of (e,b). (i) The fusion map of
(f,b). (j) The fusion map of (a,d) up-sampled by 5 times. (k) The fusion map of (a,e) up-sampled by 5
times. (l) The fusion map of (a,f) up-sampled by 5 times.
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• The result of Airport III

Figure 11 indicates the extraction results for Airport III. There are dense buildings and terraces to
the west of the airport, and there are also waters nearby. Figure 11a–l are also the same type of images
as the corresponding images in Figure 9.

Figure 11. The experiment result for Airport III. (a) SAR image of Airport III from Gaofen-3. (b) The
down-sampled SAR image of (a) by 5 times. (c) The ground truth of the airport for (b). (d) The
extraction result of (b) by RefineNet. (e) The extraction result of (b) by DeepLabV3. (f) The extraction
result of (b) by MDDA. (g) The fusion map of (d,b). (h) The fusion map of (e,b). (i) The fusion map of
(f,b). (j) The fusion map of (a,d) up-sampled by 5 times. (k) The fusion map of (a,e) up-sampled by 5
times. (l) The fusion map of (a,f) up-sampled by 5 times.
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According to the comprehensive result images (d), (e), (f) and fusion maps (g), (h), (i), RefineNet
and DeepLabV3 both misdetected the water areas as runway areas (such as yellow boxes), and there
were many missed detections (such as green boxes). Due to the obvious visual difference between the
extended runway at both ends of the airport runway and the main runway area, none of the three
networks detected the extended runway. Except for the missed extended runway areas, the rest of the
runway areas were all detected by MDDA, and there were no false alarms.

• The result of Airport IV

Figure 12 presents the extracted results of Airport IV, which is Hongqiao Airport. There are
considerable road networks, which are very likely to cause false detections. Figure 12a–l are also the
same type of images as the corresponding images in Figure 11.

Based on the results shown in Figure 12, all three networks can extract airport runways, and the
crossing roads have not become false alarms. According to Figure 12d,g,j, we can see that RefineNet
missed a great many runways (marked by green boxes), which caused the relatively worst detection
performance of the three networks. DeepLab V3 has greatly reduced the runway areas missed by
RefineNet, but there were some false alarms (marked by yellow boxes), and the overall detection
performance was highly improved. According to Figure 12f,i,l, there were the least missed runways
and no false alarms in the results generated by the MDDA network, so the extracted results were the
best of the three networks for runways of the airport from SAR images.

Figure 12. Cont.
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Figure 12. The experiment result for Airport IV. (a) SAR image of Airport IV from Gaofen-3. (b) The
down-sampled SAR image of (a) by 5 times. (c) The ground truth of the airport for (b). (d) The
extraction result of (b) by RefineNet. (e) The extraction result of (b) by DeepLabV3. (f) The extraction
result of (b) by MDDA. (g) The fusion map of (d,b). (h) The fusion map of (e,b). (i) The fusion map of
(f,b). (j) The fusion map of (a,d) up-sampled by 5 times. (k) The fusion map of (a,e) up-sampled by 5
times. (l) The fusion map of (a,f) up-sampled by 5 times.

To analyze the extraction performance of the airports, Table 1 gives the extraction accuracies of
different networks for the four airports. According to Table 1, the proposed MDDA framework had the
best extraction performance of airports, which had the least number of missed detections and almost
no false alarms. The mean pixel accuracy (MPA) of runway areas reached 0.9811 and the MIoU reached
0.9707, which proved the superiority of the MDDA.

Table 1. The extraction accuracy for airports by different networks.

Network Airports Runway Areas Background

PA IoU PA IoU MPA MIoU

RefineNet

Airport I 0.6386 0.6306 0.9980 0.9447 0.8188 0.7877
Airport II 0.8995 0.8552 0.9977 0.9932 0.9486 0.9242
Airport III 0.6062 0.5957 0.9990 0.9772 0.8026 0.7865
Airport IV 0.6024 0.5946 0.9990 0.9698 0.8007 0.7822

Mean 0.8427 0.8202

DeepLabV3

Airport I 0.9452 0.8891 0.9901 0.9817 0.9677 0.9354
Airport II 0.8875 0.4619 0.9588 0.9540 0.9232 0.7228
Airport III 0.6689 0.6411 0.9975 0.9792 0.8332 0.8102
Airport IV 0.8288 0.8166 0.9989 0.9861 0.9139 0.9014

Mean 0.9095 0.8425

MDDA Net

Airport I 0.9849 0.9706 0.9977 0.9953 0.9913 0.9830
Airport II 0.9845 0.9609 0.9989 0.9982 0.9917 0.9796
Airport III 0.9189 0.9016 0.9989 0.9943 0.9589 0.9480
Airport IV 0.9664 0.9486 0.9986 0.9960 0.9825 0.9723

Mean 0.9811 0.9707

RefineNet presented the most missed detection results. There were large areas of runway areas
that were not detected in three airports, except for the second airport, and there were a small number of
false detection results in Airport II, Airport III, and Airport IV. DeepLabV3 had the most false-alarms.
For Airport II, the false alarm was the most serious, and they were all false alarms in the extraction
results generated by three networks. The experimental results showed that RefineNet and DeepLabV3
do not have the ability to learn airport features and cannot distinguish runway areas from similar areas,
resulting in poor detection integrity and false alarms. While for MDDA, the transmission between
features is enhanced by introducing dense connection, and redundant features were abandoned and
useful features were retained via incurring the dual attention mechanism. Therefore, the network’s
ability to learn features is improved, which makes the runway extraction results free of false alarms
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and high extraction completeness. Compared with the other two networks, MDDA could almost
completely extract the entire runway edge line.

In order to more clearly analyze the detailed information of the extracted airport, Figure 13 shows
an enlarged view of a small area of Airport I. Figure 13a–l are also the same type of images as the
corresponding images in Figure 12. It can be seen from the views of (g), (h), and (i) that MDDA can
extract the details and edge information well. RefineNet is a typical semantic segmentation network,
but the decoding network only uses simply transferring features one by one, so the extraction effect
was poor as we could see many missed detections (as shown in the green boxes). DeepLabV3 adds
hole convolution to expand the receptive field, but the lack of attention mechanism makes the feature
learning redundant. Therefore, it cannot extract the detailed information well, and is prone to false
alarms. The proposed MDDA network in this paper improved these problems, and we can see from
the detailed images that MDDA could extract the airport runway area much better. In addition, we can
see more detailed information in Figure 13j–l than in Figure 13g–i due to their high resolutions.

Figure 13. Cont.
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Figure 13. The enlarged view of a small part of Airport I. (a) SAR image of a part of Airport I from
Gaofen-3. (b) The down-sampled SAR image of (a) by 5 times. (c) The ground truth of the airport for
(b). (d) The extraction result of (b) by RefineNet. (e) The extraction result of (b) by DeepLabV3. (f) The
extraction result of (b) by MDDA. (g) The fusion map of (d,b). (h) The fusion map of (e,b). (i) The
fusion map of (f,b). (j) The fusion map of (a,d) up-sampled by 5 times. (k) The fusion map of (a) and
(e) up-sampled by 5 times. (l) The fusion map of (a,f) up-sampled by 5 times.

In order to better verify the performance of the proposed network, more images were used for
testing based on data augmentation techniques [34]. Due to the limited large-scale airport images of
high-resolution SAR images, the four airports tested in this paper were horizontally flipped, vertically
flipped, rotated 90 ◦ clockwise, and rotated 90 ◦ counterclockwise to obtain 16 new airport images.
Then, we utilized three networks to test the 16 images to acquire the extracted accuracy for airports,
respectively. For the four images of each airport, we could obtain a mean accuracy for every network,
which is shown in Table 2. Compared with Table 1, we found that the accuracy of each network for
every airport was nearly the same, which illustrates the stability of the three networks for extracting
the runways of the airports.

Table 2. The extraction accuracy for augmented airports by different networks.

Network Airports Runway Areas Background

PA IoU PA IoU MPA MIoU

RefineNet

Airport I 0.6384 0.6305 0.9982 0.9448 0.8189 0.7878
Airport II 0.8998 0.8555 0.9978 0.9933 0.9488 0.9245
Airport III 0.6058 0.5955 0.9988 0.9770 0.8022 0.7860
Airport IV 0.6029 0.5948 0.9993 0.9700 0.8010 0.7826

Mean 0.8427 0.8200

DeepLabV3

Airport I 0.9458 0.8896 0.9906 0.9822 0.9681 0.9359
Airport II 0.8879 0.4622 0.9594 0.9545 0.9237 0.7232
Airport III 0.6695 0.6415 0.9981 0.9797 0.8338 0.8107
Airport IV 0.8286 0.8165 0.9986 0.9860 0.9137 0.9013

Mean 0.9098 0.8428

MDDA Net

Airport I 0.9855 0.9709 0.9981 0.9956 0.9916 0.9833
Airport II 0.9844 0.9608 0.9990 0.9982 0.9918 0.9796
Airport III 0.9187 0.9015 0.9991 0.9945 0.9590 0.9482
Airport IV 0.9665 0.9487 0.9988 0.9961 0.9827 0.9724

Mean 0.9813 0.9709

Figure 14 demonstrates the extraction results for one image of the augmented 16 airport images,
which is the horizontal flipped image of Airport I. Compared with Figure 9, we found that they were
nearly the same detection accuracy according to Table 2 and Figure 14, which also demonstrates the
stability of the networks.
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Figure 14. The experimental results for the horizontal flipped Airport I. (a) SAR image from Gaofen-3.
(b) The down-sampled SAR image of (a) by 5 times. (c) The ground truth of the airport for (b). (d) The
extraction result of (b) by RefineNet. (e) The extraction result of (b) by DeepLabV3. (f) The extraction
result of (b) by MDDA. (g) The fusion map of (d,b). (h) The fusion map of (e,b). (i) The fusion map of
(f,b). (j) The fusion map of (a,d) up-sampled by 5 times. (k) The fusion map of (a) and (e) up-sampled
by 5 times. (l) The fusion map of (a,f) up-sampled by 5 times.

5. Discussion

In this paper, we propose a multi-level and densely dual attention (MDDA) network to extract the
runways of the airport from SAR images with high-resolution. First, the high-resolution SAR images
were down-sampled to generate medium resolution SAR images, and then the samples were produced.
Second, the MDDA network was utilized to extract the runways of the airport by making full use of the
effective features of the runway areas, where ResNet, the dual-attention mechanism, dense connection,
and multi-level structure were integrated. Finally, the bilinear interpolation was incurred to achieve
the extraction results of the runways for the high-resolution SAR images. According to the results of
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the experiments, we noted that MDDA could acquire a satisfactory performance for runway extraction
of the airport and obtained the highest accuracy of the three networks.

In addition, we also noted that the training speed of MDDA was relatively slow, which will be
our next research direction. Moreover, only SAR images from the Gaofen-3 system were utilized in the
experiment, so high-resolution SAR images with different bands and different resolutions will be tested
in our further research. Once the runways are extracted, the aircrafts in the airport can be detected
more accurately, which not only reduces the false alarms of aircraft detection, but also remarkably
increases the detection speed. Therefore, this is also our future work.

6. Conclusions

To accomplish the automatic airport detection from high-resolution SAR images, a new framework
named MDDA was proposed, which integrated ResNet, dense connection, CRP, and the dual attention
mechanism. The dense connection takes the advantage of features generated by ResNet at different
levels. The dual attention mechanism extracts the position features and channel features respectively,
and weights them with different values according to their significance to classification. To implement
airport detection from SAR images with high-resolution, two additional processes are performed. One
is down-sampling the original SAR images to the medium resolution ones, so that the samples can
contain more spatial features of the airport. The other is up-sampling the extraction result generated
by the MDDA network to achieve the airport extraction of SAR images with the same resolution.

Three Gaofen-3 SAR images including different airports were utilized to test the proposed MDDA
framework. Compared with two existing semantic segmentation networks, namely, RefineNet and
DeepLabV3, MDDA achieved much better performance for airport extraction, which reached 0.98 in
MPA and 0.97 in MIoU. In addition, it can also be seen from the extraction results that there were few
missed detection areas and no false alarms for MDDA, which indicates that it can effectively extract
the airport runway areas, and the integrity of the details remains outstanding.
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