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Abstract: In this paper, a novel deep reinforcement learning (DRL) method, and robust deep
deterministic policy gradient (Robust-DDPG), is proposed for developing a controller that allows
robust flying of an unmanned aerial vehicle (UAV) in dynamic uncertain environments. This technique
is applicable in many fields, such as penetration and remote surveillance. The learning-based controller
is constructed with an actor-critic framework, and can perform a dual-channel continuous control
(roll and speed) of the UAV. To overcome the fragility and volatility of original DDPG, three critical
learning tricks are introduced in Robust-DDPG: (1) Delayed-learning trick, providing stable learnings,
while facing dynamic environments; (2) adversarial attack trick, improving policy’s adaptability
to uncertain environments; (3) mixed exploration trick, enabling faster convergence of the model.
The training experiments show great improvement in its convergence speed, convergence effect,
and stability. The exploiting experiments demonstrate high efficiency in providing the UAV a shorter
and smoother path. While, the generalization experiments verify its better adaptability to complicated,
dynamic and uncertain environments, comparing to Deep Q Network (DQN) and DDPG algorithms.

Keywords: UAV; robust motion control; deep reinforcement learning; adversarial attack; delayed
learning; mixed exploration

1. Introduction

Safe and reliable motion control for unmanned aerial vehicles (UAVs) is an open and challenging
problem in the realm of autonomous robotics. Successfully flying from arbitrary departures to
destinations, while avoiding ubiquitous threats without any human intervention is indeed essential
for a UAV in many practical applications [1,2], such as search and rescue [3], remote sensing [4,5],
goods delivery [6], and Destroy or Suppression of Enemy Air Defenses (DEAD/SEAD) [7]. To maintain
autonomous mobility, the UAV has to handle challenges in Observation, Orientation, Decision
and Action (OODA) simultaneously, and these become particularly difficult while facing dynamic
uncertain environments. Massive uncertain surroundings and unpredictable moving threats make any
pre-planned motion strategy unavailable. Developing some novel techniques, which can provide the
UAV robust motion strategies in these complex environments, becomes a crucial requirement in the
near future.

Traditional approaches, such as A* [8], RRT [9], artificial potential fields [10], simultaneously
localization and mapping (SLAM) [11], employ two steps to handle these motion control problems
with unknown environments [12]: (i) Perceive and estimate the environment state; and (ii) model
and optimize the control command. These approaches are often susceptible to unforeseen disturbances,
any incomplete perception, biased estimate, or inaccurate model will lead to poor performances [13].
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Their model-based scheme makes it difficult to apply such approaches to dynamic uncertain
environments because the state transition models of the environments are usually unknown in
those cases. Moreover, these traditional approaches use an open-loop mechanism [14] that makes
decisions without any reasoning of the future, and the decision process has to be executed repeatedly
to compensate for the changes.

To overcome the limitations mentioned above, researchers have resorted to learning or adaptive
approaches. Reinforcement learning (RL) [15], for instance, can make agents learn the right actions to
take with little or no prior knowledge of system model, and the predictive learning scheme makes it
easily adapt to the stochastic changing conditions. For these reasons, RL has become a promising tool in
improving autonomous flight in many different UAV applications. Junell [16] modelled the Quadrotor
guidance as a high-level reinforcement learning problem and successfully developed an autonomous
flying test in an unknown environment. Luo [17] proposed Deep-Sarsa, a novel path planning
and obstacle avoidance approach, in order to navigate multi-UAVs fly autonomously in a dynamic
environment. Imanberdiyev [18] uses a model-based reinforcement learning algorithm, TEXPLORE, to
solve the UAV autonomous navigation problem and demonstrate that the effect outperforms Q-learning
based method. Since traditional RLs can only deal with discrete states, all of these researches have to
simplify and limit the environment as a discrete grid, and this is different from the practical situation
faced by UAVs. To maintain a better representation of the high-dimensional continuous state space,
the deep neural network is introduced into the conventional RL and produces deep reinforcement
learning (DRL) methods. A series of DRLs, such as Deep Q Network (DQN) [19], Double DQN [20],
Dueling DQN [21], and Prioritized DQN [22] are proposed one after another, and some of them
have been utilized in the field of UAV control and have achieved outstanding performance [23–26].
Kersandt [24] establishes learning-based high-level controllers to navigate a UAV flying across a
complicated environment with different DRL algorithms. Polvara [25] learned a DQN-based intelligent
controller and successfully controlled the UAV to land on moving platforms. Conde [26] designed
time-varying controllers with DQN to drive multiple UAVs and reach any formation as quickly as
possible. However, these value-based DRLs have drawbacks, including that they can only address
cases with discrete actions, which is the reason these applications only realized a discrete direction
control of the UAV.

To achieve continuous control, policy gradient methods [27] are introduced into DRL, which derive
parameterized stochastic or deterministic policies with continuous actions by performing gradient
descent in the parameter space. Silver [28] proposed a deterministic policy gradient (DPG) algorithm,
and demonstrated that it can significantly outperform the stochastic counterparts in high-dimensional
action spaces. Lillicrap [29] combined DQN and DPG within the actor-critic framework and produced
a deep deterministic policy gradient (DDPG) algorithm, which can map continuous observations
directly to continuous actions. While, DDPG may perform well sometimes, it is frequently brittle
with respect to complete tasks, and challenges arise when DDPG is applied to solve UAV adaptive
motion control problems. Firstly, UAV is sensitive to rapidly changing speed and adding speed control
channel into DDPG will make the training process unstable. For this reason, most studies only take
heading control channel into account [25,30,31] in their UAV navigation tasks. This simplification
limits their practical application scopes. Secondly, given the actor and critic are closely related in
DDPG, an over-estimation of the critic will lead to policy vibrations in actors and the vibration will
result in UAV’s frequent crash, while facing dynamic uncertain surroundings. Lastly, DDPG itself is
susceptible to hyper-parameters and exploration schemes, any irrational setting can lead to unstable
learning, which is the reason that region policy optimization is relied on (TRPO) [32] and proximal
policy optimization (PPO) [33] algorithms are proposed. With respect to the motion control problem,
the dynamic uncertain environment expands the state and action space, which increases the difficulties
of exploration.

To address these challenges, we conducted some exploratory research and propose an improved
DRL algorithm named Robust-DDPG. This new algorithm is used to provide the UAV robust motion
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control in dynamic uncertain environments. Specifically, we make the following contributions in
this paper:

(1) We develop an actor-critic-based motion control framework, which can perform a dual-channel
control of roll and speed, by predicting the desired steering angle and by reasoning the possible
collision probability. The controller can provide safe flights for the UAV autonomously in dynamic
uncertain environments.

(2) We propose an efficient policy-based DRL algorithm, Robust-DDPG, in which three critical tricks
are introduced to provide a robust controller for the UAV. The first is a delayed-learning trick, in which
the critic and actor networks are batch updated after each episode finishes, rather than being updated in
each iteration. The second is an adversarial-attack trick, in which an adversarial scheme is introduced
to sample noisy states and actions in the learning process. This trick will increase the robustness of the
trained networks. The last is a mixed-exploration trick, in which rough sampling, based on ε-greedy
and a fine sampling, based on Gaussian are performed in different periods of learning. By combining
these three tricks, Robust-DDPG is able to overcome the shortcomings of DDPG and provide the UAV
a controller with better adaptability to complicated, dynamic, and uncertain environments.

(3) We constructed a UAV mission platform to simulate dynamic stochastic environments for
training and evaluating the effectiveness and robustness of our proposed methods. Through a series of
experiments, we show that our trained UAV can adapt to various dynamic uncertain environments,
with neither a map of the environment nor retraining or fine-tuning.

The remainder of this paper is organized as follows. Section 2 introduces the UAV motion control
problem and formulates it as an MDP. Section 3 elaborates the core approach, Robust-DDPG, for problem
solving, where three improved tricks, delayed learning, adversarial attack, and mixed exploration
are integrated into an actor-critic framework. The performance, effectiveness, and adaptability of the
proposed algorithm are demonstrated through a series of experiments in Section 4. Section 5 conducts
a further discussion about the experimental results. Section 6 concludes this paper and envisages some
future work.

2. Problem Formulation

2.1. UAV Motion Control

2.1.1. Kinematics of UAV

Six degrees of freedom (DoF) aircraft model is the most accurate in UAV’s flight control. However,
it is taken that the UAV owns an onboard autopilot that will provide the low-level flight controls in a
fast-inner loop and maintain roll, pitch, and yaw stability for the UAV, as well as velocity tracking
and altitude holding functions [34,35]. For the sake of brevity and without loss of generality, we adopt
the kinematics model with four DoF as a substitute for the six DoF one and apply it in the design of a
high-level controller of the UAV. In our kinematics, we assume the UAV flies at a constant altitude
and fly with inertial coordinated turns, in which the bank angle is set so that the centrifugal force
acting on the aircraft is equal and opposite to the horizontal component of the lift acting in the radial
direction [36]. These assumptions are reasonable in many realistic cases and can allow us to focus more
on the motion control algorithms.

Let pu := (xu, yu) and
.
pu :=

( .
xu,

.
yu

)
denote the planar position and velocity in Cartesian inertial

coordinates, respectively. By taking some additional disturbances into account, the continuous-time
kinematics of our UAV reads [37],

d
dt


xu

yu

ψu

φu

 =


vu cosψu + η .
x

vu sinψu + η .
y

−(g/vu) tanφu + η .
ψ

f
(
φu, aφ

)
 (1)
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where g denotes the acceleration due to gravity. ψu, φu denote the heading angle and roll angle,
and vu denotes the linear velocity of the UAV. η .

x, η .
y, η .

ψ
are the disturbance terms due to velocity

and heading rate, which is drawn from normal distributions N
(
0, σ2

.
x

)
, N

(
0, σ2

.
y

)
, and N

(
0, σ2

.
ψ

)
respectively.

By introducing these stochastic factors into the states of the model, we can partly make up for the loss
of the un-modelled dynamics. The function f

(
φu, uφ

)
defines the roll dynamics, which depends on

a specific problem. The negative sign in the third row indicates the different definitions of the roll
and heading direction, where the clockwise direction is defined as a positive roll, while the clockwise
direction produces a negative roll.

2.1.2. Dual-Channel Control for UAV

Mobility control of a fixed-wing UAV in real environments could be complex, especially when the
environment is unknown and changing rapidly. In our scenario, a fixed-wing UAV is supposed to have
to fly across a dynamic unknown area until a specified target is finally reached. It is such an arduous
circumstance for the UAV because of the ubiquitous mobile threats. Unlike most navigation researches
that only considered a heading control [30,31] for the UAV, we utilize a dual-channel control to provide
the UAV better flight robustness. As the increased speed control channel offers more avoiding options
for the UAV when faced with dynamic environments.

Let at =
[
av,t, aφ,t

]T
be the control vector for the UAV at time t, in which av,t and aφ,t are the control

commands due to the speed, and the roll, respectively. av,t is represented as the probability of collision
that can be used to modulate the forward speed of the UAV [1], while aφ,t is the steering rate that can
turn current roll to the desired one. Specifically, low-pass filters are used to provide soft updates of the
speed and roll angle as,  vu,t = (1− λv)vu,t−1 + λv(1− av,t)vu,max

φu,t =
(
1− λφ

)
φu,t−1 + λφaφ,tφu,max

(2)

where λv and λφ are the tuning factors selected empirically for trading off smoothness and reactiveness
of the flight. From the speed controller, we conclude that the UAV will gradually accelerate to maximal
speed vu,max if the collision probability av,t is 0, and will slow down to 0 when av,t closes to 1. Similarly,
the roll controller can map the predicted steering rate aφ,t into a desired roll angle φu,t. Once the speed
and roll are updated, the UAV moves to a new position by integrating Equation (1).

2.2. UAV Motion Control as an MDP

To provide the UAV with a robust controller to adapt to dynamic uncertain environments, we focus
on the reinforcement learning technique. RL uses a Markov decision process (MDP) [31,38] to model
the controller, in which the problem is abstracted into an Agent and an Environment. The agent can
learn optimal sequential control policies from the historical trajectories accumulated by trial-and-error
interactions with the environment. At each time step, the agent perceives the current system state s ∈ S
and selects a favorable action a ∈ A depending on s and its knowledge about past experiences. After
applying this action a to the UAV, a new system state s′ ∈ S and a reward signal r will arrive to the
agent, and then the cycle repeats. Figure 1 illustrates the RL-based motion control structure of the UAV.
The state s, action a and reward r constitute the core elements of the controller.
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Figure 1. Reinforcement learning based (RL-based)motion control structure of the unmanned aerial
vehicle (UAV).

2.2.1. State and Action Specification

The state represents a collection of all the information that UAV can obtain. In this paper, onboard

GPS and gyroscope devices can provide the agent its state ξu =
[
xu, yu,

.
xu,

.
yu,ψu, φu

]T
in real-time,

where (xu, yu) is the planar position,
( .
xu,

.
yu

)
is the planar speed, ψu is the heading, and φu is the roll

angle of the UAV. A LiDAR [39] with Nr rays is equipped on the UAV to keep sensing the changing of
the surroundings. At each sampling moment, the agent will receive a feedback of the environment
state ξe = [d1, d2, . . . , dNr ]

T, where di denotes the detected relative distance between the UAV and the
threats by the i-th ray (depicted in Figure 2). Besides, the target state ξT = [xT, yT]

T is supposed to be
transmitted to the agent by an indicator-like device periodically, where (xT, yT) represents the position
of the target. Then, we get the system state s by combining ξu, ξe and ξT, i.e.,

s =
[
xu, yu,

.
xu,

.
yu,ψu, φu, d1, d2, . . . , dNr , xT, yT

]T
(3)

The fixed-wing UAV maneuvers by selecting its appropriate speed and roll control commands,
and holding them for one second or until the next commands are selected. In our scenario, the two

control commands are represented by action a =
[
av, aφ

]T
, where av ∈ [0, 1] denotes the probability of

collision that can be estimated to control the forward speed of the UAV, while aφ ∈ [−1, 1] is a steering
signal that can be selected to turn the UAV to the desired roll angle.

Figure 2. UAV sensed data.

2.2.2. Reward Shaping

Reward r(s, a) acts as a signal evaluating how good it is when taking an action a at a state
s [31]. The rewards are the only feedback signals available for the agent’s learning. Accordingly,
a well-shaped reward function should contain as many useful human experiences as possible. In this
paper, we abandon the normally used sparse reward and shape a non-sparse reward scheme [40] that
incorporates our domain knowledge about the motion control problem to precisely describe the tiny
impart of selected policy. Four basic experiences are considered to construct the non-sparse reward:
A) The UAV is urged to fly to the target; any action that brings the UAV close to the target should
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be rewarded and be punished if it is driven away from the target, and the faster the approaching or
leaving, the greater the reward or penalty; B) the UAV is required to complete the mission as soon as
possible, a greater approaching speed deserves a greater reward; C) the UAV should fly towards the
target, any deviation from the target direction should be punished; D) the UAV should be proactive
in avoiding collisions with the threats, if it is quickly approaching a threat, a great penalty should
be assigned to remind the UAV to slow down or turn immediately. We have formulated these four
experiences as follows,

rA = Dpre
ut −Dcur

ut (4)

rB = (vu/vu,max) × cos ∆ψ (5)

rC = −∆ψ/4 (6)

rD = (vu/vu,max) ×
(
D f /Ds − 1

)
(7)

where Dpre
ut , Dcur

ut denote the previous and current relative distances between UAV and the target; ∆ψ
denotes the angle of the UAV flight direction deviating from the target; vu are the current speeds of the
UAV; Ds is the detection distance of the sensor; D f is the distance of the detected threat in front of the
UAV and if there is no threat ahead of it, D f will be set to Ds. All the variables can be found in Figure 3.
From the above four equations, we can see that rA is a reward item when Dpre

ut > Dcur
ut , otherwise, it is a

penalty, and rB is always a reward while rC and rD are penalties. To summarize, the reward function
can be finally formulated as,

r(s, a) = µ1rA + µ2rB + µ3rC + µ4rD (8)

where µ1,µ2,µ3,µ3 are used to indicate the contribution rates of the four items,
∑4

i=1 µi = 1.

Figure 3. Relative situations among UAV, threats, and target.

2.2.3. Non-Myopic Objective

As for a reinforcement learning setup, state space S, action space A, reward function r(s, a)
and transition dynamics p(s′|s, a) consist as a standard MDP. Unlike traditional myopic methods
that make decisions rely only on the immediate reward r, RL learns an optimal control policy π by
maximizing a non-myopic objective,

Jπ = Esi∼p,ai∼π

 H∑
i=0

γir(si, ai)

 (9)

where
H∑

i=0
γir(si, ai) is a discounted future reward with a discounting factor γ ∈ [0, 1]. H is the horizon

of the prediction. The policy π is defined to map system states to a probability distribution over the
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actions π : S→ P(A) . For an arbitrary pair (st, at), Q-function is defined to describe the expected
long-term cumulative return when performing an action at in state st and following π:

Qπ(st, at) = Esi∼p,ai∼π

[
H∑

i=t
γi−tr(si, ai)|st, at

]
= Est+1∼p

[
r(st, at) + γEat+1∼π[Qπ(st+1, at+1)]

] (10)

Subsequently, the optimal action can be determined by:

a∗t = arg max
a

Qπ(st, at). (11)

Despite the non-myopic scheme described above can provide a robust control policy by fully
considering its impact on the future, it is troubled by the curse of dimensionality while trying to
calculate the Q-value. As the agent is facing continuous state space and continuous action space in our
scenario, and more seriously, the transition dynamics p(s′|s, a) is unknown to the agent. Any heuristic
or evolutionary algorithms become intractable for solving the Equation (11). To address it, we design a
deep neural network, µ(s

∣∣∣θµ) , to approximate the function of arg max
a

Qπ(st, at), where the deep neural
network could directly map high-dimensional continuous state st into optimal action at. (As illustrated
in Figure 4)

a∗t ← µ(st
∣∣∣θµ) (12)

Figure 4. Approximate solution for the non-myopic motion control.

As we can see in Figure 4, by approximating, the intractable planning problem (Equation (11))
is simplified into a deep neural network training problem, i.e., to figure out optimal parameters θµ

of µ(s
∣∣∣θµ) . In Section 3, we spend the whole section to describe the specific learning framework

and learning techniques.

3. Robust-DDPG for UAV Motion Control

This section introduces an actor-critic framework to training the agent described in Section 2,
and a novel DRL algorithm is proposed to address challenges belongs to traditional DDPG and used to
provide the UAV robust end-to-end motion control strategies.

3.1. Actor-Critic Framework

As shown in Section 2, the UAV motion control problem is modeled with a continuous state space
and a continuous action space, which turns Q-learning [15] and Deep Q-learning (DQN) [19] unavailable
because of their poor efficiencies in representing a continuous policy. Instead, an actor-critic approach
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is considered in this research. As depicted in Figure 5, the actor-critic approach expands DQN with
a deterministic parameterized actor function µ(s

∣∣∣θµ) , which defines the policy by deterministically
mapping a state to a specific action, i.e., a = µ(s

∣∣∣θµ) . By replacing policy gradient (PD) [15]
a ∼ π(s

∣∣∣θπ) with deterministic policy gradient (DPG) [28] a = µ(s
∣∣∣θµ) , the agent will learn an

optimal policy without any action sampling and action integrating in each iteration. It is a practical
technique to handle problems with continuous high-dimensional action spaces. Specifically, a deep
neural network with parameter θµ is used as an approximator (red box in actor module in Figure 5) for
the actor, inspired by DQN that exploits a parameterized deep neural network Q(s, a

∣∣∣θQ) (red box
in critic module in Figure 5) to approximate Q-function in Equation (10). To disrupt the correlation
between samples and maintain stable learning, experience replay strategy (blue modules in Figure 5)
and two fixed target networks, µ′(s

∣∣∣θµ′) and Q′(s, a
∣∣∣θQ′) (white boxes in actor and critic modules in

Figure 5) are created to provide target signals for critic updating.

Figure 5. Actor-critic based motion control framework.

The representative algorithm with this actor-critic framework is deep deterministic policy gradient
(DDPG) [29]. With this framework, the agent can learn by interacting with the environment repeatedly
until a robust policy network µ(s

∣∣∣θµ) is obtained. At each time step t, the agent receives observation
st and selects an action by at = µ(st|θµ) + Nt, where Nt is the exploration noise. Then, the action
at is applied to control the UAV to fly and a reward rt returns and a new state st+1 is observed.
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The transition (st, at, rt, st+1) is then stored in experience pool. Afterwards, a mini-batch of N transitions
(si, ai, ri, si+1)N is sampled from the pool to calculate two gradients:

∇θQL = −
1
N

N∑
i=1

(
yi −Q

(
si, ai|θ

Q
))
∇θQ Q

(
s, a|θQ

)
|s=si,a=ai (13)

∇θµ J ≈
1
N

N∑
i=1

∇aQ
(
s, a|θQ

)
|s=si,a=µ(si)

∇θµµ(s|θµ)|s=si (14)

where yi = ri + γ Q′
(
si+1,µ′

(
si+1|θµ

′
)
|θQ′

)
is the target signal of the critic. The two gradients are then

used to update Q network parameter θQ and policy network parameter θµ, respectively. At last, the
two target network parameters θQ′ and θµ

′

are updated by soft or hard update strategies.

3.2. Robust Learning Techniques

Within the actor-critic framework, DDPG could handle problems with both high-dimensional
continuous state space and high-dimensional continuous action space. However, DDPG often acts
precariously since it is brittle with respect to hyper-parameters and environments, and any small
perturbation may make it breaking. It is risky to directly apply such an unstable model as the
motion controller of the UAV. In this work, we propose an improved approach, Robust-DDPG,
to address issues of DDPG by introducing a delayed-learning trick, an adversarial-attack trick, and a
combined-exploration trick.

3.2.1. Delayed Learning Trick

As we are aware, the original DDPG adopts a direct updating scheme in the learning process, in
which both the critic and actor parameters are updated at each time step. Theoretically, direct update
produces more training steps and could accelerate the convergence, but it often leads to unstable agents
and policy jittering occurs occasionally, while exploiting it in practical applications. Scott et al. [41]
have blamed the failures on accumulating errors of the estimated Q-function and proposed a Twin
Delayed DDPG (TD3) approach to address it. To the best of our knowledge, the underlying reason is
that the traditional training method of DDPG changes the strategic direction of the policy too frequently,
which in return confuses the agent in policy learning. Here, let’s take the UAV motion control as
an example to illustrate this intuition. For a given state, there lie two policies for UAV to choose:
A sound policy with low speed and small turn that maintain the UAV get as few collision penalties as
possible and a radical policy with high speed and big turn that let the UAV finish the task as soon
as possible. Both policies may benefit the UAV with high rewards. In other words, with a changed
strategic direction, the learned critic may provide similar evaluations for two completely different
policies, and if the changing happens frequently, the actor will get lost in the learning.

To address this drawback, a delayed learning trick is designed here. Differ from the policy delay
in TD3, our trick delays the actor and critic network learning operations to the end of each episode.
This way ensures the actor and the critic to obey the same principle in an ongoing episode and after
each episode finishes, intensive learning begins. Since it avoids the repeatedly changing of strategic
direction, this trick could stabilize the training to a certain extent. In addition, a fixed interval is set
for the soft updates of the target networks. A quick procedure of delayed leaning trick for DDPG is
depicted in Algorithm 1.
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Algorithm 1: Delayed learning trick (with DDPG)

1: for episode = 1, M do
2: reset environment and receive initial observation state s1

3: while not collide and not target and t < T do
4: select action at according to policy and exploration
5: execute action at and observe new state st+1 and reward rt

6: store transition (st, at, rt, st+1) in experience pool
7: end while
8: for l = 1, t do //Delayed Learning
9: sample a random mini-batch of N transitions (si, ai, ri, si+1)i=1,N
10: update critic network weights using gradient in Equation (12)
11: update actor network weights using gradient in Equation (13)
12: if target update interval reaches do
13: soft update target network weights of critic and actor
14: end if
15: end for
16: end for

3.2.2. Adversarial Attack Trick

Most DRL algorithms are trained with ideal virtual environments, but there are ubiquitous noises
in realistic applications. It has been shown that the ideally trained agent can be easily fooled into
wrong policies by perturbing the input with adversarial noises [42]. For some safety critical domains,
i.e., UAVs and robotics, robustness assumes much greater importance that a tiny adversarial noise may
lead to undesirable and hazardous results.

To train a robust agent that enables successful adaptions of the real-world variations, an adversarial
attack trick is introduced into the learning process of the DDPG. An adversarial attack is defined as
any possible perturbation that could cause a trained agent to fail [43]. More specifically, an attack
mechanism is designed to generate random noise and add it to current observations of the state with
the hope that these noise samples will fool the agent to take bad actions. Algorithm 2 outlines the
adversarial attack trick for DDPG, where the current state s, the trained critic target Q′

(
s, a

∣∣∣θQ′
)
, the

trained actor µ(s|θµ ) constitute the inputs and the corrupted state snoise forms the output. The main
idea behind the attack is to search repeatedly nearby the current state s until the state that makes the
agent select the worst action snoise is finally found. An adversarial deep Na can be assigned. All the
noises are sampled from a Gaussian distribution with a standard deviation σs in the attack. Algorithm
2 outlines the specific procedure of adversarial attack trick.

Algorithm 2: Adversarial attack trick (with DDPG)

1: StateAttack
(
Q′

(
s, a

∣∣∣θQ′
)
,µ(s|θµ ), s

)
2: a∗ = µ(s|θµ ), Q∗ = Q′

(
s, a∗

∣∣∣θQ′
)

3: for i = 1, Na do
4: snoise = s + Gaussian

(
0, σ2

s

)
5: anoise = µ(snoise|θµ), Qnoise = Q′

(
s, anoise

∣∣∣θQ′
)

6: if Qnoise < Q∗ then
7: Q∗ = Qnoise, s = snoise
8: end if
9: end for
10: return snoise

By modeling the uncertainties of the real world, an adversarial attack could improve the robustness
of DDPG when it is utilized to construct the motion controller of the UAV.
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3.2.3. Mixed Exploration Trick

A major challenge of learning in continuous action spaces is exploration. DDPG constructs an
exploration action at by adding noise Nt sampled from an Ornstein-Uhlenbeck (OU) process to online
policy µ(st|θµ). That is:

at = clip
(
µ(st

∣∣∣θµ) + Nt, alow, ahigh
)
, Nt ∼ OU(u,ϑ, σ) (15)

where clip(·) is a clipping function that limits at in
[
alow, ahigh

]
. This scheme can produce temporally

correlated exploration and is efficient for continuous physical control problems theoretically [29].
However, the actual effect varies depending on the selected parameters (u,ϑ, σ) in practical applications.
For example, at the start of training, we usually need differentiated action samples to ensure efficient
learning, which means a bigger σ is required so that noises with enough deviations can be yielded.
But the reality is, a bigger σ produces a large proportion of actions stay at the margin of alow or
ahigh by clipping. It is these bad samples that have drag the DDPG down in the learning efficiency
and exploiting stability. To cope with this drawback, we adopt a mixed exploration strategy in this
paper. Specifically, a dynamic ε-greedy is used to provide a rough exploration at the start of training
and an OU is adopted to conduct a fine exploration in the following training stages. ε-greedy’s direct
sampling from a Uniform distribution maintains sufficient sample diversity and facilitates a fast
convergence. The main idea of the mixed exploration trick is described in Algorithm 3.

Algorithm 3: Mixed exploration trick (with DDPG)

1: ActionExplore(µ(s|θµ ), st, εt)

2: if rand < εt do
3: at = Uni f orm

(
alow, ahigh

)
4: else do
5: at = µ(st|θµ) + OU(u,ϑ, σ)
6: at = clip

(
at, alow, ahigh

)
7: end if
8: return at

3.2.4. Overall Robust-DDPG Algorithm

Ultimately, we present the robust deep deterministic policy gradient algorithm (Robust-DDPG)
by introducing the delayed learning trick, the adversarial attack trick and the mixed exploration trick
described in Sections 3.2.1–3.2.3 into DDPG. Robust-DDPG is summarized in Algorithm 4.
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Algorithm 4: Robust-DDPG

1: randomly initialize critic network Q
(
s, a

∣∣∣θQ
)

and actor µ(s|θµ ) with weights θQ and θµ

2: initialize target network Q′
(
s, a

∣∣∣θQ′
)

and µ′
(
s
∣∣∣θµ′ ) with weights θQ′

← θQ, θµ
′

← θµ

3: initialize hyper-parameters: attack point A, experience pool D, batch size N, target update interval K
4: for e = 1, E do
5: reset environment and receive initial observation state s1

6: while not collide and not target and t < T do
7: if e ≥ A do
8: start an adversarial attack by s′t ← StateAttack

(
Q′

(
s, a

∣∣∣θQ′
)
,µ(s|θµ ), st

)
9: select action through mixed exploration at ← ActionExplore

(
µ(s|θµ ), s′t , εt

)
10: else do
11: select action through mixed exploration at ← ActionExplore(µ(s|θµ ), st, εt)

12: end if
13: execute action at and observe new state st+1 and reward rt

14: store transition (st, at, rt, st+1) in D
15: εt ← max(εt −αε∇ε, εmin) , t← t + 1 ,
16: end while
17: for l = 1, t do //Delayed Learning
18: sample a random N transitions (si, ai, ri, si+1)i=1,N
19: calculate gradient by ∇θQ L← −N−1 ∑

i

(
yi −Q

(
si, ai|θQ

))
∇θQ Q

(
s, a|θQ

)
|s=si,a=ai

20: calculate gradient by ∇θµ J← N−1 ∑
i ∇aQ

(
s, a|θQ

)
|s=si,a=µ(si)∇θµµ(s|θ

µ)|s=si

21: update critic and actor weights by θQ
← θQ

− αQ
∇θQ L , θµ ← θµ − αµ∇θµ J

22: if l % K = 0 do
23: update target weights by θQ′

← τ θQ + (1− τ)θQ′ , θµ
′

← τθµ + (1− τ)θµ
′

24: end if
25: end for
26: end for

After thousands of training steps with Algorithm 4, the final policy network µ(s
∣∣∣θµ) will

be obtained and then it can continuously be utilized for autonomous motion control of UAV by
at = µ(st

∣∣∣θµ) . Due to the three newly introduced tricks, the Robust-DDPG-based controller will
theoretically provide better adaptabilities to complicated, dynamic, and uncertain environments,
compared with the original DDPG algorithm.

4. Results

This section presents experiments for evaluating the performance, the effectiveness and the
adaptability of the proposed robust motion controller of the UAV through training experiments,
exploiting experiments, and generalization experiments.

4.1. Experimental Platform and Settings

For the training and testing of the DRL-based motion controller, we construct a general simulation
platform, depicted in Figure 6. The platform simulates a world with a total size of 400 × 300 m2 (the
rectangular area) and a series of threats (the 24 white cylinders with different heights and sizes) are
randomly scattered in the world. A certain proportion of the threats are set to move with stochastic
velocities obey a uniform distribution U(1,6). A fixed-wing UAV (the blue entity) is required to fly
across the unknown world until a specified target (the green circle) is finally reached. The UAV is
supposed to fly at an altitude of 100 m and be equipped with a sensor that is capable of detecting
an area of 40 m ahead (Ds = 40) and ±45 degrees from left to right (the blue sector in front of the
UAV). Whenever an object is detected, the corresponding blue beams will be set to red so that the
user can intuitively see the interaction between the UAV and the environment. The mobility of the
UAV is limited by a maximum velocity vu,max = 45 m/s and a maximum roll φu,max = π/2. The motion
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uncertainty of the UAV is considered by defining disturbances σ .
x = σ .

y = 10 and σ .
ψ
= 5

◦

. The reward
contribution rates are instantiated as µ1 = 0.3, µ2 = 0.4 and µ3 = µ4 = 0.15.

Figure 6. The experimental platform.

As described in Section 3.1, two neural networks constitute the core of the controller, in which
the critic is constructed by a 40 × 100 × 100 × 1 fully connected neural network and the actor owns a
structure of 38 × 100 × 100 × 2. The observed states are normalized as a 38-dimensional input to the
actor and the two-dimensional output actions are used to control the UAV’s motion. Adam optimizer
is employed to learn network parameters with the same learning rate of αQ = αµ = 10−4 for the actor
and critic. Other hyper-parameters are set with discount factor γ = 0.9, batch size N = 256, experience
pool D = 10, 000, target update interval K = 200, and attack point A = 4000. In addition, the soft
update tuning factor is τ = 0.01, the adversarial deep is Na = 5 and the standard deviation is σs = 0.5.
A descending ε-greedy of εt = max(εt − αε∇ε, εmin) mixed with an OU(u,ϑ, σ) distribution is used
to explore the action spaces, where ε0 = 0.5, αε = 0.0001 and ∇ε = 0.4 are set to provide a proper
descending of ε and εmin = 0.0001 sets the lower bound of ε. u = 0,ϑ = 0.15, and σ = 0.4 are selected
to generate temporally correlated explorations. Besides, the maximum episode length T is set to 1000.

4.2. Experiment I: Performance of Robust-DDPG

Before its exploitation, the DRL-based controller has to be trained first. To demonstrate the
performance of the proposed Robust-DDPG, reasonable comparative experiments are necessary. To be
specific, we resort to another two state-of-the-art DRLs, DQN, and DDPG, as baselines and re-implement
them with almost the same hyper-parameter settings to Robust-DDPG. In DQN, we assume the UAV
flies at a constant velocity of 20 m/s and simplify the control commands to aφ,t ∈ {−1, 0, 1} only.
All three agents are trained with the same dynamic uncertain environment, depicted in Figure 5.
The experiments repeat 7000 episodes with 5000 episodes for learning and 2000 episodes for exploiting.
In each episode, the UAV, target, and threats are randomly re-deployed throughout the world.

To measure the performance, we define some quantitative evaluation indicators: Hit rate, crash
rate, lost rate, and average reward. For each agent, the hit rate, crash rate, and lost rate can be obtained
by counting the percentage of successfully hitting the target over the latest 500 episodes, the percentage
of crashing with threats over the last 500 episodes, and the percentage of trapped until that episode
ends over the last 500 episodes, respectively. Average reward is defined as the mean value of the
rewards per episode. Due to the severe fluctuation of average reward, we further average it every 500
episodes. The final learning results are illustrated in Figure 7, including convergence curves of the hit
rate (Figure 7a) and the convergence curves of the average reward (Figure 7b).
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Figure 7. Convergence curves of Deep Q Network (DQN), Deep Deterministic Policy Gradient (DDPG),
and Robust Deep Deterministic Policy Gradient (Robust-DDPG). (a) Hit rate trends with respect to
training episodes; (b) Average reward trends with respect to training episodes.

From Figure 7, we can see: (1) Robust-DDPG uses about 2500 episodes to converge to a hit rate of
about 92.6% and an average reward of about 1.8, while DDPG and DQN’s records are (episode, hit rate,
average reward) = (4000, 88.7%, 1.4), and (5000, 82.4%, 1.0), respectively. In other words, Robust-DDPG
achieves a faster convergence, a higher hit rate and a larger average reward comparing with the other
two algorithms. This is because the delayed learning and mixed exploration techniques provide
Robust-DDPG more efficient data utilization and more stable policy update. (2) In the exploiting stage
(right part of the dotted line in Figure 7a), the added motion disturbances cause significant decreases
of the hit rates of DQN and DDPG, but not for Robust-DDPG. This good adaptability to uncertain
environments comes from the adversarial attack technique used in Robust-DDPG. To make a more
specific verification, we further count all the three indicators of hit rates, crash rates and lost rates of
the different agents in different stages. All the results are arranged in Table 1.

Table 1. The overall results of algorithms.

Learning Stage Exploiting Stage

Hit Rate Crash Rate Lost Rate Hit Rate Crash Rate Lost Rate

DQN 82.4% 15.1% 2.5% 70.2% 22.1% 7.7%
DDPG 88.7% 9.8% 1.5% 78.9% 17.9% 3.2%

Robust-DDPG 92.6% 6.8% 0.6% 91.0% 7.4% 1.6%

Obviously, Robust-DDPG achieves the best performance in all three algorithms. From the
longitudinal point of view, Robust-DDPG brings (10.2%, 3.9%), (20.8%, 12.1%) increases of hit rates,
brings (8.3%, 3.0%), (14.7%, 10.5%) decreases of crash rates, brings (1.9%, 0.9%), (6.1%, 1.6%) decreases
of lost rates in learning and exploiting stages comparing to (DQN, DDPG), which means Robust-DDPG
is more efficient than DQN and DDPG. From lateral direction, Robust-DDPG only brings 1.6% decrease
of hit rate, while DQN and DDPG bring 12.2%, 9.8% decreases of hit rates, only brings 0.6% increase of
crash rate, while DQN and DDPG bring 7.0%, 8.1% increases of crash rates, only brings 1% increase of
lost rate, while DQN and DDPG bring 5.2%, 1.7% increases of lost rates in exploiting stage comparing
to learning stage, which means Robust-DDPG is more robust than DQN and DDPG.

4.3. Experiment II: Effectiveness of Robust-DDPG

While learning is done, the controller is constructed. In this section, we conduct some UAV
exploiting experiments and evaluate the effectiveness of the Robust-DDPG-based controller. Specifically,
we let the three controllers constructed by DQN, DDPG, and Robust-DDPG drive a UAV to start
from the same initial location (−10, 180), cross the same dynamic environment, and reach the target
point (−120, −120). The exploiting environment here is more complicated than the one for learning as
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Figure 6. We take three screenshots for each controller at T = 5 s, T = 10 s and the terminal time. All the
screenshots can be seen in Figure 8.

Figure 8. UAV flying trajectories drove by three different controllers. DQN flies 22.2 s and 463.2 m,
DDPG flies 15.1 s and 651.1 m, Robust-DDPG flies 11.4 s and 443.5 m to reach the target.

As we can see in Figure 8, the three controllers fly out completely different trajectories for the
same task. DQN flies at a constant speed (20 m/s) and selects a relatively safe path to bypassing the
moving threats. At time 22.2 s, it successfully reaches the target and the UAV flies 463.2 m in total.
For DDPG, it chooses to avoid intensive threat areas and flies around to maintain safety, which leads
to a longer path of 651.1 m. However, by dynamically adjusting the flying speed, it only takes 15.1 s
to complete the journey. To clearly show the changing in speed, we use arrows of different sizes to
indicate different speeds. Zoom in the pictures in Figure 8 and you will find the difference of the
trajectories. Among the three controllers, Robust-DDPG flies the most efficient path. Through fine
adjustments in the speed and roll, Robust-DDPG can safely avoid threats and fly quickly to the target.
In fact, it only takes 11.4 s and flies 443.5 m to finally finish the task. Obviously, we can conclude that
Robust-DDPG provides the most efficient controller, since it enables the UAV to complete the mission
with minimum time and path costs. The exploiting effectiveness is intuitively shown in Table 2.

Table 2. The exploiting effectiveness.

Agent Flight Time Path Length

DQN 22.2 s 463.2 m
DDPG 15.1 s 651.1 m

Robust-DDPG 11.4 s 443.5 m
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4.4. Experiment III: Adaptability of Robust-DDPG

To further validate the Robust-DDPG can be generalized into more complex environments,
we conduct a series of other exploiting experiments in this section. The experiments try to
perform a comprehensive evaluation of Robust-DDPG’s adaptability to complicated, dynamic,
and uncertain environments.

(a) Adaptability to complicated environments: we characterize environmental complexity by
the density of threats (Dens). We build a series of environments by increasing the density of threats
(Figure 9 illustrates three examples with threat density of 0.1, 0.3 and 0.5) and exploit the three learned
agents to drive the UAV to fly in these environments. Each experiment is set to repeat 1000 episodes
and each episode randomly re-deploys the UAV and target. The hit rate of the 1000 episodes will be
counted after the end of each experiment. Figure 10 depicts the trends of hit rates under different threat
densities of the three agents. Obviously, the increasing threat density has caused declines of the hit
rates of all the three agents, but Robust-DDPG has presented a slower and smaller decline comparing
to DQN and DDPG. In fact, Robust-DDPG has stayed about a hit rate of 61.0% even in a highly complex
environment (dens = 0.5), while DQN and DDPG have dropped down to 22.9%, and 30.8%, respectively.
In other words, Robust-DDPG shows greatest adaptability to complicated environments.

Figure 9. Environments with different threat densities.

Figure 10. Trends of hit rates under different threat densities of the three agents.

(b) Adaptability to dynamic environments: We use the proportion of moving threats (Pro) among
all threats to characterize the dynamics of the environment. Pro = 0 means all the threats are stationary,
while Pro = 1 means all of them are movable. The speeds of the moving threats are randomly sampled
from a uniform distribution U(5, 10). In the experiments, we gradually increase Pro from 0 to 1
and examine the hit rate trend of the three agents. As illustrated in Figure 11, Robust-DDPG provides
better adaptability to dynamic environments. As the proportion of moving threats increases from 0 to
1, Robust-DDPG still reaches a hit rate of nearly 66.0% after a slow decline, while DQN and DDPG
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dropped rapidly from 88.7% and 90.1% to 28.4% and 41.7%. Robust-DDPG can provide a more stable
policy for the UAV control, due to proposed three tricks in this paper.

Figure 11. Trends of hit rates under different moving threat proportions of the three agents.

(c) Adaptability to uncertain environments: We increase the uncertainty of the environments by
adding noises to the motion of UAV and further explore the Robust-DDPG’s adaptability to these
environments. Noise intensity can be represented by disturbances σ .

x and σ .
y in Equation (1). So we

conduct a series of comparative experiments by gradually increasing the values of σ .
x and σ .

y, and then
evaluate the impact of noise with different intensity on the hit rate. The trends of hit rates under
different noise intensities of the three agents are illustrated in Figure 12. As we can see, Robust-DDPG
performs great adaptability to uncertain environments, because as σ .

x and σ .
y increase from 0 to 30,

the hit rate only decreases from 93.7% to 74.1%. This is mainly due to the adversarial attacks during
the training process. In contrast, DQN and DDPG present worse robustness to uncertain environments
that when the noise intensities increase, larger decreases of the hit rates occur.

Figure 12. Trends of hit rates under different noise intensities of the three agents.

5. Discussion

For a comprehensive evaluation of the proposed algorithm, Robust-DDPG, experiments are
conducted to verify its training performance, exploiting effectiveness, and environmental adaptability,
by comparing it to DQN and DDPG algorithms. Most of the hyper-parameters are tuned by extensive
repeated trials and some of them are selected based on domain experience. With respect to the same
parameters, three different models are trained and tested in a series of repetitive experiments.
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For the training performance evaluation, Robust-DDPG converges to a hit rate of approximate
92.6% in about 2500 episodes, while DQN uses about 5000 episodes to converge to a hit rate of 82.4%
and DDPG uses about 4000 episodes to converge to a hit rate of 88.7%. In other words, Robust-DDPG
converges to a higher final hit rate with less training time. The great improvements in convergence
speed and convergence performance come from the joint work of the mixed exploration trick and the
delayed learning trick described in Sections 3.2.1 and 3.2.3. The former ensures sample diversity in the
early learning stage and provide Robust-DDPG more efficient data utilization. The latter keeps the
learning in a stable strategic direction and improves the opportunity of learning a better policy.

For the exploiting effectiveness evaluation, the UAV is driven by three controllers to fly from
the same departure, across the same dynamic environment, and to the same destination, respectively.
The result is Robust-DDPG-based controller flies the most efficient path, that is, the shortest flight time
of 11.4 s and the shortest path length of 443.5 m. Comparing the tracks of the three UAVs (in Figure 8),
we can see that the control commands provided by Robust-DDPG-based controller perform a better
fit between the speed and roll channel. Neither is it as radical as DDPG that flies with high speed
and large roll, nor is it as cautious as DQN, which flies with constant low speed and small roll, it just
fine-tunes both the speed and roll dynamically according to the sensed environment. This outstanding
effectiveness of Robust-DDPG derives from the delayed learning trick. As we described in Section 3.2.1,
delayed learning trick ensures the actor and the critic to obey the same principle in an ongoing learning
episode and avoids frequent swinging of strategic direction between radical policy and cautious policy.
It is a significant trick for learning a reliable policy.

For the environmental adaptability evaluation, there are three sets of experiments. Firstly,
we studied the trends of hit rates under different threat densities, and the results clearly show
that Robust-DDPG owns better adaptability to complicated environments than DQN and DDPG.
As Figure 10 illustrates the smallest decent slop of hit rate for Robust-DDPG. Similarly, the
trends of hit rates under different moving threat proportions and the trends of hit rates under
different noise intensities are explored, and the results in Figures 11 and 12 leads to the same
conclusion, and Robust-DDPG owns better adaptability to dynamic and uncertain environments than
DQN and DDPG. Better adaptability means Robust-DDPG can be generalized into more complex
environments. This feature is contributed by all the three tricks proposed in this paper, especially the
adversarial attack trick. Introducing some adversarial attacks into the training process, the agent learns
some additional skills that could be used to handle newly emerged circumstances.

In order to eliminate the impacts of accidental factors, we further carry out some statistical
significance tests based on the original data used in Figures 10–12. As the data hardly satisfies
normality and variance homogeneity, Friedman test is finally used. For simplification, let A, B and C
denotes Robust-DDPG, DDPG, and DQN, respectively. To highlight the advantages of Robust-DDPG,
we conduct Friedman(A,B), Friedman(A,C), and Friedman(A,B,C) to assess whether the differences
between A and B; A and C; A,B and C are really significant. The basic Hypothesis is the difference is
not significant. From the test results shown in Table 3, we can see that the condition p < 0.05 occurs
in all test, which means the Hypothesis has to be rejected. In other words, the differences between
Robust-DDPG and DDPG; Robust-DDPG and DQN; Robust-DDPG, DDPG and DQN are all significant.
Robust-DDPG does have better adaptability than DDPG and DQN.

Table 3. The Friedman test results.

P(A,B) P(A,C) P(A,B,C)

Data Set 1 0.0016 0.0016 4.5400e-05
Data Set 2 9.1112e-04 9.1112e-04 1.6702e-05
Data Set 3 0.0082 0.0082 9.1188e-04

From all the experimental results, we conclude that Robust-DDPG performs great advantages in t
learning performance, exploiting effectiveness, and environmental adaptability. It is a powerful weapon
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to provide the UAV great capabilities of autonomous flying in complex environments. However, it is
worth mentioning that despite of our efforts in the robustness and adaptation, there are still challenges,
while trying to transfer this technique to a real UAV application. In the context of real control, the
uncertainty is everywhere and exists all the time, the positioning error, the sensing error, the actuator
error or even the crosswind, etc. No matter how well the controller is trained in virtual environment,
the reality gap does exist. It is still difficult to figure out in what range of uncertainty the controller
can operate safely before adaptation is necessary. It needs some trial and errors with a real UAV.
We can characterize as much uncertainty as possible by maintaining insight into flight control system,
understand the techniques, and model them in the virtual environment. By constantly reducing the
reality gap, we will finally apply this technique in a real UAV platform.

6. Conclusions

This paper presents a learning-based controller to provide the UAV robust motion control in
dynamic uncertain environments. The controller is constructed by an actor-critic DRL framework
and can be used to perform dual-channel continuous controls of roll and speed. To train a stable
controller, an efficient DRL algorithm, Robust-DDPG, is proposed by introducing three critical
learning tricks into the original DDPG. A delayed-learning trick is designed to learn a stable
policy to adapt to dynamic environments, an adversarial attack trick is adopted to provide enough
adaptability to uncertain environments, and a mixed exploration trick is introduced to maintain a
faster convergence of the learning. A series of experiments are conducted to evaluate the performance,
the effectiveness and the adaptability of the Robust-DDPG from different perspectives. The results
show that Robust-DDPG outperforms the state-of-the-art algorithms of DQN and DDPG both in
the convergence speed and convergence value. In the exploiting experiments, we conclude that
Robust-DDPG can provide a better flying path for the UAV, and provide better adaptability to
complicated, dynamic and uncertain environments.

For further research, we plan to extend the UAV motion control problem to a 3D space, which will
add a pitch control channel for the UAV. In addition, we intend to construct an intelligent controller for
the UAV in an adversarial environment, where the passive threat will be replaced by some aggressive
enemies and the UAV will be attacked by these enemies during the whole mission.
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