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Abstract: Hyperspectral data has been widely used in species discrimination of plants with rich
spectral information in hundreds of spectral bands, while the availability of hyperspectral data has
hindered its applications in many specific cases. The successful operation of the Chinese satellite,
Gaofen-5 (GF-5), provides potentially promising new hyperspectral dataset with 330 spectral bands
in visible and near infrared range. Therefore, there is much demand for assessing the effectiveness
and superiority of GF-5 hyperspectral data in plants species mapping, particularly mangrove species
mapping, to better support the efficient mangrove management. In this study, mangrove forest in
Mai Po Nature Reserve (MPNR), Hong Kong was selected as the study area. Four dominant native
mangrove species were investigated in this study according to the field surveys. Two machine learning
methods, Random Forests and Support Vector Machines, were employed to classify mangrove species
with Landsat 8, Simulated Hyperion and GF-5 data sets. The results showed that 97 more bands
of GF-5 over Hyperion brought a higher over accuracy of 87.12%, in comparison with 86.82% from
Hyperion and 73.89% from Landsat 8. The higher spectral resolution of 5 nm in GF-5 was identified
as making the major contribution, especially for the mapping of Aegiceras corniculatum. Therefore,
GF-5 is likely to improve the classification accuracy of mangrove species mapping via enhancing
spectral resolution and thus has promising potential to improve mangrove monitoring at species
level to support mangrove management.

Keywords: hyperspectral remote sensing; GF-5; mangrove; Mai Po Nature Reserve; random forests

1. Introduction

Mangrove forests are tropical and subtropical ecosystems, growing in inter-tidal areas, being
the interface of land and oceans [1]. They can provide coastal protection, economic benefit from
aquaculture, and significant eco-services, such as habitat provision and carbon sequestration [2,3].
However, mangrove forests have been suffering great habitat loss due to human activities and global
climate change [4], which urge us to monitor mangrove at various scales. Monitoring mangrove
at species level can provide essential information on biodiversity, which may support mangrove
management and protection in terms of biodiversity conservation, ecological succession analysis,
biomass and carbon estimation etc.
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Remote sensing has been widely used as a cost-effective way to monitor mangrove forests,
especially for large-scale observation, with focus on area quantification, structure complexity analysis,
and above-ground biomass estimation [5-8]. Nevertheless, mangrove species” discrimination with
remote sensing is still a challenge [9]. For instance, spectral similarity between different mangrove
species makes discrimination difficult, and high plant density with overlap intensifies the difficulty [10].

In general, the remote sensing data including multiple spectral, hyperspectral and synthetic
aperture radar (SAR) are adapted for species discrimination. SAR data provides surface roughness,
which has been successfully used for two mangrove species separation [11]. Nevertheless, SAR data is
recommended to be integrated with optical data for species discrimination [12].

The increase in spatial resolution provides more spatial information, making mangrove species
discrimination with multi spectral data possible, such as IKONOS [13], SPOT [14], QuickBird [15],
WorldView [6], Pleiades-1 [16], GeoEye [17], etc. Texture information is used to capture the spatial
features to improve mangrove species discrimination [18]. Besides, some approaches, like fuzzy
classification [15] and object-based classification [19] incorporate more spatial information to determine
the classes via taking into account the affinity of a pixel and its neighbors. However, for high spatial
resolution remote sensing data, their spectral resolution is generally lower due to energy conservation.
As a result, other information, like dynamic features from time-series data, were incorporated to
make up the lack of spectral information [17]. However, it makes more demands for data in terms of
collection and processing.

Hyperspectral data with more accurate and affluent spectral information can output better results
than multispectral data in term of species mapping [20]. The major sources of hyperspectral data for
mangrove species discrimination are portal, airborne, and space-borne spectral radiometer. For example,
in-situ measurement from portal spectral radiometer were usually conducted for the assessment of
spectral differences among mangrove species and for the validation of spectral information obtained via
space-borne spectral radiometer [21-25], which cannot be applied over large scale. Airborne platform
can overcome the limitation of large coverage to some extent when compared to in-situ measurement,
such as CASI [26] and AVIRIS [27], but the shortage of battery endurance makes it difficult to monitor
mangrove over larger areas. Moreover, the requirement of professional operators and application
for airspace is another problem, especially for the administration boundary, like the Mai Po Nature
Reserve (MPNR) over which the permission of airspace from mainland China and Hong Kong are
necessary. The space-borne platform can get rid of the aforementioned problems, but it causes a
problem regarding data sources. The existing works on mangrove species mapping using space-borne
data mainly focused on Hyperion. It was firstly applied to seven mangrove species mapping in the
Mai Po [28]. To offset the spatial resolution of Hyperion, high spatial resolution images were assisted
in mangrove species mapping in the same area [14]. Although high spectral resolution can sufficiently
improve the ability of object mapping, for mangrove forests with extra-species spectral similarity and
high inter-species spectral variation, the confusion still exists [29].

Gaofen-5 (GF-5) is a satellite aiming at comprehensive observation with six types of payloads,
including visible and short-wave infra hyperspectral camera, spectral imager, greenhouse gas detector,
atmospheric environment infrared detector, differential absorption spectrometer, and multi-angle
polarization detector [30,31]. The visible and short-wave infra hyperspectral camera from GF-5 cover
the spectral range from 400 to 2500 nm, which means that it will be an important data source of
hyperspectral images following Hyperion. More importantly, the higher spectral resolution of 5 nm in
visible and short-wave infra makes further improvement in accurate mapping possible. Therefore,
in this study, we aim to assess the efficiency of GF-5 hyperspectral data on mangrove mapping at
species level through the comparison of Landsat 8 and Hyperion, and to answer two questions: 1)
how does the GF-5 hyperspectral data apply to mangrove species discrimination; and 2) whether
the increase in spectral resolution can improve the capacity of mangrove discrimination. We expect
that this information will support mangrove management and biodiversity protection via continuous
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monitoring. As result, we want to provide a referred example for the application of GF-5 in forestry
and ecosystems.

2. Materials and Methods

2.1. Study Site

The Mai Po Nature Reserve (MPNR, 113°59'E-114°03"E, 22°28'N-22°32"N) is located in the mouth
of Shenzhen River, the northwest of Hong Kong, opposite to the Futian Nature Reserve, Shenzhen
(Figure 1a). The reserve comprises of Geiwai, freshwater ponds, inter-tidal mudflats, mangroves, reed
beds and fishponds, providing habitats for various wildlife (World Wild Fund for Nature - Hong Kong,
WWF-HK 2016). Being a key station of the East Asian-Australasian Flyway (EAAF), it services million
migratory birds every year. Due to the special location and significant eco-services provision, the
reserve has been listed as restricted area via Wild Animals Protection Ordinance in 1975 and designated
as a Site of Special Scientific Importance (SSSI) in 1976. In 1983, the nature reserve was developed and
run by WWEF-HK; it was further designated as a Ramsar Site in 1995.
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Figure 1. The geographical location of the Mai Po Nature Reserve (MPNR, with red polygon) and
Gaofen-5 instantaneous field of view (IFOV, in black rectangle) covering part of the Reserve (a), a scene
of Gaofen-5 hyperspectral image was cropped to cover the Reserve (Red=698.166 nm, Green=544.196
nm, Blue=437.193 nm) and the mangrove zone was outlined with a red polygon (b).

The mangrove forest in the Mai Po is the largest one in Hong Kong with an area of around
319 ha [14], mainly occupying the core zone of the reserve. Six native and two exotic mangrove
species have been found in the reserve. Specifically, Kandelia obovate (KO), Avicennia marina (AM),
Aegiceras corniculatum (AC), and Acanthus ilicifolius (Al) are dominant, while Bruguiera gymnorrhiza and
Excoecaria agallocha are less seen. It is believed that two exotic species including Sonneratia caseolaris
and Sonneratia apetala are floating from the Futian Nature Reserve, and they are treated as invasive
species and annually removed by Agriculture, Fisheries and Conservation Department (AFCD) due to
potential threats to local species.
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2.2. Dataset and Preprocessing

2.2.1. Hyperspectral Data and Preprocessing

The hyperspectral data adopted in this study was acquired by Advanced Hyperspectral Imager
(AHSI) loaded by GEF-5 satellite at 1:40 pm on 5 October, 2018. It provides Visible/Near-infrared (VNIR)
and Shortwave infrared (SWIR) data with spectral range from 400-2500nm. Similar to Hyperion, the
spatial resolution of GF-5 hyperspectral data is 30 m and the spectral resolution in SWIR is 10 nm. Due
to the higher spectral resolution of 5 nm in VNIR, GF-5 hyperspectral data has double bands in VNIR
and provides 330 bands in total (Table 1).

Table 1. The characteristics of hyperspectral data from GF-5 satellite and Hyperion data.

Spectral Range Spectral Spatial

Data Band (nm) Resolution (nm) Resolution (m) Bands
GE-5 VNIR 390.324-1029.18 5 30 150
B SWIR 1004.77-2513.25 10 30 180
Hvperion VNIR 355.59-1057.68 10 30 70
P SWIR  851.9-2577.08 10 30 172

The data was delivered as a Level 1 product, which has been preprocessed with radiometric
calibration and noise removal by the China Centre for Resources Satellite Data and Application
(CRESDA), China (http://www.cresda.com/). The radiometric calibration was conducted with a linear
model with absolute coefficients calculated via laboratory experiments by CRESDA, China. After
removing the bands without calibration or those contaminated by strips (Table 2), we conducted
atmospheric correction using FLAASH module in ENVI 5.3.1 [28]. For the spectral overlap between
VNIR (1006.68-1028.98nm) and SWIR (1004..57-1029.85nm), we kept the overlapped data in VNIR
rather than SWIR to conserve accurate spectral information. Finally, we obtained 250 bands for GF-5
hyperspectral data (the details can be referred to the Appendix A).

Table 2. Excluded bands of hyperspectral data from GF-5 satellite (* the absorption was referred to [28]).

Data Quality Band N.O. Bands
No Calibration SWIR: 43-50, 96-112 25
Strip contamination VINIR: 1-3; 41
SWIR: 4042, 51-60, 95, 113-115, 119-121, 163-180
Absorption* VNIR: 128-132; SWIR: 15-19, 43-57, 96-115 45
Spectral Overlap in SWIR SWIR: 1-4 4

To save the costs on computation, a region covering the MPNR maximumly was cropped from the
Gaofen-5 hyperspectral image (Figure 1b), and fifteen ground control points were picked up from the
cropped image for geometric correction with a result of Root Mean Square (RMS) of 0.048068. Because
we focus on mangroves, the remaining objects like urban areas were firstly masked by manually
outlining the initial region containing mangrove forests. The mudflat and water body were then
removed from the initial region by thresholding Normalized Difference Vegetation Index (NDVI),
which is calculated as a ratio between a red band around 660 nm and a near infrared band around
860 nm and widely used for primary separation vegetation from non-vegetation or mangrove from
non-mangrove [32].

2.2.2. Field Survey and Sample Data

To investigate the real distribution of mangrove species in MPNR, a field survey was conducted
along the floating bridge in the Mai Po on November 10, 2015. Based on the field survey, samples
were manually identified with visual interpretation of a very high resolution WorldView-3 imagery
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with 1.6 m resolution in multispectral bands and 0.4 m resolution in the panchromatic band. Initially,
416 samples of six mangrove species containing the information on mangrove species and Global
Positioning System (GPS) location were obtained [18]. To reduce the effect of the difference of date
acquisition between hyperspectral data and samples on results, we identified the altered areas by
comparing two very high spatial resolution images in two periods and removed the samples located in
the changed areas. Finally, we added extra samples and obtained 293 samples of six classes (Table 3).
In particular, Al was further divided into two subclasses (Al; and Al,) according to whether leaves
had smooth or serrated edges, and KO was also refined with two subsets of KO; and KO, according
to the difference of tree height and leaf density [6,18,28], which may be related to the seaward or
landward location [33]. Sonneratia was not selected as samples because of difficult percept of small
patches from hyperspectral data after removal by AFCD. These samples were divided into training and
testing samples with proportion of 70% and 30% respectively using the strategy of stratified random
sampling. Based on the samples, the mean reflectance spectra of six mangrove species can be presented
in Figure 2.

Table 3. The description and sample number of six mangrove species collected in MPNR.

Species Species Code Description [6,33] Sample Number (pixel)
Kandelia obovat KOy locate at the landward side, tend to be high 87
findetia obovate KO, locate at the seaward side; tend to be low 26
Avicennia marina AM locates in the central part of the Mai Po 70

locates at the landward side; tend to be

ORI Al . 4
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Figure 2. The mean reflectance spectra of six mangrove species (the scale was set to be 10 for
demonstration).

2.3. Methods

We designed a comparison experiment to assess the performance of GF-5 hyperspectral data in
mangrove species mapping. Hyperion from EO-1 may be for benchmark since its global coverage
with high quality and free charge. However, the available Hyperion covering the Mai Po is in 2008
and no more Hyperion data is provided after EO-1 decommission in 2017. The date difference of
available Hyperion and Gaofen-5 hyperspectral data makes the comparison between them impossible.
To overcome the limitation of available hyperspectral data for comparison with GF-5 hyperspectral
data, we Simulated Hyperion (SH) data according to the spectral positions and bandwidth of Hyperion
satellite based on GF-5 hyperspectral data with a simulation model. Besides, we also added another
benchmark of Landsat 8 to be representative of multispectral data. Specifically, the Landsat 8 image
closed to the date when GF-5 hyperspectral data was acquired and without cloud coverage was selected
for comparison. The panchromatic band, cirrus band and thermal infrared bands were removed due to
irrelevance to vegetation. Detailed experiment design is listed in Table 4.
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Table 4. The band number and bandwidth of five different datasets for comparison.

Data Bandwidth (nm) Bands
Landsat 8! 430-450, 450-510, 530-590, 630-670, 850-880, 7
andsa 1570-1650, 2110-2290

Simulated Hyperion (SH) The value of 1 in ‘Note’ field (See Appendix A) 144

SH + extra bands in VNIR of GF-5 The value of 1 and 2 in “Note’ field (See 234
(SH-GF5VN) Appendix A)

SH + extra bands in SWIR of GF-5 The value of 1 and 3 in “Note’ field (See 160
(SH-GF55W) Appendix A)

GF5 403-929, 955-1029, 1038-1325, 1511-1788, 250

1974-1990, 2024-2361

! Landsat 8 was acquired on May 28, 2018.

2.3.1. Generation of Simulated Hyperion Data

EO-1 Hyperion data contains 242 bands, including VNIR of 70 bands and SWIR 172 bands, with
spectral resolution of 10 nm and spatial resolution of 30 m. With same range from 400 to 2500 nm, GF-5
hyperspectral data has more bands since the spectral resolution was improved from 10 nm to 5 nm in
VNIR. Regardless of the response difference for two spectra with an interval of less 5 nm, Hyperion
can be viewed as the subset of GF-5 hyperspectral data. Consequently, simulating Hyperion from
GF-5 can be regarded as the subset construction. Namely, the band of simulated Hyperion be with
wavelength of i can be described with the band from GF-5 hyperspectral data (b¢F°) with wavelength of
j if the difference between their wavelength is minimum and less than 5 nm, which can be formulated
in Equation (1).

biSH ~ 5P, min|j—i| where j # iand |j—i| <5 (1)
] j€F

where F is the set of wavelengths of the valid bands from GF-5 hyperspectral data.

2.3.2. Mangrove Species Classification with Machine Learning Methods

More spectral features provided by Hyperspectral data make better performance possible.
Meanwhile, they also promote a high requirement of classifiers due to high dimension [34,35]. Since
this study aims to assess the efficiency of spectra, common approaches of dimension reduction,
such as Principal Component Analysis (PCA) and Minimum Noise Fraction (MNF) will, because
of their spectral characteristics, not apply to our purposes, because the contribution of the original
spectral features cannot be tracked after applying the transformation from PCA or MNF. Therefore, the
approaches which can inherently handle high-dimension features will be considered.

Random Forests adopts the principle of ensemble learning to vote the results from multiple
weaker decision trees [36]. On the one hand, Random Forests randomly select a subset of features from
all the features to split tree nodes, so they can deal with high-dimension features as well as maintain
the robustness to noises. On the other hand, Random Forests randomly select a subset of samples
from all the training samples to construct individual decision tree. When constructing a decision tree,
around 63% of the samples are selected for training the tree while the rest (also named out-of-bag,
OOB) for calculating an OOB error; and m features are randomly picked up from p features (total
number of features). These m most distinguished features are selected for node splitting based on
the measurement of Gini coefficient [37]. This procedure iterates until it reaches one of the stopping
criteria, such as approaching maximum depth, minimum error threshold and maximum member of
decision trees. Therefore, the tree number and feature number m are important for Random Forests
construction. In principle, m was set to be /p [38].

Support Vector Machine (SVM) is another approach which is not sensitive to feature dimension and
well adapted to process hyperspectral data [39,40]. Based on structural risk minimization, SVM searches
a hyperplane which can maximally separate two parts by projecting the data into a high-dimension
linear space. For the case of nonlinearity, a kernel function is used to project the data into a higher
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dimensional space where the projected data become linearly distributed. Moreover, slack variable
and penalty factors are introduced to control the bias and make them approximately separated. For
the multiclass tasks of mapping multiple mangrove species, the “one-against-one” approach was
used to construct many binary SVMs for each possible pair of two classes for training, while a voting
strategy selected the class with maximum number of votes for classifying the new data. The details
can be referred to in [41]. Kernel function has significant influence on the performance of SVM. In
general, linear kernel and Radial Basis Function (RBF) kernel are widely used due to them having
fewer parameter settings. We chose RBF for this study in consideration that linear kernel is a special
case of RBF [42], for which the Gamma coefficient was set to be the reciprocal of dimension of input
feature (HARRIS 2019).

2.3.3. Accuracy Assessment

Confusion matrix is employed to analyze the details on the classification of different classes over
the samples, from which overall accuracy, Kappa coefficient, user accuracy and producer accuracy
are derived for accuracy assessment in different aspects. In this study, we also adopted the overall
accuracy and Kappa coefficient for accuracy assessment [43].

3. Results

3.1. Comparison of Simulated Hyprion and GF-5

To better simulate the Hyperion, we adopted the valid bands from the available data acquired in
2008 [28] and got 153 bands for Hyperion. Due to sensors differences, nine bands with wavelength near
1336.87nm, 1346.97nm, 1488.29nm, 1498.4nm, 2002.8nm, 2012.9nm, 2375.98nm, 2386.08nm, 2396.18 nm
are not available in GF-5 hyperspectral data. Therefore, 144 bands including 52 VNIR bands and 92
SWIR bands were simulated. Compared to simulated Hyperion, GF-5 hyperspectral data has nearly
three times valid bands (142) in VNIR, while has 108 valid bands in SWIR. The details of simulated
Hyperion can be seen in to the Appendix A.

3.2. Mangrove Species Mapping with Accuracy Assessment

According to the data availability of GF-5 hyperspectral data and simulated Hyperion, the bands
of experiment data including SH, SH-GF5VN, SH-GF55W, GF-5 are 144, 234, 160 and 250 individually.
Together with Landsat 8, these data are fed into both Random Forests and SVM for comparison. The
number of decision trees for random forests was set 100, and the penalty factor for SVM with RBF
kernel was set 100. To reduce the bias of sample division for training, we generated ten groups of
training and testing samples through random selection with proportion of 70% and 30% respectively
for ten times. As a result, we can obtain ten overall accuracies and mean overall accuracy for each
dataset. The results using SVM and Random Forests can be seen from Figure 3.

Compared to multispectral data of Landsat 8, hyperspectral data including GF-5 and simulated
Hyperion demonstrated significant advantage in mangrove species mapping with improvement in
mean overall accuracy by 13%-17% and mean Kappa coefficient by 0.16-0.24 using two classifiers.
Against simulated Hyperion, the increase in spectral resolution in VNIR (namely SH-GF5VN) or
appended data in SWIR (SH-GF55W) can make contribution to mangrove species mapping, showing
growth of mean overall accuracy by 0.19% and 0.07% with Random Forests, while 0.47% and 0.31% with
SVM. The mean Kappa coefficient of 0.835 over 0.834 (Random Forests) and 0.74 over 0.73 (SVM) for
SH-GF5VN and SH-GF5SW also shows that the improvement from the increase in spectral resolution
in VNIR is more significant than that from addictive bands in SWIR. Surprisingly, GF-5 hyperspectral,
namely simultaneous enhancement in VNIR and SWIR based on simulated Hyperion, boosts further
growth only with Random Forests, while it lowers the overall accuracy with SVM. The influence from
classifiers on mangrove species mapping with remote sensing data can also be revealed from the
comparison between Random Forests and SVM with same input data. In general, the overall accuracy
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resulted from Random Forests (Figure 3a) is higher than that resulted from SVM (Figure 3b) (73.89%
VS 61.19%, 86.82% VS 78.94%, 87.01% VS 79.25%, 86.89% VS 79.25%, 87.12% VS 78.94%). Furthermore,
we calculated the T-test between simulated Hyperion and GF-5 hyperspectral data, and the results
show that the growth raised from the increase of spectral resolution in VNIR is not significant (Table 5).
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Figure 3. The overall accuracy of mangrove species mapping using Random Forests (a) and Support
Vector Machine (SVM) (b) with different datasets and ten different groups of training and testing samples
(number 1-10) through stratified random sampling with proportion of 70% and 30% respectively; the
mean Overall Accuracy (OA) and mean Kappa coefficient were also shown in lines.

Table 5. The T-test of simulated Hyperion and GF-5.

P-Value (<0.05) SH, SH-GF5VN SH, SH-GF5SW  SH, GF-5

Random Forests 0.76283 0.91744 0.61711
SVM 0.37322 0.38491 0.99998

The average confusion matrixes for the classification with Landsat 8, SH, and SH-GF5VN were
calculated for insight into influence of spectral resolution increasement on mangrove species mapping
(Table 6). From the producer accuracy derived from Landsat 8, we can observe that KO is difficult to be
classify correctly with accuracy of 68.08%, and the confusion between AM and other species is serious
with user accuracy of 68.04%, especially with KO;. This situation will be improved with hyperspectral
data (simulated Hyperion and SH-GF5VN), showing growth of around 17% and 10% in producer
accuracy for KO; and user accuracy for AM. For the classification with simulated Hyperion and
SH-GF5VN, the major difference comes from AC mapping. With the help of high spectral resolution in
VNIR (SH-GF5VN), AC can be classified with higher accuracy of 84.00% against 78.00% from SH.

Visually, the misclassification and confusion can be also observed from the mapping (Figure 4). In
the south part of study area (area A in Figure 4a), the majority of KO; was misclassified into AM, which
is consistence with low producer accuracy of 68.08% in KOj. In the area B where narrow zonation of
AM was between Al; and KOy, the confusion happens when using Landsat 8 (low user accuracy of
68.04%); while for area C, Al; and AM are confused. For the distribution of mangrove species resulting
from simulated Hyperion and GF-5 hyperspectral data, they present a similar pattern with a minor
difference in area D and E, where a small amount of AM was misclassified into Al; and more AC were
correctly identified. Similarly, the results from SVM with datasets from Landsat 8 (Figure 4d), SH
(Figure 4e) to SH-GF5VN (Figure 4f) show the major changes in Al; and Al,. More specifically, the
classification of Al; and Al, were refined with fine particles when using hyperspectral data (SH and
SH-GF5VN). In contrast, fewer ACs were found from the mangrove species mapping using SVM, and
KO located at the seaward side cannot be identified unless SH and SH-GF5VN are used.
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Table 6. The mean confusion matrix
different datasets.

90f 16

of mangrove species mapping using Random Forests with

Data KO, KO, AM Al Al AC Total User Acc (%)
unclassified 0.5 0.3 0 0 0 0 0.3
KO, 59 0.2 0 0 0 0 6.1 96.72
KO, 0 17.7 4.7 0.8 1.6 0.1 24.9 71.08
AM 0 46 149 0.1 2.3 0 21.9 68.04
Landsat 8 Al 0.3 0.6 0 10 0 1 11.9 84.03
AL 0 2.6 14 0 10.1 0 14.1 71.63
AC 0 0 0 1 0 3.9 49 79.59
Total 6.7 26 21 11.9 14 5 84.6
Prod Acc (%) 88.06 68.08 70.95 84.03 72.14 78.00
unclassified 0 0.3 0 0 0 0 0.3
KO, 6.5 0.7 0 0 0 0 7.2 90.28
KO, 0.5 22.1 1.3 0 0.4 0 24.3 90.95
AM 0 29 18.3 0 22 0 23.4 78.21
SH Al, 0 0 0 11.6 0 1.1 12.7 91.34
Al 0 0 14 0 114 0 12.8 89.06
AC 0 0 0 0.4 0 3.9 43 90.70
Total 7 26 21 12 14 5 85
Prod Acc (%) 92.86 85.00 87.14 96.67 81.43 78.00
unclassified 0 0.3 0 0 0 0 0.3
KO, 6.3 0.6 0 0 0 0 6.9 91.30
KOy 0.7 222 1.3 0 0.4 0 24.6 90.24
AM 0 2.9 18 0 22 0 23.1 77.92
SH-GF5VN Al 0 0 0 11.6 0 0.7 12.3 94.31
Al 0 0 1.7 0 114 0.1 13.2 86.36
AC 0 0 0 0.4 0 42 4.6 91.30
Total 7 26 21 12 14 5 85
Prod Acc (%) 90.00 85.38 85.71 96.67 81.43 84.00
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Figure 4. Mangrove mapping using Random Forests with Landsat 8 (a), Simulated Hyperion (SH) (b)
and SH-GF5VN (c), and the results using SVM with Landsat 8 (d), SH (e) and SH-GF5VN (f) were
demonstrated for comparison.
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Finally, we calculated the areas for each mangrove species in the study area using Random Forests
with SH-GF5VN. The results show that the most dominant species is KO; with area of 103.95+3.56 ha
(46% of the mangrove forests in the study area), followed by AM, Al,, Al;, and KO,. The AC species
are rare with an area of 6.93+1.07 ha, occupying only 3% of the mangrove forests in the study area. The
details can be found in Table 7.

Table 7. The areas of six mangrove species in the Mai Po estimated using Random Forests
with SH-GF5VN.

Species KO¢ AM Al, Al KO, AC
Area (ha) 103.95+3.56 45.15+2.87 34.28+1.82 22.42+2.23 14.36+1.02  6.93+1.07
Percentage (%) 46 20 15 10 6 3

4. Discussion

4.1. Quality Assessment of Simulated Hyprion

Simulated Hyperion based on GF-5 hyperspectral data is formulated by subset extraction, which
hypothesizes that the deviation from two different sensors is minor for mangrove species mapping. To
assess the quality of simulated Hyperion, we collected the spectral characteristics of six mangrove
species based on shared samples which were picked up from the stable area without human interference
in simulated Hyperion and true Hyperion data in 2008. Consequently, the spectral characteristics from
two data sets should be similar with only a difference in growth, which can be viewed as intra-class
variation. The correlation analysis of two spectra of six mangrove species indicates that it is reasonable
to simulate Hyperion based on GF-5 hyperspectral data (Figure 5). Except for AC species, the Simulated
Hyperion has low correlation with true Hyperion, which is possibly because AC grows at the outmost
of mangrove forests where mixed pixels with mudflats are easily encountered. The reflectance of the
rest simulated from GF-5 data is highly correlated with that of true Hyperion. Therefore, the Simulated
Hyperion can be an alternative for comparison if Hyperion is not available.

04 - *+ Ko s KOl
AM AI2
|« Al x  AC
0.35 R? = 09151
03 . n
- '.." R =007
d - o® [ .
.g 0.25 ; ‘f X
g R = 09271
= 02 w*® . RE=08608
e P \ 3
g 0.15 -"":fwbd"vf,
;%; 0.1 \
0.05 .o
0.1 )] 0.1 02 03 04 05 06
-0.05

Hyperion

Figure 5. Correlation of reflectance from true Hyperion and Simulated Hyperion.
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4.2. Classifier Selection

According to the aforementioned findings, we learned that for the same input Random Forests
outperform SVM if there is no feature selection. The contribution from extra minor information may
be masked by abundant information due to high-dimension features with dependency when using
SVM, which may explain the reason why further improvement was not expected with SVM but did
with Random Forests. In another words, SVM may perform better with feature selection, which was
also indicated in [39]. It should be noted that no feature selection was conducted in this study, because
we did not aim for classifier optimization but for the contribution from the extra spectra on mangrove
species mapping, and feature selection may lead to information loss.

4.3. Contribution of the Increase in Spectral Resolution in VNIR

We have learned from the confusion matrixes that the advantage of simulated Hyperion over
Landsat 8 is to improve the accuracy of identification of many species including KO, AM, and Al,
while, in contrast, simulated Hyperion GF-5 hyperspectral data shows metrics on the AC identification.
From the Figure 2, we can see that the spectra of different species ranging from 403 nm to 740 nm
(where most spectra of Landsat 8 lie) are similar. In contrast, most spectra from 780 nm to 1300 nm
show distinguished differences. That is why the hyperspectral data (GF-5 and simulated Hyperion)
can outperform Landsat 8 in mangrove species mapping with great improvement. In visible spectra,
KO, Al and AC are with slight differences in reflectance, and the reflectance of AM lying between KO
and Al are more similar to KOy and Al;. This may explain the confusion of AM, KO; and Al resulting
in low accuracies in classification. In VNIR, KO has distinct features from others, and AM can be easily
separated from one other with spectra ranging from 750 to 960nm, while AC and Al have similar spectra.
This reveals that the increase in spectral resolution (from Landsat 8 to simulated Hyperion) can better
discriminate mangrove species, and increasing the spectral resolution for hyperspectral data (from
simulated Hyperion to GF-5 hyperspectral data) can better discriminate species with minor differences,
which does make sense. The side effect of accuracy drop in KO and AM, which should have been
easily separated with distinct features difference, is possibly because the introduced high-resolution
spectra enlarge the intra-class variation for them. The similar problem of intra-class enlargement can
be seen when increasing the spatial resolution. This may be resolved through individual processing by
category, which was also used to exclude inter-class variation first to improve the results of mangrove
biomass estimation [44]. This means that the effect of the additional spectra due to increase in spectral
resolution should be explored in a new way.

4.4. Limitation of the Study

Due to a lack of true Hyperion data for comparison, a simulated Hyperion in this study was
generated based on GF-5 hyperspectral in formulation of subset extraction. However, there is not
always a solution for Equation (1). For example, the spectra in 1340-1520 nm for Hyperion cannot be
simulated due to the differences of invalid bands between two sensors. The spectral loss (see Section 3.1
from simulated Hyperion should be analyzed, although there are only nine bands and they are close
to the absorption windows of water vapor. Similarly, the work to which spectral features contribute
most for one certain mangrove species should be analyzed. This may be useful for mangrove species
discrimination in other sites. Another limitation is the sample number, especially for AC with small
patches. More data will make the results more robust and convincing. Due to the small and narrow
areas of each mangrove species, the GF-5 hyperspectral data with spatial resolution of 30 m cannot
capture many pixels for each species, which makes it hard to collect more samples from the GF-5
hyperspectral data in the study area. Compared to the samples used in [6,14,18], we accepted the
repeated use of our samples.



Remote Sens. 2020, 12, 656 12 of 16

5. Conclusions

To date, GF-5 as the latest satellite which, in commission with hyperspectral data provision, offers
potential opportunities for accurate observation due to higher spectral resolution in VNIR. In our study,
we used GF-5 hyperspectral data for accurate mapping of mangroves in the Mai Po at species level.
Our aim was to assess the performance of GF-5 hyperspectral data on mangrove species discrimination.
We simulated Hyperion for the control hyperspectral data. Together with Landsat 8, various data
with different spectral resolution is compared using Random Forests and SVM. According to the
aforementioned results, we can draw the conclusions that follow.

1. GF-5 hyperspectral data can be used for accurately mapping six mangrove species in the Mai
Po with accuracy of 87.12%;

2. GF-5 shows an advantage over Landsat 8 and Hyperion in mangrove species mapping due
to an increase in spectral resolution in VNIR. Therefore, it is recommended to include more specific
bands in VNIR for future satellites with the aims of mangrove species discrimination.

3. Extra spectra from GF-5 hyperspectral data with higher spectral resolution in VNIR acts on
AC mapping;

4. Random Forests are preferred to SVM for mapping mangrove species when using GF-5
hyperspectral data without feature selection for spectral features.
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Appendix A

Table A1l. The number and wavelength of valid bands in GF-5 hyperspectral data (* the value of 1, 2, 3
in the field of ‘Note’ indicates the bands selected as simulated Hyperion, extra bands in VNIR and

extra bands in SWIR).
Band Band
N.O. VNIR/SWIR Numberin "2 elen8th oo N.O.  VNIR/SWIR  Numberin  'vavelensth ..«
(nm) (nm)
GF-5 GF-5
1 VNIR 4 402.96 2 126 VNIR 134 959.07 2
2 VNIR 5 407.24 2 127 VNIR 135 963.35 1
3 VNIR 6 41152 2 128 VNIR 136 967.63 2
4 VNIR 7 415.80 2 129 VNIR 137 971.91 1
5 VNIR 8 42008 2 130 VNIR 138 976.18 2
6 VNIR 9 424.36 2 131 VNIR 139 980.46 2
7 VNIR 10 428.64 2 132 VNIR 140 984.74 1
8 VNIR 1 43291 2 133 VNIR 141 989.02 2
9 VNIR 12 437.19 2 134 VNIR 142 993.30 1
10 VNIR 13 441.47 2 135 VNIR 143 997.76 2
1 VNIR 14 44575 2 136 VNIR 144 1002.22 1
12 VNIR 15 450.03 2 137 VNIR 145 1006.68 2
13 VNIR 16 45431 2 138 VNIR 146 1011.14 2
14 VNIR 17 458.59 2 139 VNIR 147 1015.60 1
15 VNIR 18 462.87 2 140 VNIR 148 1020.06 2
16 VNIR 19 467.15 2 141 VNIR 149 1024.52 1
17 VNIR 20 47142 2 142 VNIR 150 1028.98 2
18 VNIR 21 475.70 2 143 SWIR 5 1038.28 1
19 VNIR 22 479.98 1 144 SWIR 6 1046.71 1
20 VNIR 23 484.26 2 145 SWIR 7 1055.13 1
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Table Al. Cont.

Band Band

N.O. VNIR/SWIR Numberin avelength i i*  NO. VNIR/SWIR  Numberin avelensth .-
(nm) (nm)
GF-5 GF-5
21 VNIR 2 488,54 1 146 SWIR 8 1063.56 1
2 VNIR 25 19282 2 147 SWIR 9 1071.99 1
23 VNIR 26 497.10 2 148 SWIR 10 1080.42 3
2 VNIR 27 50138 1 149 SWIR 11 1088.84 1
25 VNIR 28 505.66 2 150 SWIR 12 1097.27 1
26 VNIR 29 500.94 1 151 SWIR 13 1105.70 1
27 VNIR 30 51422 2 152 SWIR 14 111412 1
28 VNIR 31 518.49 1 153 SWIR 20 1164.69 1
29 VNIR 3 52277 2 154 SWIR 21 1173.12 1
30 VNIR 33 527.05 2 155 SWIR 2 118154 1
31 VNIR 34 53133 1 156 SWIR 23 1189.97 3
32 VNIR 35 535.61 2 157 SWIR 24 1198.40 1
33 VNIR 36 539.94 1 158 SWIR 25 1206.60 1
34 VNIR 37 544.20 2 159 SWIR 2 1215.00 1
35 VNIR 38 548.47 1 160 SWIR 27 1223.40 1
36 VNIR 39 552.71 2 161 SWIR 28 1232.14 1
37 VNIR 10 556.97 2 162 SWIR 29 124056 3
38 VNIR 4 561.26 1 163 SWIR 30 1249.01 1
39 VNIR 0 565.55 2 164 SWIR 31 1257.46 1
10 VNIR 3 569.83 1 165 SWIR 32 1265.90 1
4 VNIR 4 57412 2 166 SWIR 33 127435 1
0 VNIR 45 578.40 2 167 SWIR 34 1282.80 1
5 VNIR 16 582.69 1 168 SWIR 35 129125 3
4 VNIR 47 586.97 2 169 SWIR 36 1299.70 1
45 VNIR 18 59126 1 170 SWIR 37 1308.14 1
16 VNIR 19 595.54 2 171 SWIR 38 131659 1
47 VNIR 50 599.83 1 172 SWIR 39 1325.04 1
18 VNIR 51 604.11 2 173 SWIR 61 1510.89 1
19 VNIR 52 608.40 2 174 SWIR 62 1519.34 1
50 VNIR 53 612.69 1 175 SWIR 63 1527.79 1
51 VNIR 54 616.97 2 176 SWIR 64 1536.23 1
52 VNIR 55 62126 1 177 SWIR 65 1544.68 1
53 VNIR 56 625.54 2 178 SWIR 66 1553.13 3
54 VNIR 57 629.83 1 179 SWIR 67 1560.73 1
55 VNIR 58 634.11 2 180 SWIR 68 1569.03 1
56 VNIR 59 638.40 2 181 SWIR 69 1577.41 1
57 VNIR 60 642.68 1 182 SWIR 70 1586.11 1
58 VNIR 61 646.88 2 183 SWIR 71 1594.76 3
59 VNIR 62 651.11 1 184 SWIR 7 1603.18 1
60 VNIR 63 655.35 2 185 SWIR 73 161159 1
61 VNIR 64 659.63 2 186 SWIR 74 162001 1
62 VNIR 65 663.91 1 187 SWIR 75 1628.43 1
63 VNIR 66 668.24 2 188 SWIR 76 1636.85 1
64 VNIR 67 672.60 1 189 SWIR 77 164527 3
65 VNIR 68 676.90 2 190 SWIR 78 1653.69 1
66 VNIR 69 681.19 1 191 SWIR 79 1662.11 1
67 VNIR 70 685.42 2 192 SWIR 80 1670.53 1
68 VNIR 71 689.68 2 193 SWIR 81 1678.95 1
69 VNIR 72 693.95 1 194 SWIR 82 168737 1
70 VNIR 73 698.17 2 195 SWIR 83 1695.79 3
71 VNIR 74 702.39 1 196 SWIR 84 170421 1
7 VNIR 75 706.67 2 197 SWIR 85 1712.63 1
73 VNIR 76 71095 2 198 SWIR 86 1721.05 1
74 VNIR 77 71523 1 199 SWIR 87 1729.47 1
75 VNIR 78 719.51 2 200 SWIR 88 1737.88 1
76 VNIR 79 723.79 1 201 SWIR 89 174630 3
77 VNIR 80 728.06 2 202 SWIR 90 1754.72 1
78 VNIR 81 732.34 1 203 SWIR 91 1763.14 1
79 VNIR 82 736.62 2 204 SWIR 92 177156 1
80 VNIR 83 740.90 2 205 SWIR 93 1779.98 1
81 VNIR 84 745.17 1 206 SWIR 94 1788.40 1
82 VNIR 85 749.45 2 207 SWIR 116 1973.63 3
83 VNIR 86 753.73 1 208 SWIR 17 1982.05 1
84 VNIR 87 758.01 2 209 SWIR 118 1990.47 1
85 VNIR 88 762.29 1 210 SWIR 122 2024.14 1
86 VNIR 89 766.57 2 211 SWIR 123 2032.56 1
87 VNIR 90 770.84 2 212 SWIR 124 2040.98 1
88 VNIR 91 775.12 1 213 SWIR 125 2049.40 1
89 VNIR 92 779.40 2 214 SWIR 126 2057.82 3
90 VNIR 9% 783.68 1 215 SWIR 127 2066.24 1
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Table Al. Cont.

Band Band

N.O. VNIR/SWIR Numberin "avelength n,i©  NO. VNIR/SWIR  Numberin Vavelensth .-
(nm) (nm)
GF-5 GF-5
91 VNIR 94 787.96 2 216 SWIR 128 2074.66 1
92 VNIR 95 79223 2 217 SWIR 129 2083.08 1
93 VNIR 9% 796.51 1 218 SWIR 130 2091.50 1
94 VNIR 97 800.79 2 219 SWIR 131 2099.92 1
95 VNIR 98 805.07 1 220 SWIR 132 2108.34 3
9% VNIR 99 809.34 2 21 SWIR 133 2116.77 1
97 VNIR 100 813.62 1 Py SWIR 134 212521 1
98 VNIR 101 817.90 2 23 SWIR 135 2134.10 1
99 VNIR 102 822.18 2 224 SWIR 136 214211 1
100 VNIR 103 826.46 1 225 SWIR 137 2150.68 1
101 VNIR 104 83073 2 226 SWIR 138 2159.11 3
102 VNIR 105 835.01 1 227 SWIR 139 2167.53 1
103 VNIR 106 839.29 2 228 SWIR 140 2175.96 1
104 VNIR 107 843.57 1 229 SWIR 141 2184.39 1
105 VNIR 108 847.85 2 230 SWIR 142 2192.81 1
106 VNIR 109 852.12 2 231 SWIR 143 2201.24 1
107 VNIR 110 856.40 1 232 SWIR 144 2209.67 3
108 VNIR 111 860.68 2 233 SWIR 145 2218.10 1
109 VNIR 112 864.96 1 234 SWIR 146 222652 1
110 VNIR 113 869.23 2 235 SWIR 147 2234.95 1
111 VNIR 114 873.51 2 236 SWIR 148 2243.38 1
112 VNIR 115 877.79 1 237 SWIR 149 225181 1
113 VNIR 116 882.07 2 238 SWIR 150 2260.23 3
114 VNIR 17 886.35 1 239 SWIR 151 2268.66 1
115 VNIR 118 890.63 2 240 SWIR 152 2277.09 1
116 VNIR 119 894.90 1 241 SWIR 153 228551 1
17 VNIR 120 899.18 2 242 SWIR 154 2293.94 1
118 VNIR 121 903.46 2 243 SWIR 155 2302.37 1
119 VNIR 122 907.74 1 244 SWIR 156 2310.80 3
120 VNIR 123 912.02 2 245 SWIR 157 2319.22 1
121 VNIR 124 916.29 1 246 SWIR 158 2327.65 1
122 VNIR 125 92057 2 247 SWIR 159 2336.08 1
123 VNIR 126 924.85 1 248 SWIR 160 234451 1
124 VNIR 127 929.13 2 249 SWIR 161 2352.93 1
125 VNIR 133 954.79 2 250 SWIR 162 2361.36 1
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