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Abstract: The U.S. Geological Survey’s Land Change Monitoring, Assessment, and Projection
(LCMAP) initiative involves detecting changes in land cover, use, and condition with the goal of
producing land change information to improve the understanding of the Earth system and provide
insights on the impacts of land surface change on society. The change detection method ingests
all available high-quality data from the Landsat archive in a time series approach to identify the
timing and location of land surface change. Annual thematic land cover maps are then produced
by classifying time series models. In this paper, we describe the optimization of the classification
method used to derive the thematic land cover product. We investigated the influences of auxiliary
data, sample size, and training from different sources such as the U.S. Geological Survey’s Land
Cover Trends project and National Land Cover Database (NLCD 2001 and NLCD 2011). The results
were evaluated and validated based on independent data from the training dataset. We found that
refining the auxiliary data effectively reduced artifacts in the thematic land cover map that are related
to data availability. We improved the classification accuracy and stability considerably by using a
total of 20 million training pixels with a minimum of 600,000 and a maximum of 8 million training
pixels per class within geographic windows consisting of nine Analysis Ready Data tiles (450 by
450 km2). Comparisons revealed that the NLCD 2001 training data delivered the best classification
accuracy. Compared to the original LCMAP classification strategy used for early evaluation (e.g.,
Trends training data, 20,000 samples), the optimized classification strategy improved the annual land
cover map accuracy by an average of 10%.

Keywords: land cover change; classification; training strategy; Landsat

1. Introduction

Land cover and land change play a major role in the climate and biogeochemistry of the Earth
system [1]. Remote sensing has long been used as an effective tool for broad-scale land cover
mapping [2]. As a result, many land cover datasets have been developed with resolutions ranging
from 1 km to 30 m e.g., [1,3,4]. The U.S. Geological Survey (USGS) has a long history of characterizing
land cover using moderate spatial resolution remote sensing data to support regional and national
assessments for both science and management [4,5]. The USGS National Land Cover Database (NLCD)
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has produced 30-m land cover products since 1992 [3,6–8]. Currently, NLCD is being updated every
2–3 years for the conterminous U.S. and every 10 years for Alaska. Driven by concerns about climate
change and resource sustainability [9,10], land cover product needs are expanding due to the demand
for increasingly innovative and timely land cover and land change inquiries. The USGS response to
this growing need is the Land Change Monitoring, Assessment, and Projection (LCMAP) initiative [11].

LCMAP utilizes recently released U.S. Landsat Analysis Ready Data (ARD) [12] to characterize
historical changes in land cover, use, and condition from 1985 to 2017. The ARD product comprises
surface reflectance data over the United States from the Thematic Mapper (Landsats 4 and 5), Enhanced
Thematic Mapper Plus (ETM+) (Landsat 7), and Operational Land Imager (Landsat 8) [12]. Landsat
ARD is structured with a 150 x 150 km tile scheme and uses the Albers Equal Area Conic projection.
From the ARD data, LCMAP derives annual land cover maps using an adaptation of the Continuous
Change Detection and Classification (CCDC) algorithm [13,14]. The CCDC algorithm uses all cloud-free
observations in a time series of ARD to detect change in a specific pixel location based on the spectral
and temporal properties of the land surface. The algorithm then classifies a pixel before and after a
detected change using random forest [15].

The quest to provide better land cover classification results has driven the development and
exploration of many classification methods. Machine-learning classification algorithms, such as the
artificial neural network, support vector machine, and random forest, have recently drawn more
attention in remote sensing e.g., [16–18]. Compared with traditional classification methods, machine
learning can effectively handle large dimensional training data and complex data spaces [19]. However,
like other supervised classification approaches, the training data for machine learning play an essential
role in classification accuracy [20]. Optimizing machine-learning training data often includes four
aspects: (1) feature selection; (2) the amount of training data; (3) the distribution of training data among
the classes; and (4) the balance of training data among the classes. A feature in machine-learning is
defined as an individual property or characteristic that can be used to distinguish land cover classes.
Multiple studies have suggested that the selection of appropriate features can significantly improve
classification accuracy e.g., [21,22] because feature selection is directly related to the separability of
classes. The training data size is usually positively correlated to the classification accuracy because a
large set of training data can better represent class variation. But the distribution and balancing of
training data among classes are also crucial in machine-learning classification [23]. Distribution refers
to the proportion of training data for a specific class, which is often related to the population of the
map classes in the study area [15]. In contrast, balance refers to the population difference between the
dominant class and minor classes. The classification approaches usually optimize the overall accuracy,
while points in minority classes or subclasses with a small sample size might be considered as outliers
and ignored.

The initial CCDC classification strategy was designed based on five Landsat path/rows across the
conterminous United States (CONUS), with training data from map products of the USGS Land Cover
Trends project [15]. The strategy suggested (1) extracting training data based on the proportional
occurrence of land cover classes with a total of 20,000 pixels; (2) balancing larger and smaller classes
by using a minimum of 600 and a maximum of 8000 training pixels for each class; and (3) including
eight auxiliary variables to improve the classification accuracy (aspect, elevation, positional index,
slope, Wetland Potential Index, water probability, snow probability, and cloud probability). The overall
accuracy improved from 80% to 88% when applying the optimized strategy.

This paper presents the lessons learned in optimizing the classification procedure for the operational
and automated generation of annual land cover maps. We applied the CCDC algorithm to Landsat
ARD and evaluated land cover maps at 24 tiles across CONUS [11]. Overall, the land cover maps
matched well with Trends, NLCD, and Google Earth high-resolution imagery. However, the study
identified some issues, including Landsat 7 ETM+ Scan Line Corrector (SLC) effects occurring in data
prior to the SLC failure, and the occasional misclassification of small towns or barren land cover that
were not well represented in the training data. We hypothesized that the first issue was related to static
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auxiliary layers that failed to represent the 30-year dynamics, while the second issue indicated that
more training data are necessary to represent within-class variations (e.g., different types of barren
land cover or different densities of developed areas). In this study, we optimized the land cover
classification strategy by refining some auxiliary layers and increasing the training data. Because the
Trends data have limited national coverage, we explored NLCD land cover products as our training
data. We conducted the optimization study focusing on the following questions:

(1) Do the auxiliary data cause spatial patterns indicative of the SLC-off effect to be found in
outputs prior to the SLC failure?

(2) What is the optimum amount of training data?
(3) What is the optimum source of training data?

2. Data and Study Area

2.1. Landsat Analysis Ready Data (ARD)

Collection 1 Landsat ARD [12] from 1982 to 2017 was acquired as the initial input for CCDC.
The product is processed to 5000 × 5000 30-m pixel (150 × 150 km) tiles in the Albers Equal Area Conic
projection, a modified tile scheme of the CONUS Web-Enabled Landsat Data (WELD) products [24].
The acquired ARD product includes seven surface reflectance bands, brightness temperatures, and
pixel quality assessments (QA) from Landsats 4, 5, 7, and 8. We filtered out pixels that were labeled as
cloud or cloud shadow in the pixel QA band. The details of clouds and cloud shadow filtering are
discussed in Zhu, Gallant, Woodcock, Pengra, Olofsson, Loveland, Jin, Dahal, Yang and Auch [15].

2.2. LCMAP Continuous Change Detection

LCMAP applied the CCDC algorithm on the ARD surface reflectance bands to estimate the
time series models and detect land surface changes at the pixel scale [13,14]. Each time series model
represents a period of stable land cover, and the coefficients of the model delineate the spectral and
temporal variation of the pixel (Equation (1)). The time series models are used by CCDC as inputs for
the land cover classification, which includes the harmonic coefficients, slope, intercept, and root mean
square error. This study uses the same model components as CCDC, except we adjusted the intercept
of the model coefficients (c0,i) to the center of the model (c0,i + c1,itcenter). The adjusted value aims to
better characterize the overall spectra of the model than the intercept (estimated spectra on January 1
at year 1).

ρ̂(i, t) = c0,i + c1,it +
3∑

n=1

an,icos
2πt
L

+ bn,isin
2πt
L

(1)

where ρ̂(i, t) is the predicted value for the ith Landsat band at the Julian date t. c0,i and c1,i are the
estimated intercept and slope coefficients for the ith Landsat band, respectively, while an,i and bn,i are
the estimated nth order seasonal harmonic coefficients for the ith Landsat band. L is the length of cycles,
i.e., the number of days per year.

2.3. Auxiliary Data

The CCDC classification strategy used three groups of static auxiliary layers [15]: probability
layers derived from the Landsat pixel QA band, topographic layers, and the Wetland Potential Index
(WPI). The Landsat pixel QA band stores information about the cloud, water, and snow occurrence
for each Landsat observation, from which the probability layers were calculated as the percentage of
cloud, water, or snow in the entire time series. For example, the cloud probability layer represents the
percentage of cloud-contaminated observations in the whole time series for each pixel. The topographic
layers and WPI were also used by NLCD [7,15]. The topographic layers were calculated from the
National Elevation Dataset (NED), including the elevation, aspect, slope, and Positional Index (PI) [25].
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The WPI was developed based on NLCD 2006, National Wetlands Inventory [26], and Soil Survey
Geographic Database (SSURGO) for hydric soils [27].

2.4. National Land Cover Database (NLCD)

NLCD 2001 and 2011 were selected as training source candidates because of their national
wall-to-wall coverage. Also, NLCD is a widely used and well-established land cover dataset derived
from Landsat. Though NLCD recently released a new suite of products that offered seven integrated
epochs of land cover for the years 2001, 2003, 2006, 2008, 2011, 2013, and 2016 [7,28,29], this study was
conducted before the new data release. We used the previous NLCD data release, which included
land cover products for 2001, 2006, and 2011. Using NLCD 2001 as the baseline, NLCD mapped 16
land cover classes (Anderson Level II) in the native 30-m × 30-m resolution at 5-year intervals (2001,
2006, and 2011). We selected NLCD 2001 and 2011 because 2001 was in the middle of the time series,
while 2011 represented the latest evolution of NLCD products at the time of this study [7]. The overall
accuracies of the two products were 83% and 82% at Level II and 89% and 88% at Level I for 2001
and 2011, respectively [30]. The LCMAP land cover legend is similar to the Anderson Level I [5]
and includes a total of eight classes: Developed, Cropland, Tree Cover, Grass/Shrub, Wetland, Water,
Ice/Snow, and Barren. We cross-walked NLCD land cover maps to match the LCMAP class scheme
(Table 1). Zhu et al. [15] previously suggested that removing spectral and spatial outliers contained
in the Trends training data had no significant improvement in classification results. However, we
found that the cross-walked NLCD classes could mismatch with ARD images at the embedded road
network and class edges because of the projection difference. The NLCD embedded road network had
increased misclassifications in the initial tests because many of the embedded road pixels were mixed
and dominated by a class other than Developed. Thus, NLCD classes were eroded by one pixel.

Table 1. The cross-walk from National Land Cover Database (NLCD) to Land Change Monitoring,
Assessment, and Projection (LCMAP) classes. The values in parentheses are the NLCD land cover
class code.

NLCD class LCMAP class

Water (11) Water
Perennial ice/snow (12) Ice and Snow

Developed, open space (21) Developed
Developed, low intensity (22) Developed

Developed, medium intensity (23) Developed
Developed, high intensity (24) Developed

Barren (31) Barren
Deciduous forest (41) Tree Cover
Evergreen forest (42) Tree Cover

Mixed forest (43) Tree Cover
Shrubland (52) Grass/shrub
Grassland (71) Grass/shrub

Pasture (81) Cropland
Cultivated crops (82) Cropland
Woody wetlands (90) Wetland

Herbaceous wetland (95) Wetland

2.5. Study Area

Eight ARD tiles were selected to capture different land cover types and ecosystems across CONUS
(selected tiles are indicated by orange squares in Figure 1). The eight tiles were located within six sites
that were previously evaluated using 2 × 2 blocks of ARD tiles [11]. We selected the eight tiles to fully
depict challenges in the evaluation sites and to reduce the optimization time. The six sites represented
a variety of landscapes, land change scenarios, and data richness (Table 2).
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H05V03 4.6 44.7 37.4 10.2 1.6 0.5 0 0 
H13V06 2.0 5.8 71.0 12.9 0.5 1.5 0 5.5 
H20V15 6.9 8.7 13.6 47.1 2.3 11.9 0 0.2 
H21V08 17.6 69.7 1.8 4.4 2.7 1.4 0 0.2 
H28V08 27.5 18.1 2.7 19.3 11.8 9.4 0 0.3 
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The initial implementation of CCDC used the random forest classifier, which was 
computationally intensive and not reasonable for the production of broad-scale land cover mapping. 
As a result, we switched to a newly developed classifier, XGBoost [31]. The XGBoost classifier is 
optimized for handling big data via parallel processing, caching intermediate results, and building 
small individual decision trees. The new classifier has been found to produce similar quality results 
to other classification approaches, including random forest, and the differences are small compared 
to the importance of appropriate training data [32,33]. The format of XGBoost results is also the same 
as random forest in that probabilities are associated with each land cover label. After time series 
models were classified, we used the land cover class on July 1 of each year to generate annual maps, 
which is the same approach as the initial CCDC methodology [15]. For periods following a 
disturbance where a new model was not immediately established, we filled the disturbance with the 
previous land cover type if the period was before the "disturbance" day or with the latter land cover 

Figure 1. Landsat Landsat Analysis Ready Data (ARD) tiling scheme for the conterminous United
States. The orange tiles show the locations of evaluation sites used in the preliminary Land Change
Monitoring, Assessment, and Projection (LCMAP) evaluation. These tiles were selected to represent
different land cover types and ecosystems across the conterminous Unites States (CONUS).

Table 2. Land cover percentage (%) in the eight Landsat Analysis Ready Data (ARD) tiles derived from
the cross-walked National Land Cover Database (NLCD) 2011.

Tile Developed Cropland Grass/Shrub Tree Water Wetland Snow Ice Barren

H03V09 1.5 2.4 47.3 39.0 2.1 0.4 0 7
H03V10 6.0 33.1 28.6 21.9 0.8 0.3 0 4.8
H05V02 3.2 36.5 47.1 6.7 2.9 1.1 0 0
H05V03 4.6 44.7 37.4 10.2 1.6 0.5 0 0
H13V06 2.0 5.8 71.0 12.9 0.5 1.5 0 5.5
H20V15 6.9 8.7 13.6 47.1 2.3 11.9 0 0.2
H21V08 17.6 69.7 1.8 4.4 2.7 1.4 0 0.2
H28V08 27.5 18.1 2.7 19.3 11.8 9.4 0 0.3

3. Methods

The initial implementation of CCDC used the random forest classifier, which was computationally
intensive and not reasonable for the production of broad-scale land cover mapping. As a result,
we switched to a newly developed classifier, XGBoost [31]. The XGBoost classifier is optimized for
handling big data via parallel processing, caching intermediate results, and building small individual
decision trees. The new classifier has been found to produce similar quality results to other classification
approaches, including random forest, and the differences are small compared to the importance of
appropriate training data [32,33]. The format of XGBoost results is also the same as random forest in
that probabilities are associated with each land cover label. After time series models were classified,
we used the land cover class on July 1 of each year to generate annual maps, which is the same
approach as the initial CCDC methodology [15]. For periods following a disturbance where a new
model was not immediately established, we filled the disturbance with the previous land cover type if
the period was before the "disturbance" day or with the latter land cover type if the period was after
the "disturbance" day. Five main LCMAP cover products (primary cover, secondary cover, primary
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confidence, secondary confidence, and land cover change) were mapped, representing the most likely
and the second most likely land cover type associated with their probabilities and the primary land
cover change from the prior year to the current year. This study built on the CCDC classification
strategy [15] and focused on (1) refining auxiliary data, (2) optimizing the sample size of training data,
and (3) selecting the best training data source.

3.1. Auxiliary Data Refining

We focused on the probability layers in the auxiliary data because (1) these layers were static and
did not depict climate variations through the 33 years (i.e., 1985–2017), and (2) these layers spread
the problem related to post-2003 SLC-off data to the whole time series. In this test, we removed the
probability layers while leaving the rest of the classification strategy to be the same as for the initial
version of CCDC. We then compared the results at problematic sites that were previously identified to
evaluate the impacts of the probability layers.

3.2. Training Sample Size Optimization

We trained each ARD tile using NLCD 2001 from the surrounding 3 × 3 tiles. We then tested
maximum sample sizes ranging from 20K, 200K, 2M, 20M, to 100M pixels using a stratified random
selection based on the proportion of classes. The proportion-based stratified random sampling
is considered better than simple random sampling [15,34], especially for small urban areas [11].
The CCDC classification strategy used a maximum of 8000 pixels for each class to keep classes balanced,
with a maximum total of 20K samples. In this study, we followed the strategy but scaled up the
minimum and maximum boundaries according to the total sample size. Because of the class balance
constraint, the actual sample size could be less than the maximum sample size when only a few classes
dominated the ARD tile. Each test scenario was conducted 10 times to estimate the stability of the
classification scenario.

We used 80% of the training samples to build the classification model and 20% to evaluate the
model. We evaluated the agreement between the model prediction and the 20% training samples
and referred to this agreement as "accuracy" [15]. The log loss (Equation (2)) was used to evaluate
the models, and is commonly applied in machine-learning optimization [31]. Log loss is considered
a better indicator than the simple agreement assessment in model evaluation because the simple
agreement only measures how often a predicted value equals the actual value while log loss also rates
the uncertainty of predictions:

Llog(y, p) = − log Pr(y
∣∣∣p) = −(y log(p) + (1 − y) log(1 − p)) (2)

where y is a binary indicator of the actual class, and p is the model probability for the corresponding
class. Pr represents a likelihood function that delineates how confident the model is in the actual class.
If we convert the probabilities to binary by assigning the highest probability to 1 and the rest to 0,
the Pr would be equivalent to the simple agreement. In most cases, the Pr or log loss incorporates not
only the correctness of the classification but also the model probability to the correct class. For a better
interpolation, we used the Pr as the criterion and considered it to be the classification accuracy.

Moreover, the land cover consistency through iteration was also evaluated as a criterion.
The consistency analysis compared land cover maps from eight iterations and recorded the number of
different classes that occurred in each pixel. We used eight iterations out of 10 because eight was the
maximum possible number of different classes that could occur in a pixel. The consistency analysis
was also conducted using different training sizes for Trends data, which indicated the stability of
the original CCDC classification strategy. However, since Trends data did not have 20M pixels in
3 × 3 tiles, only 20K, 200K, and 2M sample sizes were used.
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3.3. Training Data Source Optimization

Alternative sampling strategies included a single era of NLCD data (NLCD 2001 or NLCD
2011), a combination of two NLCD eras (NLCD 2001&2011), and NLCD 2001 excluding Pasture/Hay
(i.e., NLCD 2001 no Pasture/Hay). The last sampling strategy was designed to investigate whether
Pasture/Hay is more similar to Cropland or to Grass/Shrub using the current classification inputs. The
classification of Pasture/Hay is often challenging because it is usually covered by grasses but is used
for livestock grazing or hay cropping, which causes it to be spectrally similar to grass, but it is an
agricultural practice with a similar disturbance cycling to cropland.

The evaluation of the data source is based on accuracy comparison and visual comparison.
The first three scenarios (NLCD 2001, NLCD 2011, and NLCD 2001&2011) were run 10 times to estimate
the stability of the accuracy comparison. The last scenario was run only once in each tile for the visual
comparison only. To provide a qualitative but rigorous evaluation of different sources of training data,
six members of the LCMAP team with land cover experience evaluated the classification products
based on the CCDC classification (Trends-based) and the four NLCD-based alternatives. Interpreters
were chosen from geographers and land cover scientists at the USGS Earth Resources Observation
and Science (EROS) Center who possessed an average of 17 years of experience with a combination of
previous and current USGS land cover projects, including the Global Land Cover Characterization [4],
Land Cover Trends, and NLCD, in addition to LCMAP. Interpreters were aware of the sampling
methodologies used, but identifications of the five alternatives were masked to reduce interpreter bias.
Four LCMAP cover products (primary cover, secondary cover, primary confidence, and secondary
confidence) for 1984–2017 were provided to interpreters along with a variety of metrics quantifying the
agreement with NLCD and earlier results. The 1984 LCMAP results were also evaluated by interpreters,
though the maps were not included in the final LCMAP products. Interpreters largely focused on
primary cover maps in their evaluations. Six tiles were selected, one from each evaluation region:
H03V09, H05V02, H13V06, H20V15, H21V08, and H28V08. Five of the interpreters focused on two
tiles each, and one interpreter focused on one tile (H20V15 was evaluated by only one interpreter, the
others by two interpreters). At the time of the evaluations, the results from Trends and NLCD 2011
training were not available for H20V15, H21V08, and H28V08; interpreters evaluated the three available
alternatives for these tiles. Each interpreter independently evaluated the alternatives, followed by a
group discussion of all interpreters to synthesize perspectives and select preferred alternative(s).

4. Results and Discussion

4.1. Auxiliary Data Refining

The impact of the probability layers was examined by comparing the classification results at a
problematic area (Figure 2). New Melones Lake in California is a reservoir surrounded by a hilly area
composed of trees and grass. Figure 2a illustrates the strips of tree cover in the CCDC version of the
land cover map in 1995. Because the probability layers were derived from 33 years of Landsat QA
bands, some SLC-off artifacts from these probability layers were propagated back in time into results
prior to the SLC failure. The strips disappeared when the probability layers were removed while
leaving the rest of the classification strategy the same (Figure 2b), although more pixels were classified
as trees. This test suggested that though machine-learning methods automatically select the most
useful features for classification, inputting reliable and representative features is still important for the
classification [35]. Thus, we removed the three auxiliary data layers from the LCMAP algorithm.
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Figure 2. Example of the classification problem in 1995 at New Melones Lake, California (38◦0’21.26”N,
120◦33’19.20”W). Panel (a) shows the Landsat 7 ETM+ Scan Line Corrector (SLC) off strip effect using
the original Continuous Change Detection and Classification (CCDC) classification strategy. Panel (b)
shows the result with probability layers removed from the CCDC classification strategy.

4.2. Training Sample Size Optimization

The comparison of the overall accuracies based on the different training sample sizes showed the
accuracy increasing along with the training sample size for all eight tiles, and the accuracy variation
(standard deviation) decreasing as well (Table 3). The initial strategy had an accuracy of less than 85%,
while increased training data improved the accuracy by about 10%. The accuracy of the initial strategy
was consistent with the CCDC results (80%-88%) that used the same sample size but a different training
data source and classifier. The accuracy improvements gradually saturated after 0.91, except for two
tiles (H21V08 and H28V08) that show accuracy continuing to improve with the increasing training data.
The two tiles also had a lower accuracy than the other tiles in all the training sample size tests. Figure 3
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illustrates the sample distributions across all classes in relation to the maximum per class population.
The horizontal lines in the first row suggest that some minor classes reached the maximum population
in the training data after 200K or 2M. Thus, further increasing training data did not benefit those minor
classes but increased the imbalance among classes. We did not use the paired t-test to estimate the
significance of accuracy improvements [15] because the extensive training data consistently produced
significant results with less than a 1% improvement across iterations using this test. Computation
time needs to be considered along with accuracy so that the LCMAP products can be generated and
updated in a reasonable time frame. The time costs rose exponentially with an increasing training
sample size (Table 4), despite the saturation of the accuracy improvement (Table 3). The average time
to generate one classification model was much less than 1 hour when the total training sample size
was 2M or less but increased to 2 and 10 hours for 20M and 100M training samples, respectively (based
on 20 CPUs, 3.00 Ghz). Additionally, not all tiles could collect 100M training samples. For example, tile
H13V06 was dominated by grass/shrub, while all other classes were relatively minor. So, to maintain
the proportion of classes, the stratified random selection only collected a total of 48,689,930 samples for
the 100M tests, which also led to less time cost (Table 4).

Table 3. The overall accuracy for a total of 20K, 200K, 2M, 20M, and 100M stratified training samples
from National Land Cover Database (NLCD) 2001. The standard deviation is calculated from the
accuracy through 10 iterations.

Tile
20K 200K 2M 20M 100M

Accuracy STD Accuracy STD Accuracy STD Accuracy STD Accuracy STD

H03V09 0.84 0.0135 0.89 0.0025 0.92 0.0007 0.94 0.0002 0.94 0.0001
H03V10 0.83 0.0130 0.88 0.0022 0.91 0.0006 0.94 0.0002 0.94 0.0001
H05V02 0.85 0.0105 0.88 0.0022 0.91 0.0009 0.93 0.0002 0.93 0.0001
H05V03 0.84 0.0070 0.89 0.0029 0.91 0.0005 0.94 0.0002 0.94 0.0000
H13V06 0.79 0.0097 0.85 0.0026 0.89 0.0008 0.91 0.0002 0.93 0.0001
H20V15 0.84 0.0052 0.88 0.0022 0.90 0.0008 0.92 0.0002 0.93 0.0001
H21V08 0.78 0.0102 0.83 0.0023 0.86 0.0006 0.90 0.0002 0.93 0.0001
H28V08 0.80 0.0137 0.83 0.0024 0.86 0.0010 0.89 0.0002 0.91 0.0001

Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 16 

 

but a different training data source and classifier. The accuracy improvements gradually saturated 

after 0.91, except for two tiles (H21V08 and H28V08) that show accuracy continuing to improve with 

the increasing training data. The two tiles also had a lower accuracy than the other tiles in all the 

training sample size tests. Figure 3 illustrates the sample distributions across all classes in relation to 

the maximum per class population. The horizontal lines in the first row suggest that some minor 

classes reached the maximum population in the training data after 200K or 2M. Thus, further 

increasing training data did not benefit those minor classes but increased the imbalance among 

classes. We did not use the paired t-test to estimate the significance of accuracy improvements [15] 

because the extensive training data consistently produced significant results with less than a 1% 

improvement across iterations using this test. Computation time needs to be considered along with 

accuracy so that the LCMAP products can be generated and updated in a reasonable time frame. The 

time costs rose exponentially with an increasing training sample size (Table 4), despite the saturation 

of the accuracy improvement (Table 3). The average time to generate one classification model was 

much less than 1 hour when the total training sample size was 2M or less but increased to 2 and 10 

hours for 20M and 100M training samples, respectively (based on 20 CPUs, 3.00 Ghz). Additionally, 

not all tiles could collect 100M training samples. For example, tile H13V06 was dominated by 

grass/shrub, while all other classes were relatively minor. So, to maintain the proportion of classes, 

the stratified random selection only collected a total of 48,689,930 samples for the 100M tests, which 

also led to less time cost (Table 4). 

Table 3. The overall accuracy for a total of 20K, 200K, 2M, 20M, and 100M stratified training samples 

from National Land Cover Database (NLCD) 2001. The standard deviation is calculated from the 

accuracy through 10 iterations. 

Tile 
20K 200K 2M 20M 100M 

Accuracy STD Accuracy STD Accuracy STD Accuracy STD Accuracy STD 

H03V09 0.84 0.0135 0.89 0.0025 0.92 0.0007 0.94 0.0002 0.94 0.0001 

H03V10 0.83 0.0130 0.88 0.0022 0.91 0.0006 0.94 0.0002 0.94 0.0001 

H05V02 0.85 0.0105 0.88 0.0022 0.91 0.0009 0.93 0.0002 0.93 0.0001 

H05V03 0.84 0.0070 0.89 0.0029 0.91 0.0005 0.94 0.0002 0.94 0.0000 

H13V06 0.79 0.0097 0.85 0.0026 0.89 0.0008 0.91 0.0002 0.93 0.0001 

H20V15 0.84 0.0052 0.88 0.0022 0.90 0.0008 0.92 0.0002 0.93 0.0001 

H21V08 0.78 0.0102 0.83 0.0023 0.86 0.0006 0.90 0.0002 0.93 0.0001 

H28V08 0.80 0.0137 0.83 0.0024 0.86 0.0010 0.89 0.0002 0.91 0.0001 

 

Figure 3. The pixel distribution of each class in comparative relation to the class upper limits (8000,
80,000, 800,000, 8,000,000, and 40,000,000, respectively) for a total of 20K, 200K, 2M, 20M, and 100M
stratified training samples.
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Table 4. The time cost (hour) of generating a classification model for 20K, 200K, 2M, 20M, and 100M
stratified training samples.

Tile 20K 200K 2M 20M 100M

H03V09 0.04 0.06 0.25 2.62 11.54
H03V10 0.04 0.05 0.24 2.36 10.33
H05V02 0.04 0.06 0.35 3.25 13.90
H05V03 0.04 0.06 0.32 3.08 13.84
H13V06 0.04 0.05 0.20 1.97 8.06
H20V15 0.04 0.05 0.23 2.81 13.27
H21V08 0.05 0.06 0.28 2.23 9.90
H28V08 0.04 0.05 0.30 2.86 13.02

Figure 4 shows an example of the consistency measurements across iterations. The value, from
1 to 8, indicated the number of different classes that occurred in the eight iterations of classification.
The region, located at Lake McClure, California, was mostly covered by grass with sparse trees
along the water body and in the hilly area at the northeast side of the lake. Most of the pixels
with inconsistent results came from the tree-grass mixed area, and the pixels with the most class
variations were around the edge between water and land. The NLCD-based results generally delivered
fewer inconsistent pixels than the Trends-based results for the same training data size (Figure 4).
The number of inconsistent pixels decreased with the increase of training data from either Trends
or NLCD. The improvements also occurred at the tile scale and were steady through the time series
(Figure 5). The red dotted line in Figure 5 represents the consistency of the initial strategy that could be
improved by 15% with additional training data. However, the consistency improvements were also
saturated with increased training data. A similar relationship between the consistency and sample size
was also found using random forest [36]. Based on the above analysis, a total of 20M training data
samples with a minimum of 60,000 and a maximum of 8M pixels for each class was used.
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Figure 4. The top row shows the consistency map from National Land Cover Database (NLCD)
2001–based 2010 land cover results, which were derived from eight iterations with up to 100M training
data samples. The second row shows the consistency from Trends-based 2010 land cover results with
up to 2M training samples (18 km × 18 km, Lake McClure, California. 37◦35’39.04”N, 120◦15’44.65”W).
The bottom row shows the location in a high-resolution image [37] and NLCD 2011 [7].
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Figure 5. The proportion of tile H03V09 that has consistent results through eight iterations of
classification for a total of 20K, 200K, 2M, 20M, and 100M stratified National Land Cover Database
(NLCD) 2001 samples.

4.3. Training Data Source Optimization

All interpreters agreed that the NLCD-based land cover had a substantially higher quality than the
Trends-based CCDC results. The most noted example was that large areas of clear development (e.g.,
Rapid City, South Dakota) were not classified as Developed in the original land cover [11]. In general,
interpreters found boundaries between areas of differing land cover to be sharper for the NLCD-based
alternatives, with less mixing of land cover and fewer misclassified isolated pixels.

Interpreters differed in which of the NLCD eras they preferred. For five of the six evaluations
of the three western tiles (H03V09, H05V02, and H13V06), interpreters selected NLCD 2001 as the
preferred option (NLCD 2001&2011 was preferred by one interpreter for H13V06). For the three eastern
tiles, the preferences were more mixed, with one interpreter giving a slight edge to NLCD 2001 for
two tiles (H20V15 and H21V08), another interpreter expressing equal preference between NLCD 2001
and NLCD 2001&2011 for the Illinois tile (H21V08), and two interpreters preferring NLCD 2001&2011
for the Chesapeake tile (H28V08). Despite the knowledge that one of the alternatives focused on
Pasture/Hay training, interpreters generally found little to distinguish between NLCD 2001 and NLCD
2001 no Pasture/Hay. All interpreters who selected NLCD 2001 as their preferred training alternative
expressed a roughly even preference between NLCD 2001 and NLCD 2001 no Pasture/Hay.

The model accuracies from 10 iterations of different training data sources were above 0.88 for
all classifications (Figure 6). The ranges of accuracies were less than 0.001 across 10 iterations. The
results derived from NLCD 2001 consistently outperformed the results based on NLCD 2011 at eight
tiles. NLCD 2001 and NLCD 2001&2011 derived a similar accuracy at the H03V10 tile, but NLCD 2001
outperformed at four out of eight tiles, while NLCD 2001&2011 outperformed at three out of eight
tiles. Thus, NLCD 2001 was selected as the final training data source. Although the NLCD 2011 land
cover map is derived from the NLCD 2001 product with land cover change updates, the accuracy of
the NLCD 2011 land cover map is slightly lower than the NLCD 2001 map [30]. Thus, NLCD 2001 was
selected as the source for LCMAP training data. Other advantages of NLCD 2001 that were considered
were the conceptual clarity of utilizing a single year of data with no excluded classes, and the fact that
training based on 2001 would be closer in time to all the dates in the 1985–2017 time period.
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Figure 6. The average accuracy distribution of 10 iterations at 8 tiles using training data from National
Land Cover Database (NLCD) 2001 and 2011, and 2001&2011. The standard deviation of accuracy
across 10 iterations was less than 0.001 for all tests.

4.4. Comparison of Classification Results After the Optimization

Finally, Figure 7a shows optimized classification results in the southern California area.
The zoomed-in panels show the differences between the original CCDC classification results (Figure 7b)
and the optimized results from this study (Figure 7c) in the Lake Success area of California. The purple
class in the original CCDC map means a disturbance occurred where a new model was not immediately
established on July 1. In the recent LCMAP results, the class was filled with the previous land cover
type if the period was before the "disturbance" day and with the latter land cover type if the period was
after the "disturbance" day [11]. Compared to the cross-walked NLCD (Figure 7d), the original CCDC
failed to identify some developed areas such as the Springville Valley in the eastern part of Figure 7b.
The area southwest of Lake Success was classified as cropland in Figure 7b, while Figure 7c,d showed
this area as wetland. Moreover, Figure 7b found more tree cover than Figure 7c,d.
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Figure 7. Demonstration of the classification results at the southern California site: (a) land cover result
from this study, (b) close up of the Lake Success area land cover using the Continuous Change Detection
and Classification (CCDC) classification strategy, (c) close up of the land cover result based on this
study, and (d) cross-walked 2011 National Land Cover Database (NLCD) land cover for comparison.

5. Conclusions

In this study, we sought to improve the land cover classification data products that are part of
the LCMAP initiative. We optimized multiple aspects (e.g., auxiliary data, training sample size, and
training data source) of the operational automated land cover mapping of the conterminous United
States within the LCMAP initiative. We removed three auxiliary data layers from the classification
feature set that were derived from the Landsat quality band because these static layers spread data
artifacts throughout the time series. We selected NLCD 2001 as the training data source and increased
the total training data sample to 20M. The Trends dataset was designed to describe land changes across
the U.S., but its block sampling strategy was not representative of minor land cover classes or classes
with high within-class variability. The final classification strategy for LCMAP includes three steps.
(1) A total of 20M training data points are extracted based on the proportional occurrence of land cover
classes. (2) The training data are balanced by using a minimum of 600,000 and a maximum of 8M
training pixels for each class. (3) Five auxiliary data layers (aspect, elevation, positional index, slope,
and Wetland Potential Index) are used as input features. We adapted the recently developed XGBoost
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classifier to improve computation time. However, the results of this study suggest that the classifier
inputs such as feature selection and appropriate, representative training data are more important to the
land cover classification than algorithm selection. This LCMAP classification strategy is a foundation
for characterizing land cover and detecting land change as it occurs. The strategy may be modified
when other features, training data sources, or land cover legends are used, but the methodology of
optimization can still be applied.
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