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Abstract: Recently, Hyperspectral Image (HSI) classification methods based on deep learning models
have shown encouraging performance. However, the limited numbers of training samples, as well as
the mixed pixels due to low spatial resolution, have become major obstacles for HSI classification.
To tackle these problems, we propose a resource-efficient HSI classification framework which
introduces adaptive spectral unmixing into a 3D/2D dense network with early-exiting strategy.
More specifically, on one hand, our framework uses a cascade of intermediate classifiers throughout
the 3D/2D dense network that is trained end-to-end. The proposed 3D/2D dense network that
integrates 3D convolutions with 2D convolutions is more capable of handling spectral-spatial
features, while containing fewer parameters compared with the conventional 3D convolutions,
and further boosts the network performance with limited training samples. On another hand,
considering the existence of mixed pixels in HSI data, the pixels in HSI classification are divided
into hard samples and easy samples. With the early-exiting strategy in these intermediate classifiers,
the average accuracy can be improved by reducing the amount of computation cost for easy
samples, thus focusing on classifying hard samples. Furthermore, for hard samples, an adaptive
spectral unmixing method is proposed as a complementary source of information for classification,
which brings considerable benefits to the final performance. Experimental results on four HSI
benchmark datasets demonstrate that the proposed method can achieve better performance than
state-of-the-art deep learning-based methods and other traditional HSI classification methods.

Keywords: hyperspectral image classification; adaptive spectral unmixing; dense network;
early-exiting strategy; 3D/2D convolution

1. Introduction

Hyperspectral Image (HSI) comprise hundreds of narrow and contiguous spectral bands,
and each represents the measured intensity of a narrower range of light frequencies [1]. The great
spectral resolution of HSI improves the capability of precisely discriminating the surface materials of
interest [2,3]. Such abundant spectral information makes it beneficial to a wide range of applications,
especially in some cases that cannot be directly detected by humans. For most of these applications,
HSI classification has been an active area of research in remote sensing research. Abundant spectral
resolution is useful for classification problems but at the expense of much lower spatial resolution.
Because of the low spatial resolution of HSI, the spectral signature of each pixel contains a mixture of
different spectra, which is caused by the multiple components that form the ground surface materials.
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If a pixel is highly mixed in HSI data, it is very difficult to categorize it in the original feature space.
Therefore, the presence of mixed pixels is one of the major obstacles affecting seriously the classifier
accuracy [4].

In recent years, in HSI data analysis, the spectral unmixing techniques [5] have been employed to
handle with the mixed pixel issue. The spectral unmixing includes two steps: (1) extracting the pure
material spectra (endmembers) from the HSI and (2) calculating their relative proportions (abundances)
of the HSI data [6]. Spectral unmixing has been extensively studied as a possible solution in HSI
analysis. Related research works and applications have been developed in many fields, such as
HSI super-resolution, denoising, change detection, and so on [7–9]. For instance, in Reference [7],
Lanaras et al. proposed a method which performs hyperspectral super-resolution by jointly
coupled spectral unmixing. The proposed joint formulation significantly improves hyperspectral
super-resolution. Yang et al. [8] proposed a sparse representation framework that unifies denoising
and spectral unmixing in a closed-loop manner. This method utilizes spectral information from spectral
unmixing as feedback to correct spectral distortion, while denoising and spectral unmixing act as
constraints to iteratively solve other constraints. In Reference [9], a general framework for HSI change
detection using sparse unmixing is proposed. This model has the potential to get more information
than other change detection techniques.

Moreover, spectral unmixing also carries valuable information for the HSI classification problem.
A brief review of existing HSI classification methods with spectral unmixing is given below.
Generally, these algorithms can be divided into two groups. Firstly, spectral unmixing has been widely
studied as a feature extraction strategy before classification [10–13]. For instance, in Reference [10],
unmixing results is used to improve classification performance in an alternative strategy and spectral
unmixing can be used to extract suitable features for future classify images. Later, Dópido et al. [11]
quantitatively evaluated the unmixing-based feature extraction methods, and further proved that
these features can effectively improve the accuracy of classification. This strategy was further explored
in many works [12,13] and also proved that the unmixing before classification provided an effective
solution for HSI classification. Secondly, several techniques are proposed to utilize the complementarity
of the classification and spectral unmixing in a semi-supervised framework, where the abundance
maps have been applied as a supplementary source for the multinomial logistic regression (MLR)
classifier [14–17]. First, the framework utilizes the information provided by spectral unmixing to select
new training samples for classification, and then it integrates the abundance maps and classification to
obtain the final classification results. This strategy considers the output provided by both classification
and unmixing simultaneously, which provides a joint approach for HSI interpretation and can
effectively improve the classification results, particularly when the available training set is very limited.

More recently, the deep learning-based methods have shown state-of-the-art performance in
HSI classification [18–22], thanks to its great success in computer vision and the fast advancement
of computing facilities [23–27]. Instead of shallow manually-crafted features, deep learning network
models can extract high-level, hierarchical and abstract features which are generally more robust
to nonlinear processing. In Reference [18], Pan et al., proposed a simplified deep learning model
called R-VCANet [18] (vertex component analysis network) based on the deep learning baseline
PCANet [27]. In recent studies, convolutional neural networks (CNNs) [23] are most often used in
deep learning-based methods for HSI classification [19–21]. For example, a 3D CNN based on the 3D
convolutional kernel is proposed in Reference [19], and the discriminative spectral-spatial features
and classification are performed in an end-to-end manner. Zhong et al. [20] proposed a supervised
spectral-spatial residual network (SSRN) based on the residual neural network (ResNet) [24]. An SSRN
consists of consecutive spectral and spatial residual blocks, which are used to extract spectral-spatial
features of HSI.

Furthermore, dense convolutional networks (DenseNet) have demonstrated significant
achievement in deep learning network models and have also been used for HSI classification [28–30],
particularly in limited training samples, because the dense connections have a regularizing effect,
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which reduces overfitting on tasks with smaller training set sizes [31]. In Reference [21], a 3D dense
convolutional network with multiple scales dilated convolutions [32] and a spectral-wise attention
mechanism (MSDN-SA) is proposed for HSI classification with limited training samples. The 3D
CNN has a very important characteristic, that is they can directly create hierarchical representations
of spectral-spatial data. However, the number of parameters grows exponentially when convolution
goes from 2D to 3D. Due to the additional kernel dimension, 3D network has more parameters than
2D CNN. A large number of parameters make it easily prone to over-fitting when there are only
limited labeled samples. Besides, when the 3D network is applied to HSI classification, the power of
3D network comes at a considerable cost, namely the computational cost of applying them to new
examples. It is necessary to design a network model for resource-efficient HSI classification with
limited training samples [33].

Considering the successful combination of HSI unmixing and classification, as well as
the development of deep learning, we aimed at integrating spectral unmixing with deep learning-based
classification algorithm to improve the classification accuracy. Little research has been undertaken
on the combining of these two techniques. Recently, Alam et al. [12] used spectral unmixing to
generate abundance maps and then used abundance maps as the input for deep learning-based
HSI classification. However, in some cases, it is important to take advantage of the unmixing
and classification information in a complementary manner, but the algorithm [12] uses the information
provided by spectral separation before classification [15].

Based on the above motivations, a novel 3D/2D dense network where multiple intermediate
classifiers are integrated with the spectral unmixing method for HSI classification is proposed. For HSI
data with mixed pixels, compared with state-of-the-art CNN, this model shows its superiority in terms
of overall classification accuracy, especially in limited training samples. The three contributions of this
paper can be summarized as follows.

1. Our model adopts a specially designed network with multiple intermediate classifiers that is
trained end-to-end. A 3D/2D dense networks with multiple intermediate classifiers (3D/2DNets)
are jointly optimized during training and early-exiting strategy is adopted for each sample during
testing. This is a resource-efficient model concerning other deep learning-based HSI classifiers.

2. We proposed a spectral-spatial 3D/2D convolution (SSDC) for the proposed framework.
It enables the network to incorporate fewer 3D convolutions, while taking advantage of 2D
convolutions to obtain more spectral information feature maps and enhance feature learning
capabilities, thereby reducing the training complexity of each round of spectral-spatial fusion,
which reduces overfitting on tasks with limited training samples.

3. An adaptive spectral unmixing is proposed as a complementary source for classification.
The endmember composition of each pixel is established by the probabilistic output of
softmax adaptively.

The remainder of this paper is organized as follows. In Section 2, we describe our approach
for HSI classification. The experimental results are presented and discussed in Sections 3 and 4.
Finally, in Section 5, the paper is summarized.

2. Proposed Methods

2.1. Overview

The proposed method aims to learn an early-exiting deep learning framework for HSI classification
based on 3D/2D dense networks (denoted as 3D/2DNets) and adaptive spectral unmixing (ASU).
The whole framework is abbreviated as ASU-3D/2DNets. We exploit the fact that HSI data is typically
a combination of easy examples and hard examples. Based on the above facts, a 3D/2D dense network
with early-exiting strategy is proposed, which can reduce the evaluation time without loss of accuracy.
Furthermore, considering the pixels with a low probabilistic output are either mixed pixels or pixels
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that are difficult to classify due to spectral variability, we unmix the hard samples to get more accurate
classification results.

The framework of the proposed method is shown in Figure 1. All available labeled samples
are divided into three parts: training samples, validation samples, and testing samples. The method
is mainly composed of three parts: 3D/2D dense networks; early-exiting strategy; and adaptive
spectral unmixing.

Figure 1. Illustration of the proposed framework adaptive spectral unmixing (ASU)-3D/2DNets.

3D/2D dense networks: To be specific, the 3D/2D dense networks composed of one convolution
layer and three blocks, each block is connected to a classifier exit. In training processing, a 3D/2D
dense network with multiple intermediate classifiers is jointly optimized.

Early-exiting strategy: Considering the existence of mixed pixels in HSI, the pixels in HSI
classification can be divided into hard samples and easy samples. We intend to prioritize easy samples
from early layer and difficult to classify samples (hard samples) from later layers. This process is
called the early-exit strategy. All samples first pass the Block 1, each sample can be assigned to a class
and the probability of each sample in the softmax layer is denote as yi , where 0 < yi < 1, Σyi = 1,
i is the number of categories. If the softmax probability value max(yi) of samples obtained in
the classification process is greater than a chosen threshold T1, the system sends them down to
exit; otherwise, it sends the samples (the hard samples D1) to the Block 2. After the samples pass
through the Block 2, if the softmax probability value of samples obtained in the classification process
is greater than a chosen threshold T2, the system will send them to exit and future unmix them.
Otherwise, the samples (the hard samples D2) will be input into the Block 3 to continue to extract
deeper features. The samples output from each block is represented as Nb1, Nb2, and Nb3, respectively.

Adaptive spectral unmixing: At the exit of the Block 2, by considering the results of the coarse
classification step and applying the fully constrained least squares (FCLS) [34] method to each
unlabeled pixel, spectral unmixing is performed to the unclassified pixels to obtain the abundance
maps. As a result, abundance maps provide additional information about the composition of each
pixel. Finally, the contribution degree of abundance maps and classification results are controlled by
weight, and the final classification map is obtained.

Next, we will detail the 3D/2D dense networks with early-exiting strategy and adaptive
spectral unmixing.

2.2. 3D/2D Dense Networks with Early-Exiting Strategy

Recently, two-dimensional multi-scale dense networks (MSDNets) is first proposed for
resource-efficient image classification [35]. MSDNets uses a cascade of intermediate early-exiting
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classifiers throughout the network. In these intermediate early-exiting classifiers setting, MSDNets can
improve the average accuracy by reducing the amount of computation spent on easy samples to save
up computation for hard samples [35].

Based on the fact of that HSI data is typically a mix of easy examples and hard examples, we are
trying to apply MSDNets to the HSI classification, thereby increasing the classification accuracy whilst
reducing the computational requirements. As HSI data are 3D cubes, it is reasonable to extend the 2D
model to the 3D model for HSI classification; however, greatly increasing on both computational
complexity and memory usage has followed. To resolve this problem, an early-exiting dense network
with mixed 3D and 2D convolutions (3D/2DNets) is proposed. In this section, we first give a detailed
description of early-exiting dense networks . Then, a 3D/2D convolution based on spectral and spatial
information is presented for early-exiting dense networks.

2.2.1. Dense Networks Architecture with Early-Exiting Strategy

Figure 2 gives an illustration of the dense networks architecture with early-exiting strategy.
As shown, the network is based on DenseNets [31] and cascaded intermediate early-exiting classifiers
throughout the network. Because coarse-scale features are important to classify the content of
the sample patch into a single class, the network maintains a feature representation at multiple
scales throughout the network, and all the classifiers only use the coarse-level features. We perform
the early-exiting of the easy examples at early classifiers whilst propagating hard examples through
the entire network, using the procedure described in Section 2.1.

Figure 2. Illustration of dense networks with early-exiting strategy.

In sample extraction, we extract cube with the size W×W× L, where W and L are the spatial size
and the number of spectral bands, respectively. Each cube is extracted from a neighborhood window
centered around a pixel, and the label of each sample is that of the pixel located in the center of this
cube. Then, we feed 3D cube into the multi-scale dense networks model, which is itself composed of
one convolution layer and three blocks, to obtain the classification result.

(1) The convolutional layer functions in the first layer (` = 1 ), hs
1 ; denote a sequence of 3× 3×

8-sized 3D convolutions (Conv), the batch normalization layer with rectified linear unit (ReLU)
function, and a 3D max pooling layer with 3× 3× 3-sized kernel, stride of 2. The output feature
maps at ` layer and scale s are denoted as xs

` .
(2) For subsequent feature layers in each block, the transformations hs

` and h̃s
` are defined following

the design in DenseNets [32]: Conv(1 × 1 × 1)-BN-ReLU-Conv(3 × 3 × 3)-BN-ReLU. We set
the number of output channels of the three scales to 6, 12, and 24, respectively. The output feature
maps xs

` produced at subsequent layers, ` > 1 and scales s, are a concatenation of transformed
feature maps from all previous feature maps of scale s and s− 1 (if s > 1 ).
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(3) Each classifier has two down-sampling convolutional layers with 128 dimensional 3× 3× 8 filters,
followed by a 2× 2× 2 3D average pooling layer and a linear layer. The classifier at layer `

uses all the features
[
xs

1, . . . , xs
`

]
. Let fk(·) denote the k th classifier, every sample traverses

the network and exits after classifier fk(·) if its prediction confidence (we use the maximum value
of the softmax probability as a confidence measure) exceeds a pre-determined threshold T.

During training, we use cross entropy loss functions L ( fk) for all classifiers and minimize
a cumulative loss as follows:

1
|D| ∑

(x,y)∈D
∑
k

L ( fk) , (1)

where D denotes the training set.

2.2.2. 3D/2D Convolutional Based on Spectral-Spatial Information

In HSI classification, a 3D convolution couples spectral-spatial information to effectively extract
spectral-spatial features. Though promising, regarding 2D CNN, 3D CNN extends the spatial kernel to
spectral-spatial space, which significantly increase the number of parameters, thus greatly increasing
the computational complexity and memory usage, as well as increasing the network’s demand for
huge training sets [36]. It can be seen from the above analysis that the above facts limit the performance
of existing 3D CNN on HSI classification, especially in dense convolution networks based on 3D
convolution [21]. There are currently some efforts to ameliorate the downside of the 3D convolution
model in HSI classification. Zhong et al. [20] first employed the style of residual connection to extract
the spectral features by continuous 1D convolution, and then used 3D convolution to extract spatial
information. Furthermore, in Reference [37], the combination of a 2D spatial convolution and a 1D
spectral convolution was used to replace spectral-spatial 3D convolution, which means that this
network structure was no longer 3D CNN.

Recently, intertwined 3D/2D networks [38–40] have shown up as a hybrid between 2D CNN
and 3D CNN in human action recognition. In Reference [38], a mixed convolutional tube (MiCT) was
proposed to integrate 2D convolution with the 3D convolution to learn better spatio-temporal features.
Compared to the 3D CNN, a benefit of using such 3D/2D networks is that the parameters involved in
the networks are much reduced.

Inspired by this, to alleviate the drawback of 3D convolution in the HSI classification, inspired
by Reference [38], we proposed a spectral-spatial 3D/2D convolution (SSDC) for HSI, as illustrated
in Figure 3. The SSDC replaces each 3D convolution in the first layer of the proposed framework.
Considering the HSI data has a lot of redundant spectral information among consecutive bands, this
results in redundant information in feature maps along the spectral dimension. In the first layer,
if all the bands are directly used in the network input, the 3D sample block will input too many
parameters and increase the computational complexity. Therefore, the proposed SSDC is used to
replace the 3D convolution used in the first layer network. It enables the network to incorporate fewer
3D convolutions, while taking advantage of 2D convolutions to obtain more spectral information
feature maps and enhance feature learning capabilities, thereby reducing the training complexity of
each round of spectral-spatial fusion, which reduces overfitting on tasks with limited training samples.

The shortcut in our SSDC is cross-domain[38] is different from the residual connections in
previous works [21,24]. The SSDC is obtained by 3D convolution mapping for the 3D inputs
and a 2D convolution mapping for the 2D inputs. By introducing a 2D convolution to extract
the 2D features information on each band, the 3D convolution in SSDC only needs to learn residual
information along the spectral dimension. Thus, the cross-domain residual connection largely reduces
the complexity of SSDC in 3D convolution kernels learning.
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Figure 3. Illustration of spectral-spatial 3D/2D convolution (SSDC).

2.3. An Adaptive Endmember Selection of Unmixing

As described above, the method of combining classification and unmixing has achieved good
results in pixel labeling, in which the abundance maps have been used as an auxiliary information
source in the MLR classifier [10,11,16]. However, all the above methods process all pixels in the same
way, but the fact that hyperspectral data is that some samples may be not highly mixed (in this case,
the coarse classification step may be sufficient to characterize them), and some samples may be highly
mixed (in this case, spectral unmixing is particularly useful for enhancing the classification) [15].
With the aforementioned issues in mind, adaptive spectral unmixing is introduced to the 3D/2D dense
networks with early-exiting classifier. Through this network architecture, the easy examples were
correctly classified and exited by the first classifier. The examples with low probabilistic outputs are
either mixed pixels or pixels hard to classify due to spectral variability; we unmix the hard samples to
achieve more accurate classification results. In general, adaptive spectral unmixing consists of two
important parts, the collection of endmembers spectrum and adaptive endmember selection.

Firstly, in our framework, the spectral signatures used for unmixing purposes are not obtained by
endmember extraction but are obtained by averaging the spectral signatures of each labeled category
in the training set. Although the average endmembers will cause a decrease in spectral purity, it can
reduce the effects of noise and/or average the subtle spectral variability of each spectral category,
resulting in a more representative final endmember as a whole [10,13].

In the spectral unmixing of mixed pixels, the choice of endmembers is extremely important.
We did a simple experiment, and Figure 4 shows the classification results of each block output.
In Figure 4, we find the hard samples (maybe highly mixed), which are from the second and third
classifiers, and the probabilistic output of top3—the top3 value refers to the top three in the maximum
probability vector. As long as the correct probability is present, the prediction is correct; otherwise,
the prediction error is close to 99% in second classifiers, and the probabilistic output of top5 is also 95%
in third classifiers. So, we speculate that the endmember composition of a mixed pixel can represent
its main component with a few endmembers instead of all endmembers, and according to the different
spectral purity, different processing strategies should be adopted for different types of the pixel.
This theory has also been verified in the literature [15]. Therefore, we propose an endmember selection
of unmixing in which the probabilistic output of softmax is exploited to determine the endmember set
for each pixel.

To be specific, all samples first pass the first block, and every sample can be assigned to
a class. If the probabilistic output obtained in the classification process is greater than a chosen
threshold T ( T1 and T2), the system sends it down to exit; otherwise, it sends the sample to the second
block. It is worth mentioning that the easy examples were correctly classified and exited directly
by the first classifier. For each sample output from the second classifier, we take the top3 result of
the corresponding probabilistic output as the endmember, and for the sample output by the third
classifier, we take the top5 of the probabilistic output classification result as the endmember.
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Sk
i = EM, i ∈ M, (2)

where Sk
i is the selected endmember set of sample i from the k th classifier. If k = 2, then M = 3;

if k = 3, then M = 5. E = [e1, e2, . . . , eL] denotes endmember set.

Figure 4. The classification results of each block in Indian Pines dataset.

Lastly, the adaptive endmembers are adopted for the fully constrained least squares (FCLS) [34]
unmixing model. As a result, abundance map provides additional information about the composition
of each pixel. Finally, the contribution degree of abundance map and classification result is controlled
by weight λ , and the final classification map LF is obtained as follows:

LF = λ fk(·) + (1− λ) fa(·), (3)

where function fk(·) is the probability obtained by the classification algorithm, i.e., the kth classifier
described in Section 2.2.1; and function fa(·) is the abundance fraction obtained by the spectral
unmixing with adaptive endmember Sk

i .

3. Experimental Results and Discussion

3.1. Experimental Data Sets

In this section, one synthetic dataset and four benchmark HSI datasets, including Indian Pines,
Salinas Valley, Kennedy Space Center (KSC), and Pavia University, are used to evaluate the performance
of the proposed method. The first three datasets were collected by the NASA Airborne Visible/Infrared
Imaging spectrometer (AVIRIS) instrument; the last one was collected by the ROSIS-03 sensor.

To assess the classification performance in a totally controlled environment, we generate synthetic
datasets of four classes (see Figure 5). It should be noted that the proposed approach exploits the linear
mixture model. Let x(k)i be the i th samples in class k,

x(k)i =
c(k)

∑
j=0

m(k+j)α(k+j) + ni, (4)



Remote Sens. 2020, 12, 779 9 of 23

where m(l), l = 1, ...8 are pure spectra from the U.S. Geological Survey digital spectral library, α(k+j) is
the corresponding abundance fraction, and c(k) is the number of constituents in class k. For a certain
sample xi, we assume that m(k) receives the maximum abundance value, which, in turn, determines
the corresponding label yi = k. The zero-mean Gaussian noise ni ∼ N (0, σ2I) is also added to
the pixel xi.

Figure 5. Reference map of the simulated hyperspectral dataset with four classes.

The Indian Pines image was recorded by the AVIRIS sensor over the Indian Pines test site in
Northwestern Indiana, with 20 m spatial resolution and 0.4–2.5 µm wavelength range. It consists of
145× 145 pixels and 220 spectral reflectance bands. Twenty spectral bands (104–108,150–163, and 220)
were removed due to the noise and water absorption, and the remaining 200 bands image was used as
the original for the experiments reported herein. The ground-truth data contains 16 classes, the false
color composite image and the reference map are shown in Figure 6a,b, respectively.

Figure 6. Indian Pines image. (a) False color image. (b) Reference image.
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The Salinas Valley image was captured by the AVIRIS sensor over Salinas Valley, California,
and is characterized by 3.7 m spatial resolution. It consists of 512× 217 pixels and 224 spectral bands
and 0.4–2.5 µm wavelength range, where twenty water absorption bands (108–112, 154–167, and 224)
were removed. The reference image contains 16 land-cover classes. Figure 7a,b shows the true color
composite of the Salinas Valley image and the corresponding reference data.

Figure 7. Salinas Valley image. (a) True color image. (b) Reference image.

The KSC image was recorded by the AVIRIS sensor over the KSC site in Florida, with 18 m
spatial resolution and 0.4–2.5 µm wavelength range. After removing water absorption and low
signal-to-noise-ratio (SNR) bands, the remaining 176 bands and 512 × 614 pixels are used for
assessment. Training data were selected using land cover maps derived from color infrared
photography provided by the KSC and Landsat Thematic Mapper (TM) imagery. The vegetation
classification scheme was developed by KSC personnel in an effort to define functional types that are
discernible at the spatial resolution of Landsat and these AVIRIS data. Discrimination of land cover
for this scene is difficult due to the similarity of spectral signatures for certain vegetation types. For
classification purposes, 13 upland and wetland classes representing the various land cover types that
occur in this scene were defined for the site. Figure 8a,b shows the true color composite of the KSC
image and the corresponding reference data.

Figure 8. Kennedy Space Center (KSC) image. (a) True color image. (b) Reference image.
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The Pavia University image was gathered by the ROSIS sensor during a flight campaign over
Pavia, northern Italy, having 610× 340 pixels with 1.3 m spatial resolution. It consists of 115 spectral
bands at the range 0.43–0.86 µm. Twelve spectral bands were removed due to noise, and the remaining
103 bands were used for classification of nine classes. The true color composite of the Pavia University
image and the corresponding reference image are shown in Figure 9a,b, respectively.

Figure 9. Pavia University image. (a) True color image. (b) Reference image.

3.2. Experimental Settings

All the compared methods are assessed numerically using the following three criteria:
overall accuracy (OA), average accuracy (AA), and statistically kappa coefficient (κ). We implemented
10 trials of hold-out cross validation for each dataset: the mean values and standard deviations
are reported for each dataset. For each trial, a limited number of training samples were randomly
selected from each class, 10% of the labeled samples are chosen as validation samples, and the
remaining samples were used as testing samples. The training samples are used to train the weights
and biases of each neuron in the model, while the architecture variables are optimized based on
the validation samples. More specifically, the number of training samples in Indian Pines, Salinas Valley,
Kennedy Space Center (KSC), and Pavia University datasets are set as 5%, 2%, 1%, and 1% per
class, respectively.

The performance of ASU-3D/2DNets is compared with several recent proposed HSI classification
methods related to our algorithm, which are summarized as follows.

On the one hand, in dealing with mixed pixels in HSI classification, we compare two HSI
classification methods for mixed pixels. MLRsubMLL (multilevel logistic) [40] is a supervised
algorithm which integrates a subspace projection method with the multinomial logistic regression
(MLR) and further combined with an markov random field (MRF)-based multilevel logistic (MLL)
prior for spatial-contextual information. Subspace projection methods can provide advantages by
separating classes of mixed pixels which are very similar in a spectral sense. SVM (support vector
machine)-MLRsub-MRF [41] is a spectral-spatial classifier for HSI data that specifically addresses
the issue of mixed pixel characterization. More specifically, a subspace-based multinomial logistic
regression method (MLRsub) for learning the posterior probabilities and a pixel-based probabilistic
support vector machine (SVM) classifier as an indicator to locally determine the number of mixed
components participate in each pixel.

On the other hand, we also compare three state-of-art HSI classification methods based on deep
learning, R-VCANet [18], SSRN [20], and MSDN-SA [21]. Rolling guidance filter (RGF) and vertex
component analysis network (R-VCANet) [18] is based on PCANet [27], which contains four layers.
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In the input layer, RGF is used to combine the spectral and spatial information of the original HSI
data. Based on the result of RGF, two VCA-based convolution layers are followed to explore the deep
information in the HSI data. At last, an output layer is used to determine the feature expression for
each pixel. More specifically, the VCA-based convolutional kernels are extracted from the HSI by VCA.
The SSRN [20] includes a spectral feature learning section, a spatial feature learning section, an average
pooling layer, and a fully connected (FC) layer. The spectral feature learning section is composed of
two convolutional layers and two spectral residual blocks, and the spatial feature learning section
comprises one 3D convolutional layer and two spatial residual blocks. Besides, MSDN-SA [21] directly
extends the 2D DenseNets architecture into 3D DenseNets with multiple scales dilated convolutions
and spectral-wise attention mechanism; the network structure is set as given in Reference [21]

For the proposed framework, the λ is set as 0.75. For the 3D/2DNets algorithm, we set the spatial
size to 13 × 13, following the practice in Reference [21], and the specification of the architecture
employed on four datasets in the experiments in Table 1. We use Nesterov momentum with
a momentum weight of 0.9 without dampening and a weight decay of 10−4. All models are trained for
90 epochs, with an initial learning rate of 0.1, which is divided by a factor 10 after 30 and 60 epochs.

Table 1. Network architecture details of proposed ASU-3D/2DNets.

Type

Layer1 Block1 Block2 Block3

3× 3× 8× 8/(1, 2)
3× 3× 8/(1, 2)

3× 3× 8× 16/(1, 2)
3× 3× 16/(1, 2)

3× 3× 8× 16/(1, 2)
3× 3× 16/(1, 2)



3× 3× 3× 6/(1, 1)

3× 3× 8× 6/(1, 2)
3× 3× 3× 6/(1, 1)

3× 3× 8× 12/(1, 2)
3× 3× 3× 12/(1, 1)


× 4


3× 3× 3× 12/(1, 1)

3× 3× 8× 12/(1, 2)
3× 3× 3× 12/(1, 1)

× 8 (3× 3× 3× 24/(1, 1))× 12

3× 3× 8× 128/(1, 2) 3× 3× 8× 128/(1, 2) 3× 3× 8× 128/(1, 2) 3× 3× 8× 128/(1, 2)

Avgpool3d

128× num classes

3.3. Experimental Results

In this section, we first present a synthetic dataset experiment showing the effects of additional
noise. We select 100 samples per class from the image for training and use the rest samples for testing.
In this experiment, we use the synthetic datasets of linear mixed classes to evaluate the algorithm
performance with different noise effects. Gaussian additive noise with a signal-to-noise-ratio (SNR)
from 20 dB to 50 dB is shown in Table 2. It can be seen that the proposed ASU-3D/2DNets always
achieves the best performance. For example, in the case of SNR=40 dB, the OA of ASU-3D/2DNets is
5.61% and 3.25% higher than MLRsubMLL and SVM-MLRsub-MRF.

Table 2. Classification overall accuracy (%) of the synthetic dataset with different signal-to-noise-ratio
(SNR). MLR = multinomial logistic regression; MLL = multilevel logistic; SVM = support vector
machine; MRF = markov random field .

Algorithms
SNR

20 25 30 35 40 45 50

MLRsubMLL 85.97 ± 0.82 87.05 ± 0.83 88.99 ± 0.67 89.51 ± 0.55 90.36 ± 0.57 91.87 ± 0.21 92.42 ± 0.54
SVM-MLRsub-MRF 86.74 ± 0.74 88.48 ± 0.45 90.84 ± 0.34 91.97 ± 0.39 92.72 ± 0.48 93.48 ± 0.19 95.17 ± 0.23

ASU-3D/2DNets 90.15 ± 0.57 92.57 ± 0.18 94.28 ± 0.26 95.84 ± 0.24 95.97 ± 0.14 97.27 ± 0.21 98.96 ± 0.14

Next, we will show the advances of the proposed ASU-3D/2DNets compared to
the state-of-the-art algorithms for HSI classification. Related results on Indian Pines, Salinas Valley,
Kennedy Space Center (KSC), and Pavia University datasets are shown in Tables 3–6, respectively.
The corresponding classification maps are shown in Figures 10–13. As can be seen from the tables, in all
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compared methods, our ASU-3D/2DNets achieves the best performance on four datasets, of which
96.34% on Indian Pines, 98.92% on Salinas Valley, 92.82% on KSC, and 98.64% on Pavia University.
For deep learning-based methods, R-VCANet adopt advanced endmember-based convolution to
explore the deep features in the HSI data; SSRN learns deep spectral-spatial features by decomposing
3D convolutions; MSDN-SA directly extends the 2D DenseNets architecture into 3D DenseNets;
the ASU-3D/2DNets still performs the best. In addition, regarding subspace projection-based methods
to separate mixed pixels (such as MLRsubMLL, SVM-MLRsub-MRF) with the best accuracy up to
87.82% on Indian Pines, 93.85% on Salinas Valley, 80.07% on KSC, and 93.85% on Pavia University,
our proposed ASU-3D/2DNets performs the best.

Table 3. Classification results (%) of different algorithms on Indian Pines dataset with 5% training
samples per class. OA = overall accuracy; AA = average accuracy; MSDN-SA = multiple scales dilated
convolutions and a spectral-wise attention mechanism.

Class Samples Methods

No. Training/ Validation /Testing MLRsubMLL SVM-MLRsub-MRF R-VCANet SSRN MSDN-SA ASU-3D/2DNets

1 5/5/36 91.55 ± 4.48 31.11 ± 20.92 94.70 ± 5.12 100 ± 0 100 ± 0 100 ± 0
2 72/143/1213 74.47 ± 19.80 80.52 ± 3.99 91.12 ± 3.11 93.90 ± 2.17 94.65 ± 3.67 95.66 ± 2.83
3 42/83/705 81.04 ± 24.61 62.41 ± 8.67 93.46 ± 2.06 93.56 ± 4.82 92.80 ± 4.12 95.22 ± 3.03
4 12/24/201 35.71 ± 20.94 50.04 ± 34.87 92.07 ± 6.50 90.66 ± 8.18 91.87 ± 4.93 100 ± 0
5 25/49/409 57.42 ± 25.02 91.99 ± 2.65 96.99 ± 2.55 98.43 ± 1.04 97.89 ± 2.29 99.76 ± 0.21
6 37/73/620 95.75 ± 1.59 98.33 ± 1.29 99.98 ± 0.06 97.93 ± 2.64 97.88 ± 1.43 99.08 ± 0.65
7 2005/5/18 97.96 ± 3.75 64.29 ± 20.10 95.68 ± 1.51 99.24 ± 1.86 100 ± 0 95.45 ± 1.13
8 24/48/406 99.45 ± 0.12 99.53 ± 0.16 99.89 ± 0.18 98.67 ± 1.66 98.16 ± 2.41 95.73 ± 2.87
9 2005/5/10 100 ± 0 51.12 ± 48.38 85.96 ± 16.86 95.74 ± 4.99 88.24 ± 3.23 93.33 ± 1.98

10 49/98/825 39.00 ± 31.09 80.89 ± 5.29 93.73 ± 1.29 93.75 ± 5.33 86.72 ± 2.03 92.58 ± 3.74
11 123/246/2086 98.92 ± 0.96 97.85 ± 2.74 96.46 ± 1.77 97.08 ± 1.53 98.39 ± 1.62 95.25 ± 1.14
12 30/60/503 67.27 ± 31.89 93.95 ± 4.75 93.46 ± 3.16 93.97 ± 2.81 92.88 ± 1.87 97.25 ± 2.97
13 11/21/173 99.36 ± 0.24 98.43 ± 1.95 99.23 ± 0.84 99.29 ± 1.15 98.37 ± 0.62 97.34 ± 1.09
14 64/127/1074 100 ± 0 97.49 ± 2.14 99.60 ± 0.43 98.43 ± 1.12 98.53 ± 0.61 99.21 ± 0.27
15 20/39/327 12.34 ± 12.80 77.34 ± 21.21 92.59 ± 5.13 94.52 ± 5.39 95.92 ± 3.58 96.91 ± 3.21
16 5/10/78 92.70 ± 6.66 69.54 ± 37.18 99.43 ± 1.39 93.47 ± 6.85 90.43 ± 4.79 92.22 ± 3.04

OA(%) 79.87 ± 6.18 87.82 ± 2.37 95.68 ± 0.73 96.03 ± 0.58 95.47 ± 0.74 96.34 ± 1.40
AA(%) 77.68 ± 4.67 77.80 ± 9.39 95.27 ± 0.91 96.50 ± 0.10 95.17 ± 0.89 96.56 ± 1.14

κ(%) 76.47 ± 7.61 85.99 ±2.74 95.07 ± 0.83 95.29 ± 0.75 94.85 ± 0.81 95.83 ± 1.58

Table 4. Classification results (%) of different algorithms on Salinas Valley dataset with 2% training
samples per class.

Class Samples Methods

No. Training/ Validation /Testing MLRsubMLL SVM-MLRsub-MRF R-VCANet SSRN MSDN-SA ASU-3D/2DNets

1 41/201/1767 98.03 ± 3.80 100 ± 0 99.66 ± 0.18 100 ± 0 99.54 ± 0.77 100 ± 0
2 75/373/3278 99.94 ± 0.10 99.90 ± 0.11 99.86 ± 0.15 99.92 ± 0.10 99.97 ± 0.16 99.82 ± 0.41
3 40/198/1738 22.52 ± 17.78 99.38 ± 1.47 99.61 ± 0.26 99.66 ± 0.45 99.12 ± 1.37 100 ± 0
4 28/140/1226 13.99 ± 14.25 98.62 ± 1.50 98.59 ± 1.15 99.11 ± 0.91 98.68 ± 0.52 99.26 ± 0.48
5 54/268/2356 99.92 ± 0.01 98.76 ± 0.56 99.81 ± 0.24 99.93 ± 0.10 99.92 ± 0.04 99.87 ± 0.34
6 80/396/3483 99.93 ± 0.08 99.96 ± 0.06 99.97 ± 0.02 99.99 ± 0.01 99.95 ± 0.76 99.97 ± 0.29
7 72/358/3149 99.86 ± 0.04 99.65 ± 0.18 99.59 ± 0.50 99.93 ± 0.18 99.91 ± 0.24 100 ± 0
8 226/1128/9917 99.15 ± 0.20 96.20 ± 1.50 95.38 ± 0.96 95.26 ± 3.94 95.89 ± 5.18 97.22 ± 2.45
9 125/621/5457 100 ± 0 99.93 ± 0.14 99.81 ± 0.27 99.72 ± 0.28 99.93 ± 0.02 99.98 ± 0.19
10 66/328/2884 92.79 ± 3.96 95.54 ± 2.00 97.26 ± 0.98 99.59 ± 0.15 97.17 ± 2.83 99.48 ± 0.26
11 22/107/939 14.13 ± 34.62 95.19 ± 4.52 98.82 ± 0.76 99.43 ± 0.78 99.04 ± 0.19 98.54 ± 0.39
12 39/193/1695 56.19 ± 5.46 100 ± 0 100 ± 0 99.77 ± 0.44 100 ± 0 100 ± 0
13 19/92/805 99.41 ± 0.63 97.84 ± 0.91 99.10 ± 0.81 99.46 ± 1.27 99.89 ± 0.78 96.87 ± 3.67
14 22/107/941 91.03 ± 7.44 96.25 ± 1.54 93.79 ± 2.41 99.70 ± 0.37 94.71 ± 3.82 100 ± 0
15 146/727/6395 32.83 ± 50.86 65.19 ± 5.76 90.73 ± 1.67 94.02 ± 4.20 90.98 ± 6.04 97.49 ± 0.53
16 37/181/1589 97.74 ± 0.49 98.52 ± 0.75 98.65 ± 1.13 99.97 ± 0.08 97.83 ± 1.65 99.81 ± 0.46

OA(%) 81.35 ± 6.42 93.85 ± 0.90 97.30 ± 0.26 98.25 ± 0.51 97.47 ± 0.82 98.92 ± 0.42
AA(%) 76.09 ± 3.41 96.31 ± 0.73 98.16 ± 0.26 99.15 ± 0.14 98.28 ± 0.76 99.27 ± 0.33

κ(%) 78.97 ± 7.32 93.13 ± 1.01 96.99 ± 0.29 97.75 ± 0.89 97.18 ± 0.29 98.80 ± 0.46
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Table 5. Classification results (%) of different algorithms on KSC dataset with 1% training samples
per class.

Class Samples Methods

No. Training/ Validation /Testing MLRsubMLL SVM-MLRsub-MRF R-VCANet SSRN MSDN-SA ASU-3D/2DNets

1 8//77/676 91.63 ± 2.03 100 ± 0 96.60 ± 2.37 96.34 ± 2.00 96.66 ± 1.53 95.26 ± 1.27
2 3/25/215 89.17 ± 10.19 59.58 ± 25.88 68.55 ± 18.28 93.84 ± 8.51 100 ± 0 93.78 ± 8.89
3 3/26/227 54.55 ± 33.61 79.64 ± 23.55 83.00 ± 17.59 76.74 ± 24.02 61.47 ± 27.78 90.51 ± 10.86
4 3/26/223 50.60 ± 12.23 71.02 ± 22.29 59.76 ± 12.76 65.34 ± 18.64 55.26 ± 13.76 52.61 ± 15.28
5 2/17/142 47.80 ± 25.96 17.44 ± 18.23 88.81 ± 9.89 51.46 ± 15.78 53.47 ± 8.01 91.37 ± 0.13
6 3/23/203 43.36 ± 27.19 16.00 ± 39.19 42.99 ± 2.78 83.37 ± 13.84 66.03 ± 11.69 54.97 ± 20.14
7 2/11/92 48.54 ± 20.38 14.21 ± 10.31 86.73 ± 29.14 80.46 ± 20.15 94.74 ± 1.57 95.83 ± 2.14
8 5/44/382 70.66 ± 22.14 78.76 ± 21.17 69.18 ± 19.97 89.94 ± 10.69 90.46 ± 2.96 89.29 ± 1.02
9 6/52/462 77.24 ± 1.35 97.89 ± 5.16 99.42 ± 0.67 86.53 ± 8.87 81.03 ± 6.19 99.61 ± 1.24
10 5/41/358 50.13 ± 16.58 53.42 ± 13.02 88.45 ± 20.05 98.27 ± 2.70 100 ± 0 99.00 ± 0.42
11 5/42/372 94.93 ± 2.98 91.06 ± 11.16 94.36 ± 3.94 96.52 ± 3.81 99.44 ± 0.49 99.48 ± 1.07
12 6/51/446 88.33 ± 7.61 92.39 ± 7.78 97.03 ± 3.07 94.19 ± 4.05 96.07 ± 1.22 96.39 ± 0.64
13 10/93/824 97.82 ± 3.73 99.11 ± 0.99 100 ± 0 100 ± 0 100 ± 0 100 ± 0

OA(%) 78.04 ± 5.32 80.07 ± 3.89 87.89 ± 5.42 88.78 ± 1.19 89.30 ± 2.63 92.82 ± 0.94
AA(%) 69.60 ± 8.21 66.96 ± 6.04 82.68 ± 8.18 85.62 ± 0.85 84.20 ± 3.20 89.08 ± 1.83

κ(%) 75.53 ± 6.77 77.62 ± 4.44 86.47 ± 6.07 87.50 ± 1.34 88.08 ± 2.92 93.09 ± 1.05

Table 6. Classification results (%) of different algorithms on Pavia University dataset with 1% training
samples per class.

Class Samples Methods

No. Training/ Validation /Testing MLRsubMLL SVM-MLRsub-MRF R-VCANet SSRN MSDN-SA ASU-3D/2DNets

1 67/664/5900 96.10 ± 3.98 98.79 ± 1.38 90.98 ± 3.24 99.10 ± 0.69 99.09 ± 0.78 98.01 ± 0.03
2 187/1865/16597 99.90 ± 0.05 99.81 ± 0.23 99.48 ± 0.28 99.03 ± 0.49 99.05 ± 0.07 99.56 ± 0.12
3 21/210/1868 7.62 ± 14.28 54.66 ± 11.14 82.20 ± 5.17 96.65 ± 4.27 96.77 ± 1.37 95.84 ± 0.49
4 31/307/2726 55.95 ± 14.39 89.51 ± 7.58 84.89 ± 0.89 99.82 ± 0.11 99.92 ± 0.52 97.07 ± 1.37
5 14/135/1196 99.80 ± 0.23 99.51 ± 0.23 99.89 ± 0.13 99.64 ± 0.76 98.09 ± 0.43 100 ± 0
6 51/503/4475 28.69 ± 4.59 85.96 ± 7.27 94.44 ± 0.63 99.07 ± 0.87 99.53 ± 1.41 98.55 ± 0.18
7 14/133/1183 19.01 ± 0.99 35.08 ± 12.62 89.43 ± 4.19 94.41 ± 10.94 72.28 ± 7.75 95.86 ± 0.04
8 37/369/3276 62.71 ± 33.98 90.14 ± 7.06 89.07 ± 3.56 91.49 ± 3.16 89.18 ± 2.39 97.50 ± 1.58
9 10/95/842 97.22 ± 2.31 96.91 ± 4.24 92.64 ± 1.5 99.94 ± 0.15 100 ± 0 99.41 ± 0.14

OA(%) 76.89 ± 3.62 92.15 ± 1.35 94.30 ± 0.38 98.11 ± 0.70 96.98 ± 0.32 98.64 ± 0.36
AA(%) 62.89 ± 5.45 83.38 ± 4.28 91.45 ± 0.27 97.68 ± 1.51 94.88 ± 0.27 97.97 ± 0.43

κ(%) 67.35 ± 5.39 87.89 ± 4.40 92.43 ± 0.49 97.49 ± 0.93 95.99 ± 0.39 98.20 ± 0.47

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Classification maps of Indian Pines dataset. (a) False color image. (b) Reference image.
(c) MLRsubMLL. (d) SVM-MLRsub-MRF. (e) R-VCANet. (f) SSRN. (g) MSDN-SA. (h) ASU-3D/2DNets.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. Classification maps of Salinas Valley dataset. (a) True color image. (b) Reference image.
(c) MLRsubMLL. (d) SVM-MLRsub-MRF. (e) R-VCANet. (f) SSRN. (g) MSDN-SA. (h) ASU-3D/2DNets.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. Classification maps of KSC dataset. (a) True color image. (b) Reference image.
(c) MLRsubMLL. (d) SVM-MLRsub-MRF. (e) R-VCANet. (f) SSRN. (g) MSDN-SA. (h) ASU-3D/2DNets.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. Classification maps of Pavia University dataset. (a) True color image. (b) Reference image.
(c) MLRsubMLL. (d) SVM-MLRsub-MRF. (e) R-VCANet. (f) SSRN. (g) MSDN-SA. (h) ASU-3D/2DNets.

4. Experimental Analysis

In this section, experiments on effect of training samples is shown firstly. Then, we qualitatively
evaluate the performance of the early-exiting strategy in the proposed framework. Then, we
investigate the efficacy of the adaptive spectral unmixing by confusion matrix obtained from
the classification results. Then, we provide an ablation study of our ASU-3D/2DNets on four datasets.
Lastly, experimental analysis on challenging HSI dataset is provided.

4.1. Effect of Training Samples

The above experimental results have shown that the proposed ASU-3D/2DNets method performs
well in HSI classifications, especially in the case of having smaller training samples. In this part,
we would like to further investigate the scenarios of extremely scarce training samples. The curves of
AA, with respect to a different number of training samples, are shown in Figure 14.

(a) (b) (c) (d)

Figure 14. Effect of number of training samples on: (a) Indian Pines dataset; (b) Salinas Valley dataset;
(c) KSC dataset; and (d) Pavia University dataset.



Remote Sens. 2020, 12, 779 17 of 23

As expected, as the number of training samples increases, the accuracy increases. We can see from
Figure 14 that ASU-3D/2DNets outperforms other methods in most cases. Regarding Salinas Valley,
KSC, and Pavia University datasets using only small training samples per class, ASU-3D/2DNets has
achieved best. Although classification of Indian Pines dataset is more challenging, on 3–9% training
samples per class, ASU-3D/2DNets scores significantly higher than other compared methods. It is
worth mentioning that 55% of the training samples selected in the Indian dataset were allocated
according to GRSS DASE website [42], and the algorithm also showed good classification results under
fixed train/test data.

4.2. Analysis of Early-Exiting Strategy and Unmixing

In order to evaluate the performance of the early-exiting strategy in the proposed framework,
quantitative data in the experiments are carried out on four datasets. As shown in Tables 7–10, the first
column indicates the block number, the second column indicates the output threshold of softmax for
different blocks, the third column indicates the number and correct rate of sample output at T without
unmixing, and the fourth column indicates that, under T, the number and correct rate of sample
output at the time of unmixing. It should be noted that we set the λ to 0.75, following the practice
in Reference [14]. In the early-exiting strategy, the number of samples output per block is changed
by the correct rate before and after unmixing. According to the value of T, the classification result
is outputted from the first two blocks successively, and the remaining samples are output in the last
block, so the value of T in the last block is null.

Table 7. Analysis of early-exiting strategy on Indian Pines dataset.

Block T No Unmixing Add Unmixing

1 0.8658 1300/1302(0.999) 1300/1302(0.999)
2 0.6916 2033/2257(0.901) 2114/2257(0.937)
3 ∼ 2711/5125(0.529) 4028/5125(0.786)

Table 8. Analysis of early-exiting strategy on Salinas Valley dataset.

Block T No Unmixing Add Unmixing

1 0.8658 7142/7142(1) 7142/7142(1)
2 0.6916 12279/13333(0.921) 13279/13333(0.996)
3 ∼ 16449/27144(0.606) 23208/27144(0.855)

Table 9. Analysis of early-exiting strategy on KSC dataset.

Block T No Unmixing Add Unmixing

1 0.8658 696/693(1) 693/693(1)
2 0.6916 1183/1292(0.916) 1188/1292(0.920)
3 ∼ 1990/2637(0.755) 2117/2637(0.803)

Table 10. Analysis of early-exiting strategy on Pavia University dataset.

Block T No Unmixing Add Unmixing

1 0.8658 5700/5705(0.999) 5700/5705(0.999)
2 0.6916 10324/11030(0.936) 10544/11030(0.958)
3 ∼ 13969/21328(0.655) 18235/21328(0.855)

Next, we investigate the efficacy of the adaptive spectral unmixing through confusion
matrix obtained from the classification results. Under the early-exiting strategy of our proposed
ASU-3D/2DNets, we remove the adaptive spectral unmixing method and represent this model as
3D/2DNets. Take KSC dataset as an example, the confusion matrix of the classification obtained by
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the 3D/2DNets and ASU-3D/2DNets is shown in Tables 11 and 12, respectively. As shown in Table 11,
from line five, we can see that confusion between CP/oak hammock and Slash pine (class 4 and class 5)
is significant. After adding the adaptive spectral unmixing strategy as shown in Table 12, the number
of samples in class 5 that were misclassified to the class 4 decreased from 48 to 9, reducing nearly 80%.
In Table 11, for the Cattail marsh (class 10) of line ten, the misclassified samples are distributed in
the Spartina marsh (class 9) and Mud flats (class 12). In Table 12, class 10 is completely separated from
class 9. However, 3D/2DNets provides more accurate classification scores than ASU-3D/2DNets in
class 8. In general, the performance of the 3D/2DNets becomes further improved by incorporating
the adaptive spectral unmixing, with its OA increasing from 88.62% to 92.95% on KSC dataset. It can
be inferred from the above analysis that spectral unmixing provides a useful source of information for
classification and has the ability to further interpret mixed pixels, especially for classes where highly
mixed pixels are dominant and its classification labels may be changed accordingly.

Table 11. Confusion matrix of the classification obtained by the 3D/2DNets on KSC dataset.

Class No. 1 2 3 4 5 6 7 8 9 10 11 12 13

1 654 7 0 5 0 6 0 4 0 0 0 0 0
2 6 185 0 0 0 0 10 14 0 0 0 0 0
3 1 0 189 28 8 0 0 0 1 0 0 0 0
4 3 4 58 88 29 38 0 3 0 0 0 0 0
5 0 0 0 48 73 17 0 4 0 0 0 0 0
6 27 0 13 34 4 120 5 0 0 0 0 0 0
7 0 8 0 0 0 0 84 0 0 0 0 0 0
8 0 4 0 1 1 0 0 345 14 0 0 17 0
9 10 0 0 0 0 0 0 9 437 0 5 1 0
10 0 0 0 0 0 0 0 0 21 325 0 12 0
11 0 0 0 0 0 0 0 0 0 1 369 2 0
12 0 0 0 0 0 0 0 39 0 4 0 403 0
13 0 0 0 0 0 0 0 0 0 0 0 0 824

OA = 88.62%, AA = 82.51%, κ=87.32%

Table 12. Confusion matrix of the classification obtained by the ASU-3D/2DNets on KSC dataset.

Class No. 1 2 3 4 5 6 7 8 9 10 11 12 13

1 652 0 0 0 6 0 0 10 8 0 0 0 0
2 1 206 0 0 0 0 8 0 0 0 0 0 0
3 0 0 218 1 0 1 0 0 7 0 0 0 0
4 1 3 57 109 10 37 0 2 1 0 0 3 0
5 3 0 0 9 130 0 0 4 0 0 0 0 0
6 28 3 26 5 0 141 0 0 0 0 0 0 0
7 0 8 0 0 0 1 83 0 0 0 0 0 0
8 0 0 0 1 0 0 0 311 57 0 0 13 0
9 0 0 0 0 0 0 0 0 461 0 1 0 0

10 0 0 0 0 0 0 0 0 0 350 0 8 0
11 0 0 0 0 0 0 0 0 0 1 369 2 0
12 0 0 0 0 0 0 0 0 0 3 0 442 1
13 0 0 0 0 0 0 0 0 0 0 0 0 824

OA = 92.95%, AA = 89.67%,κ=92.14%

4.3. Ablation Study

To assess the performance gain caused by spectral-spatial 3D/2D convolution (SSDC),
multiple intermediate classifiers, and adaptive spectral unmixing, we compared the proposed
ASU-3D/2DNets with another four deep learning architectures. The first one, denoted by Model-B,
is identical to the proposed one except for replacing each SSDC with a 3D convolutional kernel.
The last two, denoted by Model-C and Model-D, are same with the proposed one except for either
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removing the adaptive spectral unmixing or removing the first two classifiers. To make a fair
comparison, the same preprocessing strategy was used. The obtained OA, AA, values were displayed
in Tables 13–16. Take Indian Pines dataset as an example, where it shows that, compared to using
3D convolutional layers, using SSDC improves the OA from 0.9567 to 0.9634. It indicates that,
compared with conventional 3D convolution, the SSDC can learn and represent spectral-spatial
features more efficiently and accurately. Besides, either multiple intermediate classifiers or adaptive
spectral unmixing can improve the performance to some extent. It is worth noting that the test samples
passed through a deeper network layer in Model-D leads to no further improvement, but the model
contained much more parameters and computational requirements. The same conclusion can be
obtained by analyzing the other three datasets.

All these results show that the proposed ASU-3D/2DNets outperforms the state-of-the-art
HSI classification methods. The design of the multiple intermediate classifiers make it possible
to use adaptive spectral unmixing to facilitate classification, which brings considerable benefits for
computational requirements and final performance. In addition, SSDC is more capable of processing
spectral-spatial features than conventional 3D convolution, and each component of SSDC does help
improve classification results.

Table 13. Classification accuracy (%) of three different types’ networks on Indian Pines dataset.

Proposed Model-B Model-C Model-D

OA 96.34 95.67 94.3 94.21
AA 96.56 95.78 93.88 93.9

kappa 95.83 95.05 93.29 93.84

Table 14. Classification accuracy (%) of three different types’ networks on Salinas Valley dataset.

Proposed Model-B Model-C Model-D

OA 98.92 96.64 93.53 93.47
AA 99.27 98.79 94.17 94.88

kappa 98.8 96.25 93.47 93.54

Table 15. Classification accuracy (%) of three different types’ networks on KSC dataset.

Proposed Model-B Model-C Model-D

OA 92.82 90.29 88.69 87.14
AA 89.08 86.43 85.49 85.26

kappa 93.09 89.19 88.05 87.58

Table 16. Classification accuracy (%) of three different types’ networks on Pavia University dataset.

Proposed Model-B Model-C Model-D

OA 98.64 97.86 95.01 95.96
AA 97.97 98.13 94.48 93.14

kappa 98.2 97.15 95.99 94.87

4.4. Experimental Analysis on Challenging HSI Dataset

In this section, we will explore the classification results of our algorithm on more challenging
high resolution HSI datasets. The HSI we used are provided by the Image Analysis and Data
Fusion Technical Committee in the 2018 IEEE GRSS Data Fusion Contest, which are the images
of the University of Houston Energy Research Park (UHEP) and the Earth and Atmospheric Science
building (UH01) and one temporary station located at the Baytown airport (KHPY) [43]. It contains
48 bands with a spectral range of 380–1050 nm and a spatial resolution of 1 meter. The size of this data
is 601× 2384, and it contains 50,4856 labeled reference samples. The classes and the number of labeled
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samples in each are listed in Table 17. Classification results of Houston 2018 dataset with different
numbers of training samples are shown in Table 18.

Table 17. Class information for Houston 2018 dataset.

No Class Name Class Number

1 Healthy grass 9799
2 Stressed grass 32502
3 Artificial turf 684
4 Evergreen trees 13595
5 Deciduous trees 5021
6 Bare earth 4516
7 Water 266
8 Residential buildings 39772
9 Non-residential buildings 223752

10 Roads 45866
11 Sidewalks 34029
12 Crosswalks 1518
13 Major thoroughfares 46348
14 Highways 9865
15 Railways 6937
16 Paved parking lots 11500
17 Unpaved parking lots 146
18 Cars 6547
19 Trains 5369
20 Stadium seats 6824

Table 18. Classification results (%) of Houston 2018 dataset with different numbers of training samples.

The Proposed Algorithms The Nnumber of Training Samples

10% Per Class 20% Per Class 30% Per Class

3D/2DNets 49.79 ± 5.88 62.53 ± 3.39 71.93 ± 2.98
ASU-3D/2DNets 46.30 ± 6.71 58.21 ± 4.18 70.56 ± 3.24

It can be seen from Table 18 that our algorithm does not perform well in this dataset, and we
analyze the reasons as follows.

Firstly, Table 17 shows the samples in the given hyperspectral image are severely unbalanced.
Some classes, e.g., buildings and roads, have an adequate amount of data for training. However,
classes, such as water, unpaved parking lots, and artificial turf, contain less than seven hundred
samples. It has been well known that unbalanced training data may result in an underperformance of
the network. Therefore, for this dataset, the future work of our algorithm needs to carry out a data
augmentation method for the problem of unbalanced data, so as to re-balance the training data while
keeping the data diversity.

Secondly, after adding the unmixing step, the classification result of the algorithm will not improve
but decrease. We analyze that, since our algorithm is designed for the dataset with low resolution,
and the spatial resolution of Houston 2018 is relatively high, further unmixing on preliminary
classification results will have a bad effect on the classification result. Therefore, it can be concluded
that our algorithm is more suitable for HSI with mixed pixels at low resolution.

5. Conclusions

In this paper, we proposed a network architecture specifically designed for low resolution
hyperspectral datasets with mixed pixels. Based on the fact that HSI data is typically a mix of easy
and hard examples, in this paper, we proposed a specially designed framework for HSI classification
jointly using 3D/2D dense networks with multiple intermediate classifiers (i.e., 3D/2DNets) with
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an adaptive spectral unmixing. The design of the multiple intermediate classifiers with early-exiting
strategy make it possible to use adaptive spectral unmixing to facilitate classification, which
can decrease the computational requirements and improve final classification results. Besides,
we proposed a 3D/2D convolution based on spectral-spatial information for the proposed framework,
which fully takes advantage of 2D convolutions to obtain more spectral information, so that the 3D
convolution can incorporate fewer 3D convolutions, while achieving feature learning, thereby reducing
the training complexity of spectral-spatial fusion. Experimental results on four benchmark datasets
show the proposed method outperforms state-of-the-art deep learning based and traditional HSI
classification methods.
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